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The construction of a class of associative composition algebras qn on R 4 generalizing the well­
known quaternions Q provides an explicit representation of the universal enveloping algebra of 
the real three-dimensional Lie algebras having tracefree adjoint representations (class A Bianchi 
type Lie algebras). The identity components of the four-dimensional Lie groups GL(qn,l) Cqn 
(general linear group in one generalized quaternion dimension) which are generated by the Lie 
algebra of this class of quaternion algebras are diffeomorphic to the manifolds of spacetime 
homogeneous and spatially homogeneous spacetimes having simply transitive homogeneity 
isometry groups with tracefree Lie algebra adjoint representations. In almost all cases the 
complete group ofisometries of such a spacetime is isomorphic to a subgroup of the group ofleft 
and right translations and automorphisms of the appropriate generalized quaternion algebra. 
Similar results hold for the single class B Lie algebra of Bianchi type V, characterized by its "pure 
trace" adjoint representation. 

PACS numbers: 02.10. + w, 02.20. + b, 98.80.Dr 

1. INTRODUCTION 

Generalized quaternions were first employed in the de­
scription of a spacetime isometry group by Kurt G6del in his 
1949 paper presenting his famous cosmological solution of 
the Einstein field equations. I These "G6del quaternions" 
(also called "split quaternions" or "antiquaternions,,2) be­
long to a real subalgebra of the complexified quaternion al­
gebra which is not equivalent to the ordinary real quaternion 
algebra. The equally historically important static Einstein 
cosmological solution of 1917 provides a corresponding ap­
plication for the ordinary quaternions, as described in detail 
by Ozsvlith and Schiicking in their treatment of a generaliza­
tion of this solution. 3 Ozsvath generalized both the Einstein 
and G6del solutions by considering spacetime homogeneous 
solutions of the Einstein equations, leading to four classes 1-
IV ofsolutions.4.5 The homogeneity groups of the first three 
classes have tracefree Lie algebra adjoint representations but 
those of the class IV solutions do not. The quaternions are 
relevant to the class I solutions which generalize the Einstein 
static solution while the G6del quaternions are relevant to 
the class II and III generalizations of the G6del solution. 5,6 

The quaternions and G6del quaternions are representa­
tions of the universal enveloping algebras7

,8 of the two ine­
quivalent real three-dimensional semisimple Lie algebras, 
namely the Lie algebras of the groups SU(2) and SL(2,R ), 
respectively, both of which have tracefree adjoint represen­
tations. The construction of the present paper9 extends this 
representation of the universal enveloping algebra to all of 
the real three-dimensional Lie algebras with tracefree ad­
joint representations, namely the class A Bianchi type Lie 
algebras. 10,11 In addition to the semisimple Bianchi types 
VIII (~I(2,R )) and IX(~u(2)), these include the Bianchi types I 
(abelian case), II (Heisenberg Lie algebra of supertriangular 
3 X 3 matrices), VIo (Poincare Lie algebra in two dimen­
sions), and VIIo (Lie algebra of the Euclidean group in two 
dimensions). The corresponding Lie groups are the homo-
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geneity isometry groups of the class A spatially homogen­
eous spacetimes.5,12 Taub and Misner made use of the ordi­
nary quaternions in their study of the Bianchi type IX Taub­
NUT spacetime. 13 The same construction also applies to the 
Lie algebras with "pure trace" adjoint representations in all 
dimensions n > 1, which for n = 3 includes the single class B 
Lie algebra of Bianchi type V. 

The ordinary quaternion algebra Q (Bianchi type IX) is 
a division algebra,8 namely an associative algebra in which 
every nonzero element has an inverse. The generalized qua­
ternions of the remaining Bianchi types are examples of "sin­
gular division algebras" which are associative algebras in 
which almost every nonzero element (all but a set of measure 
zero) has an inverse_ This term was introduced by Illamed 
and Salingaros,14 who studied the real and complex three­
dimensional division and singular division algebras which 
possess a nondegenerate norm (Bianchi type IX and VIII 
quaternions in the real case). Familiar examples of singular 
division algebras are the general linear group Lie algebras 
gI(n,R ), gI(n,C), and gI(n,Q) of real dimension n2

, 2n2, and 
4n2

, respectively. The cases n = I, i.e., R, C, and Q, are well 
known to be the only finite-dimensional real division alge­
bras.8 The Lie algebra gI(2,R ) is in fact isomorphic to the 
G6del quaternions. The n = 1 construction given below in­
volves a single real parameter Yll whose three inequivalent 
values - 1, I, and 0 lead to the complex numbers C and two 
singular division algebras,2 the nondegenerate case YII = 1 
having been discussed by Salingaros.14 For n = 2 the pure 
trace construction given below is the general case for a Clif­
ford-like multiplication. This case'should have been given by 
Campbell in his classification of all three-dimensional real 
associative algebras 15 but an error resulted in the omission of 
a large class of examples. His discussion is apparently a 
slightly different presentation of earlier work by Lie. 16 In the 
older literature, associative algebras are referred to as higher 
complex numbers or hypercomplex numbers. A classifica­
tion of all hypercomplex number systems of dimension less 
than seven was given by Pierce, 17 but his results are not very 
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transparent since he does not use bases containing the unit 
element. 

2. THE CONSTRUCTION 

Consider a real n-dimensional Lie algebra 9 with basis 
( eo I, dual basis (wa I, structure constant tensor components 
C abc = wa( [ eb ,ee ]) = ca[be I' and adjoint matrices 
ka ade(ea) = Cbace\, which span the matrix representa­
tion of the adjoint representation IS of 9 with respect to the 
basis {ea I. Here ( eO b 1 is the natural basis of gI(n,R ) in terms 
of which an n X n matrix is given by A = A a b eb 

a. Note that 
the Jacobi identity C drab C ecld = 0 is equivalent to the ma­
trix identity [ka ,kb ] = C cab ke. For n > 1 define 

(n -1)Ca = Cbab = Trad(ea) = Trka' 

(n - l)Yab = Tr ad (ea)ad (eb) = Tr kakb = (n - I)Y(abl' 

(n - I)Cabc = (n - I)YadCdbc = Tr ka [kb,kc] 

=(n-I)C[abel. (2.1) 

(n - l)Yab are the components of the Killing form of g, 18 
while the antisymmetry of Cabc follows from the properties 
of the trace operation Tr. Note that by taking the trace of the 
Jacobi identity in matrix form, one obtains the relation 
CdC d

ab = O. 

Define an algebra on R n + I with natural basis 
! eO. ) = ! eo,e,,) by introducing the following Clifford-like 
multiplication of the basis elements: 

eoea = eaeo = eO., eaeb = YabeO + CCabeo (2.2) 

or, in a more uniform notation, 

eae{3 = Ya{3eO + CYapey=MYa{3ey, 

YaP fjouo°{3 + Yab Oauob{3' 

ca{3y=oUaob{3oCycabC = Ma[{3YI. (2.3) 

The unit element of this algebra is eo and the multiplication 
of two arbitrary elements a = aaea and b = b aea of R n + I is 
given by 

ab = MYa{3aab{3ey. (2.4) 

Then in the following three cases this is an associative alge­
bra: 

(i) n = 1, yIIER, 

(ii) n>I, cabC=Cdot~==-2Cdfjd[bOacl' 

(iii) n = 3, Co = O. (2.5) 

For an associative algebra, the associator2
•
s 

(ea ,e/3,ey )-(ea e/3)ey - ea (e/3ey ) 

= (Moa/3M€oy - M€a6M°{3y)e€ (2.6) 

vanishes identically. Since this vanishes if any index is zero 
due to the properties of the unit element, it is sufficient to 
consider only (ea ,eb ,ec ). 

In the case (i), C III = 0 and (e1,e1,ed trivially vanishes. 
In the remaining cases using the Jacobi identity and antisym­
metry of CabC one easily finds 

(ea,eb,ec) = (Cdbececa - 2YIJ[eoda I)ed • (2.7) 

In the case (ii), use of the relation YolJ = Co CIJ leads immedi­
ately to the vanishing of this expression. 
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For n = 3 one has the well-known decomposition 10.11 

cabe = tbcd nad + adfjt~, ad=Cd, 

YalJ = aaab -1EoedEb/gnc/ndg. (2.8) 

The vanishing or non vanishing of the Lie algebra representa­
tion Tr ad:g--+R (i.e., ad = 0 or ad #0) divides all three-di­
mensional real Lie algebras into two classes called class A 
and class B, respectively. To show that (ea ,eb ,ec ) = 0 when 
ad = 0, assume that the structure constant tensor compon­
ents are in standard diagonal form, 19 i.e., n=nObeb

a 

= diag(n(l),n(2),nI3)), in which case YalJeba = - diag 
(n(Zln(3l,n(3ln(I),n(I)n(Zl) and C ABC = nlA 1 = - C A CB for each 
cyclic permutation (A,B,C) of (1,2,3) are the only non vanish­
ing components. The class A identity k~ = Yao (1 - eO

a) (no 
sum on a) shows that (eo ,eo ,eb ) = 0 = (eb ,eo ,eo) (no sum on 
a). Since e(Oeb) = 0 for a#b, this implies left and right alter­
nativity,2 and since in an alternative algebra the alternator is 
totally antisymmetric,2.s it suffices to examine (e l ,e2,e3 ), 

which is easily seen to vanish. 
In what follows only n = 3 will be considered. Denote 

the algebra on R 4 resulting from case (iii) by qn and call its 
elements generalized quaternions. It is sufficient to consider 
only a canonical set of values of the structure constant tensor 
components for each Bianchi type Lie algebra. The follow­
ing canonical values of (n(I),n(2),n(3)) for the class A Bianchi 
types will be assumed here: IX( 1,1,1), VIII ( 1,1, - 1), 
VIIo(l, 1,0), Vlo( 1, - 1,0),11(0,0,1),1(0,0,0). When these val­
ues are understood the quaternion algebra will be denoted by 
qz, where Z is the Roman numeral Bianchi type, and will be 
referred to as the canonical Bianchi type Z generalized qua­
ternion algebra on R 4. Thus qIX = Q and qYIII is the Godel 
quaternion algebra while qYIl has been called the "semiqua­
ternions."2 In the nonabelian"case, again letting (A,B,C) be a 
cyclic permutation of(I,2,3), at least one component, say 
nlA l, is nonzero, in which case the algebra qz(Z #J) is iso­
morphic to the Clifford algebra generated by eB and ec- 20 

Case (ii) for n = 3 yields generalized quaternions for the 
single class B Lie algebra of Bianchi type V whose canonical 
structure constant tensor components may be taken to be 
n = ° and ab = 03 b so that YolJ = 03 a031J. Denote the corre­
sponding algebra by qy and let q denote all of the canonical 
generalized quaternion algebras for n = 3. 

Define quaternion conjugation* (an involutive antiau­
tomorphism2

) by 

a = aaea--+a* = aOeo - aaeo ' 

(ab)* = b*a*. (2.9) 

The real valued quaternion norm and trace are defined by 

N(a)eo=laI 2eo = a*a = aa*, 

N(a) = (aOf - YabaQab=y* u/3aua{3, 

Tr(a)eo-a + a* = 2aoeo. (2.10) 

These appear in the characteristic equation satisfied by every 
quaternion,21 

a2 - Tr(a)a + N(a)eo = 0. (2.11) 

For canonical structure constant components one has in the 
class A case 
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lal 2 = (aO)2 + nI2In(31(al)2 + n(3InI1)(a2)2 

+ n(l)n(21(a3)2, 

and in the type V case 

lal 2 = (aO)2 - (a3f 
The norm satisfies the relation 

N(ab) = N (a)N (b), 

(2.12) 

(2.13) 

(2.14) 

i.e., is an algebra homomorphism into the real numbers. An 
algebra with such a norm is called a composition algebra.21 

The generalized quatemions with vanishing norm are 
called singular quatemions. If laI2#0, then a is called non­
singular since it has the inverse 

a-I = lal- 2a*, a-Ia = aa- I = eo. (2.15) 

Because of (2.14), the open submanifold of R 4 consisting of 
nonsingular quatemions forms a Lie group which is generat­
ed by "the Lie algebra,,7 of the quatemion algebra q, namely 
q with the Lie bracket given by the ordinary commutator, 
denoted by gI(I,q). This four-dimensional Lie group 
GL(I,q) = ! aEql la1 2#0 J has a natural three-dimensional 
subgroup SL(I,q) = ! aEql lal 2 = 1J of elements with unit 
norm whose Lie algebra consists of tracefree quatemions 
~I(I,q) = ! aEqITr(a) = 0 J = span! ea J. This latter Lie alge­
bra is isomorphic to the original Lie algebra 9 with which the 
construction began since the basis ! ea J satisfies 

(2.16) 

Thus ea-!ea is a Lie algebra isomorphism and q is a repre­
sentation of the universal enveloping algebra of g. 7.8 

GL(l,q) and SL(l,q) will be called the general and spe­
ciallinear groups in one generalized quatemion dimension. 
This terminology arises from the fact that the natural action 
of GL( l,q) on q by left or right multiplication is linear, while 
the subgroup SL(I,q) leaves the quatemion norm invariant 
under this action due to (2.14)Y Let GL(l,q)+ and SL(I,q)+ 
be the identity components of these Lie groups. Locally 
these are the images of their Lie algebras by the generalized 
quatemion exponential map 

00 

exp a_ I (n!)-I(a)n, (a)O=eo· (2.17) 
n=O 

In fact using the identity aaabeaeb = Yabaaabeo-ueo, one 
may easily obtain the formulas 

exp(~aaea ) = e( 112Ia"( eo cosh!u 1/2 

+ aae u-I/2sinhluI/2) 
a 2' 

N(exp a) = eTr(a l. (2.18) 

The second formula shows that exp maps ~I( I,q) into SL(I,q). 
The first formula reflects the natural isomorphism 
GL(I,q)+ ~ R XSL(I,q)+, 

(2.19) 

The matrix representations with respect to the basis 
lea 1 of the left and right regular representations of q which 
are obtained by letting q act on itself by left and right multi­
plication are two mutually commuting four-dimensional su­
balgebras of gI(4,R ) with bases I Ma J and! Ma J, respective­
ly, 
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Ma = MfJayeYfJ' Ma = MfJyaeYfJ' 

MaMfJ = MYafJMy, MaMfJ = MYfJaMy, 

[!Ma,!Mp] = CYafJ!My, 

UMa,~MfJ J = - CYap!My, 

[Ma,MpJ = O. (2.20) 

These are all equivalent to the associativity condition that 
(2.6) vanish together with the relation capy = Ma[fJYl of 
(2.3). Ifa = aaeaEq, then the left multiplicationL. and right 
multiplication Ra are represented by the matrices 

La-aaMa M(a), 

Ra -aaMa =M(a). (2.21) 

Some of the properties of these matrices are 

Tr M(a) = Tr M(a) = 2 Tr a = 4a0
, 

det M(a) = det M(a) = lal 4
, 

! M(a),M(b)J = 2YafJaab fJ = 1 = ! M(a),M(b)j. (2.22) 

The matrix groups generated by these two matrix algebras 
are both isomorphic to GL(I,q). 

Suppose {aa J are now interpreted as the Cartesian co­
ordinates on R4 associated with the natural basis {ea J, and 
set aa = a/aaa. Then the right and left action ofGL(I,q) on 
q = R 4 is generated by the Lie algebras {ea J and {ea I, re­
spectively, of generating vector fields 

e - IMY afJa e - IMY afJa 
a - 2 /3a r' a - 2. a/3 r' 

[ea ,ep J = O. (2.23) 

In fact when restricted to the Lie group LG( I,q), ! ea I and 
{ea I are bases for the Lie algebras of, respectively, left and 
right invariant vector fields on the group. The corresponding 
dual bases ofleft and right invariant I-forms on the group 
are given, respectively, by 

wa = 21 a l- 2Ma fJya*fJdaY, {jja = 21al- 2M a YfJa*fJda Y, 

(2.24) 

which may be written in terms of quatemion valued I-forms 
as 

ro=waea = 2a -Ida, {jj {jjaea = 2da a -I. (2.25) 

The present notation identifies the original Lie algebra 9 hav­
ing basis {ea J with the Lie algebra ofleft invariant vector 
fields on the Lie group SL(I,q). 

The exponential formula (2.18) may be used to parame­
trize GL( 1 ,q) + in R 4 using various types of canonical coordi­
nates on this group. Define the real valued functions 

Calx) = cosh((Yaa)I/2!x), Ca = ca(xa), 

Sa (x) = (Yaa)-1/2sinh((Yaa)I12!x), Sa = Sa (xa), (2.26) 

which appear in the formula 

(2.27) 

When YUG = 0, these formulas are understood to hold in the 
limit Yaa-D, i.e., Ca = I,sa = !xG

• A parametrization involv­
ing canonical coordinates of the second kind on GL(I,q) is 
obtained by expanding the product 
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aaea = exp(iXOeo)exp(iXleIlexp(iX2e2)exp(iX3e3)' (2.28) 

leading in the class A case to the result 

aO = e(lI2IXo(C1C2C3 - n(I)n(2)n(3)sIS;tS3). 

a l = e(l/21Xo(SIC2C3 + n(I)c1S;tS3)' 

a2 = e(lI2Ix"(c 1S2C3 - n(2IsIC;tS3)' 

a3 = e(l/2IXo(C 1C;tS3 + n(3Isls2C3)' (2.29) 

and in the type V case 

aO = e(l/21XoC3• a3 = e(l12lx"s3' 

a l = iXle(l12IXo(C3 - S3)' a2 = iX2e(1I2)xO(C3 - S3)' (2.30) 

A parametrization generalizing the Euler angles of the 
type IX case is valid in the class A case as long as n(2'=~0. 

aaea = e(I12lx"exp(iX2e3)exp(!xlel)exp(iX3e3)' (2.31) 

or 

aO = e(l12IXocIC3(x2 + x 3), a l = e(lI2IX"s IC3(X2 _ x 3), 

a2 = n(2Ie(1I2IX"SIS3(X 2 _ x 3), a3 = e(l/2IX"CIS3(X2 + x 3). 

(2.32) 
These apply only in the nonabelian class A case, although if 
one assumes the canonical components n(al = 8a 3 in the Bian­
chi type II case, one must cyclically permute the above for­
mulas so that they apply to the case n(3)=1= o. Similar formulas 
hold for the class B type V case. 

In each of these parametrizations ! x a J may be inter­
preted as local coordinates on G L( I ,q) + for certain ranges of 
their values. These coordinates are adapted to the direct pro­
duct structure (2.19), with XO = Inlal 2 being a homomor­
phism onto the additive group of real numbers and {xa I be­
ing local coordinates on the factor manifold SL( 1 ,q) +. Note 
also that 

(jj0 = 0)0 = Tr a-Ida = d In lal 2 = dxo. (2.33) 

The manifold ofSL(I,q) is a certain quadratic surface in 
R 4 given by the equation r:paaaP = 1. For Bianchi type IX 
this is just the unit sphere S3 and so all of the coordinates 
{xQ I must be restricted to finite intervals (integral multiples 
of 7T depending on the exponential parametrization). For 
Bianchi types VIII and VIIo one sees that the canonical coor­
dinate of the second kind x 3 must be restricted to an interval 
oflength 47Tsince exp(27Te3) = eo, i.e., SL(I,q)+ has one com­
pact direction, being the hyperboloid 
(aO)2 + (a 3f - (alf - (a 2

)2 = 1 for type VIII and the cylin­
der (aO)2 + (a3)2 = 1 for type VIIo' In these two cases 
SL(I,q)+ = SL(I,q) is not simply connected but has a simply 

connected covering group22-24 SL(I,q) obtained by extend­
ing the range of the canonical coordinate of the second kind 
x 3 to the real line. The same extension yields the simply con­
nected covering group GL(I,q)+. For Bianchi types V and 
VIo, SL(I,q)+ is one sheet of the hyperbolic cylinder 
(aO)2 - (a 3f = 1 and for Bianchi types I and II it is the hyper­
plane aO = 1, all of which are simply connected. 

The group Aut(q) of automorphisms of the algebra q is 
that subgroup of GL(4,R ) acting naturally on R 4 which 
leaves the group multiplication invariant. In particular, the 
identity must remain fixed, while the Cliffordlike multiplica­
tion requires that an algebra automorphism be an automor-
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ph ism of the Lie algebra ~I(I.q). Le .• the algebra homomor­
phisms coincide with the automorphisms of the Lie algebra 
from which the quaternion algebra is constructed. This is to 
be expected since q is a representation of the universal enve­
loping algebra of this Lie algebra. 

The geometry of the generalized quaternion algebra is 
related to the quadratic form y* 

y*(a,b) = y* a/3aab /3 = ! Tr(ab*). (2.34) 

Using the trace symmetry Tr(ab) = Tr(ba), it is simple to 
show that this quadratic form is invariant under the indepen­
dent left and right translation action ofSL( l,q). Similarly one 
may introduce the following bi-invariant symmetric tensor 
field on GL(I,q), 

y* = !y* apO)a ® wf3 = A Tr ro ® ro = ATr w ® w. (2.35) 

where the final equality follows from the trace symmetry and 
the definitions (2.25). For the semisimple Bianchi types this 
is nondegenerate and therefore a metric tensor field. Its re­
striction to SL(I,q) is the metric induced on SL(I,q) by the 
inner product space (R 4,y*); in fact the submanifolds of con­
stant nonzero quaternion norm are all isometric due to the 
bi-invariance of the metric y*. In the Bianchi type IX case of 
ordinary quaternions, the inner product space (R 4, y*) is Eu­
clidean space and the Riemannian manifold [SL(I,q),y*] is 
the 3-sphere S 3 with its natural metric. 25 

It is worth pointing out the fact that the generalized 
quaternion algebras qv, qVlIl' and qIX = Q (as is welI known 
in the latter two cases) have matrix representations in two 
dimensions as real subalgebras of gI(2,C). If {O'Q I are the 
standard Pauli matrices, then the quaternion basis {ea I cor­
responds respectively to {1,e2

1,ie
2
1'0'3 J, {1'0'3'0'1' - i0'2 J, 

and {I, - iO' a J. The latter two bases generate the matrix 
subalgebras gI(2,R )~R EI1 ~I(2,R ) and u(2)~R EI1 ~u(2), re­
spectively. 

3. HOMOGENEITY GROUPS AND SPACETIME 
SYMMETRIES 

The spacetime homogeneous cosmological models with 
simply transitive isometry groups may be defined as space­
times (M,g) whose manifold M is that of a connected four­
dimensional Lie group M and whose metric g is a left invar­
iant Lorentz metric on this Lie group.26.5 Solutions of the 
Einstein equations with a dust source were studied by Ozs­
vath,4.6 Ozsvath and Schiicking,3 and Farnsworth and 
Kerr,26 while the results for a general perfect fluid source are 
quoted by Ryan and Shepley.5 Of the four classes of solu­
tions, the four-dimensional homogeneity group M is GL( l,q) 
of Bianchi type IX for class I solutions and the simply con-

nected covering group GL(1,q)+ of Bianchi type VIII for 
class II and III solutions. The class IV solutions have groups 
M which have three-dimensional subgroups of the class B 
Bianchi types and so do not involve quaternions except in 
certain degenerate cases. 

The Einstein static solution (class I) and the G6del solu­
tion (classes II-IV) are the only solutions with additional 
continuous symmetry. The Einstein static solution may be 
written g = gP1Ja/3O)a ®wf3, with 1Ja/3ef3a = diag (- 1,1,1,1) 
and f!ll a constant. This is bi-invariant under the action of 
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SL( l,q) as well as under the scaling of the quatemion norm so 
the full isometry group is GL(l,q)L XSL (l,q)R 
~R XSL(l,q)L XSL(l,q)R ~R XSO(4,R )XZ2· Here 
Z2 = ( ± eo J is the discrete parity subgroup associated with 
reflection of R 4 about the origin, while the subscripts Land 
R refer to the left and right actions ofGL(I,q) or its sub­
groups on q. The action ofSL(I,q)L XSL(I,q)R ~O (4,R ) is 
equivalent to the natural action of the orthogonal group on 
R4. 

The Gbdel solution may be written6 

g = ~2[ _ UJ3 ® UJ3 + !(UJ1 ® UJI + UJ2 ® UJ2) 

+ UJO ® UJO], (3.1) 

where (UJ a I is understood to be extended to the simply con­

nected covering group GL(I,q)+. If the factor of! were not 

present the full isometry group would again be GL(I,q)t 
X SL( 1 ,q)R' but its presence limits the additional symmetry 

to local rotational symmetry, the full group being GL(l,q)L+ 

X exp(span{e3 J)R' However, SL(I,q)L Xexp(span{e3 J)R 
contains an SO(2,R i-parametrized family of three-dimen­
sional subgroups Gill of Bianchi type III = VL I' which act 
simply transitively on SL(q,R ) and hence identifying the 
group manifolds of SL(q,R ) and Gill' one may express the 

metric in terms ofleft invariant I-forms on R X Gill [identi­

fied with GL(l,q)+],27 

g = ~2[ _ (~ + ~) ® (~ + ~) + ~((71 ® (71 + ~ ®~) 
+ (J}0 ® UJO], 

d(71 = 0 = d~, d~ = (71 I\~. (3.2) 

These I-forms are given explicitly by (A4) in canonical co­

ordinates (yQ J of the second kind on GIII , while 
UJO + dxo = d Inlal 2. The Appendix clarifies this point. 
Equation (3.2) is the form of the metric originally given by 
Gbdel, 1 apart from an interchange of XO and y3 and a scaling 
of xO,y2, and y 3 by 11'2. 

The spatially homogeneous cosmological models 
whose homogeneity isometry groups act simply transitively 
on spacelike hypersurfaces may be defined as spacetimes 
(M,g) whose manifold M is that of the four-dimensional Lie 
Group R X G and whose Lorentz metric g is invariant under 
the natural left action of the connected three-dimensional 
subgroup G, the copies of which in the product manifold 
R X G are assumed to be spacelike. For the Lie groups of 
class A Bianchi types as well as Bianchi type V, the space­
time manifold may therefore be identified with 
GL(l,q)+ ~R XSL(l,q)+ with G = SL(l,q)+. For Bianchi 
types VIo and VIII one must use the simply connected cover­
ing groups if simply connected spatial slices are desired. 

The quatemion norm parametrizes the family of spa­
tially homogeneous hypersurfaces. The coordinate 
XO = Inlal 2 is a homomorphism onto the additive group of 
real numbers, which is relevant to the Lie group isomor­
phism GL( l,q)+ ~R X SL(l,q)+. For all but a special class of 
spatially homogeneous spacetimes with whimper singulari­
ties,28 this coordinate is timelike on the entire spacetime. A 
spatially homogeneous metric on GL(I,q)+ is of the general 
form 
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(3.3) 

with {ea J a basis of Killing vector fields. Provided XO is al­
ways timelike one can always choose the simpler form 

The additional continuous spacetime symmetries possi­
ble for these spacetimes which act within the homogeneous 
hypersurfaces are local rotational symmetry for all Bianchi 
types except Vlo and isotropy for Bianchi types I, VIIo, V, 
and IX. The local rotational symmetry for Bianchi types 
VIIo, VIII, and IX corresponds to a one-dimensional iso­
metry subgroup of the group of inner automorphisms of q 

aEq--+AD (b)a = bab-I, bEGL(l,q). (3.5) 

The complete isometry group (ignoring discrete symmetries) 
of these three types is SL(I,q)+ L XH, ~SL(I,q)+xsAD(H), 
where H is anyone-dimensional subgroup of SL( l,q) for 
Bianchi type IX and the one-dimensional subgroup 
exp span [ e3 J for the other two types. Here "x s " denotes the 
semidirect product group and the inner automorphism sub­
group AD(H) is the isotropy group at the "identity line" 
{teoltER J. For Bianchi types I, II, and V, this subgroup is 
replaced by a one-dimensional subgroup H of the group of 
automorphisms of q (not an inner automorphism subgroup). 
In the case of isotropy the identity component of the iso­
metry group for Bianchi type IX is SL(l,q)L XSL(I,q)R cor­
responding to bi-invariance of the metric with respect to the 
subgroup SL( l,q), while the quaternion conjugation map* is 
a discrete reflection symmetry. For Bianchi type I, the one­
dimensional automorphism subgroup H of local rotational 
symmetry enlarges to a three-dimensional automorphism 
subgroup, but for Bianchi types VIIo and V, the additional 
two dimensions of the three-dimensional isotropy subgroup 
are not related to automorphisms of the quatemion algebra.9 

Most of the discrete symmetries possible for these spatially 
homogeneous spacetimes are also directly related to auto­
morphisms of the Lie algebra sI( l,q) and hence of the quater­
nion algebra itself. 29 Schmidt has considered a special class 
of such examples. 30 

APPENDIX 

Consider the following SO(2,R i-parametrized family of 
parametrizations ofSL(l,qYIII) due to Ozsvath6 

a = exp( - !Oe3)[!y2e(l/2)Y'(sin !y3(e l - eo) 

+ cos !y3(e2 + e3 )) + exp(!y1e l ) exp(!y3e3)]exp(!Oe3). 
(AI) 

This is the sum of a unit quatemion and a null quatemion 
which is orthogonal to it (with respect to the quadratic form 
r*) and represents a 2-parameter family of straight lines in 
SL( l,qYIII ) C R 4 for each value ofthe additional parameter O. 
Computing the basis {(J}Q I of left invariant I-forms on 
SL(l,qYIII) using the restriction of(2.24) to the group (i.e., set 
UJO = 0) and the constructing the basis [ e a I using duality one 
finds 
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Wi = cedi + see Y'dy 2, 

w 2 = - sed/ + c8eY'dy 2, 

w3 = dy3 + eY'dy2, 

e l = c8a l + se(e _. Y'a2 - a3), 

e2 = -Seal+c8(e-Y'a2-a3)' 

e3 = a3 , (A2) 

wherec8 = COS(X3 + e) andse = sin(x3 + e). [It is helpfulto 
use the isomorphism with SL(2,R ).] Similarly one finds the 
right invariant basis 

£1 = al - y 2a2 = ef, 
-E 2a (- 2y' (y2)2)a - y'a l(-I) -) 

2 = y I + ! e - 2 - e 3 = 2 e2 - e3 , 

(A3) 

where ef = cos eel - sin e e2 and e~ = sin eel + cos e e2· 
Introducing the Bianchi type III = VI _ I invariant 

fields 

0.1 = d/, u 2 = eY'dy2, ~ = dy3, 

£1 = ai' £2 = e - Y'a2, £3 = a3 = E3 = e3, 

EI = a l - y2az, E2 = a2, (A4) 

which depend on e through the parametrization (AI), one 
sees that any locally rotationally symmetric left invariant 
metric on SL( 1,qYIII) may be written as a left invariant metric 
on a Bianchi type III Lie group GIll with the same base 
manifold, 

g = gll(W I 
® Wi + w 2 

® (
2) + g33W3 ® w3 

=gll(UI 
®u

l + ~®~) 
+ gd~ + ~) ® (~ + ~). (AS) 

The SO(2,R )-parametrized family of coordinates (yaJ on 
SL( 1 ,qYIII ) provides a corresponding family of identifica­
tions of the manifold of GIll with that ofSL(l,qYIII); these 
coordinates are global coordinates on the manifold R 3 of the 
simply connected covering groups of both types on which y 3 

1746 J. Math. Phys., Vol. 23, No. 10, October 1982 

assumes all real values rather than being restricted to an 
interval of 417. 
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Some comments on finite subgroups of SU(3) 
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A recently published set of finite subgroups ofSU(3) is shown to contain some groups which are 
not subgroups ofSU(3). The others are subgroups of one ofthe dihedral-like family ofSU(3) 
subgroups..1, of order 3n2

• Some comments are made also on the structure of other finite 
subgroups previously listed. 

PACS numbers: 02.20 + b 

I. INTRODUCTION 

In a recent publication, Bovier et al. I (BL WI, it has been 
claimed that a new class of finite subgroups ofSU(3) has been 
obtained. This new set of subgroups is said to exist in addi­
tion to those listed in Fairbairn et al. 2 (FFK). Their structure 
is that of the semidirect product z m <2<Z3 of two cyclic groups 
Zm and Z3' of order m and 3, respectively, where m must 
contain at least one prime factor of the form (3k + 1), with k 
a positive integer. 

If m contains a factor q which is the product of powers 
of primes which are equal neither to 3 nor (3k + 1) then the 
subgroup of order 3m can be written as the direct product 
(Z (xZ3 ) ® Zq' where m = 3pq with r equal to zero or a 

3'p 
positive integer and p is the product of powers of primes of 
the form (3k + 1). Because the direct product of subgroups is 
automatically a subgroup and because Zq is a trivial finite 
subgroup ofSU(3) we need concentrate only on the semidir­
ect products (Z3r p (xZ3) of order 3' + Ip. BLW claim that this 

group is a finite subgroup ofSU(3) for all integral r. We assert 
that it is a finite subgroup of SU(3) only for r = 0 and r = 1 
and, for these values of r, it is a subgroup of..1 (3n 2

) for an 
appropriate value of n. The groups..1 are defined in FFK, 
who call them "dihedral-like," while BLW refer to them as 
"trihedral" . 

II. DISCUSSION 

A. For r = 0 the subgroup is isomorphic to (Zp (xZ3 ). A 
three-dimensional defining (and irreducible) representation 
of this group is generated by the 3 X 3 unitary matrices. 

and 

o 
o ) o , 

e21Ti02/p o 
where (1 + a + a2

) = 0, modp. This is the representation 
[0,1] as defined by (2.3) ofBLW. 

The three-dimensional matrices which generate the 
subgroups given by FFK are enumerated in Table I of that 

paper. The generators for..1 (3n2
) are 

E (0,0), A (2: ' 0) and A ( 0, 2:), 

where E (0,0) is identical to the first (3 X 3) matrix listed above 
and 

(

eia 

A (a,p) = ~ 

o 
o ) o . 

e - i(a+BI o 

Thus, the second generator of(Zp <2<Z3)isA (21T/p, 21Ta/p) and 
is an element of..1 (3p2). The subgroup isomorphic to (Zp (xZ3) 

is therefore a subgroup of..1 (3p2). The values of the number a 
for some smaller integral values of p of appropriate form are 
given in Table I. 

B. For r = 1 the appropriate subgroup is isomorphic to 
(Zp <2<Z3) ® Z3' The generators of this group can be represent­
ed by (3 X 3) unitary matrices using again a positive integer a, 
which in this case satisfies (1 + a + a2

) = 0, mod 3p. This 
three-dimensional representation of the group (Z3p <2<Z3) 
then contains the center ofSU(3), which has three elements, 
and the group can be factored into the direct product 
(Zp <2<Z3) ® Z3' The smallest example of such a structure is 
the group (Z21 (xZ3 ) of order 63. Here p = 7 and a = 4. The 
generatorsareE (O,O)andA (21T/21, 81T/21), withbothA 7 and 
A 14 diagonal and equal to e2rri

/
3 and e4rri

/
3

, respectively, times 
the three-dimensional unit matrix. 

These SU(3) subgroups are in tum subgroups of..1 (27p2) 
and are therefore subgroups ofthe set of groups..1 (3n 2

) where 
n is a multiple 00. It was noted by FFK that such groups did 
always contain the center ofSU(3). 

Other similar finite subgroups of not too large order 
havep = 13, a = 16 (order 117) andp = 19, a = 7 (order 

TABLE I. Appropriate value of the integer a for some smaIl values of the 
integer p. 

p 713 1931 91=(7XI3) 133 = (7X 19) 

a 2 3 7 5 9 II 
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171). Both are of the type (Zp <2<Z3) ® Z3' and both contain the 
center ofSU(3). 

C. For r> 1 it is claimed by BL W that a faithful three­
dimensional representation can be found which defines a fin­
ite subgroup of SU(3) of order 3' + lp. They denote this sub­
group by G (3'1', 3, a) and its defining representation is 
[O,a - 1], where the number a satisfies the condition of their 
Lemma 3. 

One of these conditions is that a3 = 1, mod 3'1', and the 
other is that ala - 1)#(a - 1), mod 3'1'. Because 
(a 3 

- 1) = (a - 1) (a 2 + a + 1) = 0, mod 3'1' and because 
(a2 + a + 1) can have at most one factor 3 we can deduce 
that if r> 1 then (a - 1) contains at least one factor 3. It 
follows that the representation [0, a-I] is not faithful be­
cause the factor uJa l

' - 0' P, where w = exp(21Ti/3p), will be 
identical for values of f3 differing by 3' ~ lp. There will, in 
fact, be greater duplication of matrices if r > 2. Since the 
d~fining representation of the proposed subgroup must be 
faIthful, we see that the class of finite subgroups ofSU(3) 
constructed in this way for r > 1 does not exist. The smallest 
such subgroup would be of the order 189 = 33 X 7. Possible 
values for a would be a = 4 or a = 58, for which (a - 1) = 3 
or (~ - 1) = 57; in both cases (a - 1) is divisible by 3. The 
orbits, of length three because the representation is three­
dimen~ional, are 3, 12,48 and 57,30,39, respectively. Again 
we notlce that all of these numbers are divisible by 3 and only 
63 distinct matrices are obtained to define a group of order 
189. Similarly for r = 2, P = 13 (a group of order 351) an 
appropriatevalueisa = 16and the orbit is 15, 6,96; only 117 
distinct (3 X 3) matrices are generated. 

D. More recently Bovier and Wyler3 have shown that 
the Hessian group of order 216 and its subgroups of order 72, 
36, and 18 can be written in the form of semidirect products. 
For all of these groups the appropriate normal subgroup is 
(Z3 ® Z3) of order 9 and for the group of order 216 the other 
factor is the double tetrahedral group T' (see FFK, p. 1043); 
for the group of order 72 the other factor is Q, the quaternion 
group of order 8. This group can be generated by the permu­
tations (1234), (5678), (9) and (1537), (2846), (9) on nine sym­
bols,4 and the character tables (VII and VI in FFK) show 
explicitly the elements 142 and 124 of this type contained in 
these two finite subgroups ofSU(3). Note that T' = Q<2<Z3' 

Because the other three subgroup (of orders 36, 168, 
and 360) listed by FFK are simple, it is not possible to ex­
press them as either direct or semidirect products. 
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The L1 (6n 2
) groups can be expressed. as semidirect pro­

ducts. For even n, as stated by BLW, the order of the group is 
6n 2 and i~ is isomorphic to (Zn ® Zn ) <2<S3' where S3 is the 
symmetnc group on three symbols of order 6. However, for 
odd n, as mentioned by FFK the group is of order 24n2 and it 
is isomorphic to (Zn ® Zn)<2< W, where W is a group of order 
24. This group is isomorphic to the semi direct product 
V(xS3 , where Vis the well-known four-group. For both even 
and odd n, S3 consists of the six elements! A (0,0), C (0,0), 
E(O,O), B (1T,1T), D (1T,1T), F(1T,1TJ} and for odd n, V = !A (0,0), 
A (0,1T), A (1T,0), A (1T,1T) I where E (0,0) and the 3 X 3 matrices 
A (a, f3) have been defined previously, and the others are giv­
en in Tables I and VIII ofFFK. 

CONCLUSIONS 

The finite groups G (m, n, a) with n = 3 and m = 3pq, 
with p and q powers of appropriate primes (see Introduc­
tion), can be divided into two categories. Whereas all groups 
of this type have been proposed by BLW as a new class of 
finite subgroups ofSU(3), we have shown that the first cate­
gory, those with r = ° or 1, are subgroups of an appropriate 
L1 (3n 2

), in the notation ofFFK. (It is of interest that the 
smallest such group of order 21 is a subgroup also of the 
group :1(168) listed by FFK.) The second category (r> 1) 
does not define finite subgroups ofSU(3). 

It must be remarked that the analysis by BL W of the 
structure of the irreducible representations of both L1 (3n 2

) 

and L1 (6n 2
) is a new and considerable achievement and ena­

bles one, as they show, to write down the Clebsch-Gordan 
coefficients for these groups. Using these methods, it should 
also be possible to find the coefficients for the various sub­
groups of the "dihedral-like" L1 groups. 

Note added in proof It has been called to our attention 
that an erratum to Ref. 1 had been submitted by its authors, 
referring to the preprint version of this paper, and accepting 
the conclusions of Sec. C, above. 
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In this paper we establish some spectral properties of an elliptic complex introduced by Kostant in 
the context of geometric quantization. 

PACS numbers: 02.40.Sf 

I. INTRODUCTION 

Kostaneand Souriau2 independently developed a the­
ory of geometric quantization. One seeks to associate differ­
ential operators with functions on a symplectic manifold so 
as to preserve as much as possible of the Poisson bracket 
structure of the functions. The Kostant-Souriau quantiza­
tion is usually made in three steps 

(a) Prequantization: Let (M,w I be a symplectic manifold, 
L 0> a line bundle over M having a connection VO> whose cur­
vature is 21Tiw and such that for any section s of L 0> and any 
pair 5,7] of vector fields on M the following relation is satis­
fied: 

[Vt,v~]s - V[s.1/]s = 21Tiw(5,7])s. 

This is only possible when w is integral which means has 
integral periods over integral homology cycles in M. It is in 
fact the famous Wei! lemma3 modified by Kostant. 1 In the 
case when this condition is satisfied the set of isomorphism 
classes of such bundles can be identified with H I(M,S I). 
(Here S 1 is the group of complex numbers of modules one.) 

Theprequantization ofC (M) is constructed on the space 
r ( L" I of smooth sections of L" as follows. With each func­
tion qJEC (M) we associate a first-order operator () (ep): 
r ( L'" ) __ r ( L'" I by setting 

8 (ep) = Vt. + 21Tiep, 

where 5 op is the Hamiltonian vector field associated to ep (i.e., 
is w = dep ). {) is a homomorphism of Lie algebra where the 

II' 
operators on r ( L"') are given their usual commutator 
bracket Lie algebra structure. 

(b) Polarization: Let (M,w) be a symplectic manifold. A 
polarization of (M,w) is a maximally isotropic involutive 
complex subtangent bundle F. If L'" is a Hermitian line bun­
dle onM as above, we denote by r F ( L ) the space of polarized 
sections of L (i. e., the space of smooth sections of the bundle 
L = L'" ® N W covariant constant along F, and where N }f2 
means the bundle of 1/2 forms normal to F. 

(e) Quantization: Let C ~ be the Lie algebara under Pois­
son bracket of all functions on M whose Hamiltonian vector 
fields are infinitesimal automorphism ofF. There is a natural 
Lie derivative action of 50p inr (N W) (see Ref. 4). Combining 
() (ep) with this Lie derivative gives a differential operator 
{)F(tp): F( L ) __ r( L ) which preservesrF ( L). This action of 
() p(tp ) on r p( L ) is known as quantization and is defined for 
anyep in C~. 

Other extensions of these notions can be founded in: 
Kostant,5 Onofri and Pauri,6,7 Rawnsley,8.9 Renouard,1O 
Simms, 11-13 Sniatycki. 14-16 

In connection with the geometric quantization, Fischer 
and Williams 17 introduced the notion of "complex foliated 
structure" and in a particular case they refined the Kostant 
complex. 

In this note using this complex foliated structure we 
shall make some remarks on the spectral properties of the 
Kostant complex. 

II. THE KOSTA NT COMPLEX 

Let M be an orientable, smooth ( = C "") paracompact 
manifold in n + m dimensions. C (M) shall denote the space 
of smooth functions on M, T (M ) shall denote the tangent, 
space of M, and T(Mle its complexification. 

Definition 2.17: A "complex foliated structure" of Mis a 
complex subbundle FC T (M)e satisfying the following 
conditions: 

(I) Fr)Fis of constant rank; 
(2) F and F + Fare integrable. 
We shall suppose in all that follows that rank (F) = n. 
Choosing a direct summand F 1 of F in T (M)e with re-

spect to some Hermitian structure on T(M)e, we obtain 

T(M)e = FffJF1. 

Examples: (I) If T (M)e = F ffJ F, then, defining 
JEEnd( T (M)) as - ion F and i on F, M becomes a complex 
manifold. 

(2) if M is a symplectic manifold and Fis a polarization 
of M, then M is a Kahler manifold. 

der 

Let n '} = {J (O,q) be the space of differential forms on M 

of the type (O,q). The "exterior derivative along F," d F, is 
given by 

d p :aEf} '}-d p :aEfl '} + I, 

where for any vector fields along F, X\, ... ,xq + \ , we take 

dFa(X\, ... ,xq+ I) 

= f ( - 1)1 + IXI(a(X\,. .. .x" ... ,xq + I)) 
;= I 

,<} 

Definition 2.2: The sheaves of forms If!..'} I and d p now 
yield a sheaf complex which we shall call the Kostant 
complex. 

It yields a fine resolution ofthe sheaf .st~ = 

; d", d~ 

= kerd ~ Cf!.. ~,o-.st~---+f!.. ~---+f!.. ~ ....... f!..~....o 
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This result was pointed out by Kostant. I In a more gen­
eral context it was obtained by Fischer and Williams7 and a 
somewhat different proof may also be found in Rawnsley.H 

Hereafter we shall assume that M is an orientable com­
pact manifold and the complex foliated structure of Mis 
elliptic (i.e., see Ref. 17: T (M lc = F + F). 

We choose a Riemannian metric on M and extend it to a 
Hermitian structure on T (M)c . Then the operator d F has an 
adjoint d ~ defined using the given Hermitian structure and 
the Kostant complex is an elliptic complex. 

It is known that under these conditons the Hodge-De 
Rham theorem IH guarantees that the cohomology groups 
are finite-dimensional. In particular, it makes sense to define 
the Euler-Poincare characteristic associated with F: 

n 

XF(M) = 2: (- l)q dim($"}), 
q=O 

where..1 'j. = d'}+ Id'f. + d 'f.d} and $"'} = ker(..1 '}). 
For any O<,q<,n, ..1 '} is an elliptic, autoadjoint positive 

operator. Then theF-spectrum of M denoted by Spec'}(M) is 
the set of eigenvalues of..1 }, i.e., A's such that there exist an 
OJEil ,}, OJ =1=0, with..1 '}OJ = AOJ. We write 

Spec'}(M) = ! O<'Ao < A I < ... -->- + 00 J, 
each A being written a number oftimes equal to its multiplic­
ity. 

It is easy to see that the F-spectrum of M depends only 
on the foliated and Riemannian structure of M: 

Let V'j,(A ) = ! OJEil '} 1..1 }OJ = AOJ l 
and m'j,(A ) = dim V}(A ) be the eigenspace of A and the mul­
tiplicity of A, respectively. It is easy to see that dim($"'}) 
= m'}(O). We will adopt the convention m'}(A) = 0 if 

A =1= Spec}(M). 

Proposition 2.1 (F-telescopage of McKean-Singer): Let 
M be a smooth manifold as above and F an elliptic complex 
foliated structure on M. Then 

i (- l)Qm'}(A) = {XF(M) ~f A = 0 
q =0 0 If A =1=0. 

Proof The first equality follows immediately from the 
Hodge-De Rham decomposition theorem. If A> 0, then we 
can verify that the following identities hold: 

V'}(A )rd F 1(0) = V'}(A )rd Ffl '} - I, 

V'}(A )rd ~ - 1(0) = V'}(A )rd ~fl '} + I. 

Setting 
def 

A '} = V}(A )rd F 1(0), 

def 

B'} = V}(A )rd 'f. - 1(0), 

we obtain in a natural way the orthogonal decomposition of 
the V'}(A): 

V'}(A ) = A '}(A ) Ell B '}(A ). 

On the other hand, dF:B '} - I(A )-->-A }(A ) is an isomorphism 
and therefore 

n 2: (- l)qm}(A) = O. 
q=O 
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Proposition 2.2: For any A> 0, 1 <,q<,n - 1, we have 

(1) m1'+ I(A ) + m'} - I(A );;;'m'}(A ) 

(2) m}(A );;;'m~(A). 

Proof Let Z1· be the space of dF-closed q-forms, 
1 OJ I"-"OJ, l be a basis for Z ~.n V}(A ). and 1 OJ, + I , ... ,OJ k I be a 
basis for the orthogonal complement of Z 1n n·(A ) in V'}(A ) 
so that m1·(A ) = k; since..1 ~. commutes with d~, 
! d ~OJI, ... ,d ~OJr l is contained in VV I(A). In fact, it is 
claimed that it is a linearly independent set. Therefore, 

m~.- I(A );;;.r. 

A similar arguemnt shows that 

mV I(A );;;.k - r. 

Adding these inequalities yields immediately the desired 
result. Q.E.D. 

Proposition 2.3: Let M be as above and n = 2k. If, for 
any q, O<oq<,n, we have 

Spec}(M) = Spec~ - q(M), 

then m~(A ) is an even number. 
Proof Using Proposition 2.1, we have 

o = 2: m'}(A) - 2: m'}(A) 
q, even q, odd 

and then 

{ 

q<k 

m~(A) = (- l)k+ 12 2: m}(J..)-
q>O 

q, even 

Q.E.D. 
In view of the general theory of elliptic complexes the 

Minakshisundaram-Pleijel theorem l9 can be extended in a 
natural way to Spec'}(M). More precisely, setting 

def 

Z~.(t)= };t=Oe-'
W

, we have 

Proposition 2.4: For any q = 0, 1,2, ... ,Z }(t ) has the fol­
lowing asymptotic development: 

Zj,.(t I ~ (41Tt) - n/2(aZ(F) + ta1(F) .. ·) 
(--<J , 

As a consequence of this propositon and of the F-teles­
copage formula, we can prove: 

Proposition 2.5: Let M be as above. Then X F (M) = 0 if 
and only if for any i we have 

n 2: (- l)qa;(F) = O. 
q=O 

Proof Indeed we can write 

qto (- l)qZ:W) = .f Lto ( - l)qm}(A )Je--'" = XF(M). 

Therefore, 

XF(M),_:;.(41Tf)-n/2[ qto a6(F) + .. . 

+ t i q~o( - l)qai(F) + ... J 

from which the announced result. Q.E.D. 
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III. KOSTANT COMPLEX OF A LINE BUNDLE L 

In this section we shall make some remarks on complex 
line bundles in view of their applications in geometric 
quantization. 

Let M be an orientable, compact smooth manifold with 
a Riemannian metric, F an elliptic complex foliated struc­
ture on M, and L a line bundle over M such that it is F­
holomorphic and F is compatible with the linear connection 
ofL [i.e., V FS = 0, for any seF( L)]. WewriterF ( L) for the 
F-holomorphic sections of L, and 
n 1( L) forno,q( L) = n'J, ®rF( L) (see Refs. 8, 13). 

Under these assumptions the sheves of bundle values 
forms In 'J,( L ) J yields an elliptic sheaf complex, which we 
shall callthe Kostant complex of a line bundle L. It yields a 
fine resolution of the sheaf ~~) L ) = I seF ( L ) I V FS 
= Olo-d'~ (L )~n ~(L )~ ... ~n ~(L )~. _ F _ _ 

Some spectral properties of this complex can be found­
ed in the following propositions: 

Proposition 3.1: Under the above restrictions we have 

i (- I)qm'J,(A,L) = {XF(M,L) if A = 0, 
q=O 0 if A #0. 

Proposition 3.2: For any q, 1 <q<n - 1 we have 

(1) m'J,+ I(A,L) + m'J,-I(A,L ):;;'m'J,(A,L), 

(2) m~(A,L ):;;'m~(A,L), 

where m'J,(A,L ) = dim{ wEfl 'J,( L ll.a 'J,w = AW I· 
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Remark: There is an open and very tempting problem, 
to see if the geometric quantization is completey determined 
by the spectrum of the Kostant complex? 
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The problem solved in this paper is that of constructing zero-free holomorphic functions which 
will (a) assume specified values at a set of discrete data points in a data region r l inside the 
ho10morphy domain, and which at the same time will (b) provide the optimum solution to various 
stabilizing (boundedness or smoothness) conditions on the boundaries r R' The immediate 
motivation to this problem arose from the need to renormalize data with unequal errors by using a 
ho10morphic weight function to bring all the errors to the same value: this was a preliminary step 
before making an analytic continuation off the data region r I' Since a stabilizing condition has to 
be imposed on the boundaries r R' the weight function must be chosen so as to introduce the 
minimum additional instability on r R' Although this was the specific motivation, other 
interesting applications suggest themselves and some of these are discussed. The stability 
conditions on r R which are treated may all be expressed in terms of the real parts, or of the normal 
derivative of the real parts. r l is taken to be on the real axis and the functions considered satisfy a 
reflection principle which means that the data values are real. It follows that the results obtained 
may be expressed in terms of the real parts alone-in other words the problem solved here, is in 
fact that of obtaining harmonic functions which take specific values inside their harmonicity 
domain and which satisfy the appropriate extremum condition on the boundary. 

PACS numbers: 02.60.Ed 

1. INTRODUCTION 

We shall consider extremum problems ofthe following 
type: A finite set I Zi J of data points is given on the interval 
( - 1,1). Real valuesa i are assigned to each of these points. It 
is then required to construct a complex function X (z) which 
will have the following properties: 

(i) it will be holomorphic in the unit disk Izl < 1 and will 
satisfy X(z) = Xli); 

(ii) it will assume the specified values ai : X (Zi) = ai ; 

(iii) it will satisfy some extremum requirements on the 
unit circle Izl = 1, namely either 

(Problem A ): 

1 i2

". - IReX(eitP WO'(t,6) dt,6-+least, 
2rr 0 

where 0'(t,6 ) is some given positive and even function of t,6, or 
(Problem B): 

1 i2
". d - 1 - 1m X (e itP ) 120'(t,6 ) dt,6-+least. 

2rr 0 dt,6 
Such extremal functions could be valuable tools in 

strong interactions phenomenology or theory, in quantum 
chromodynamics, or in other branches of physics where one 
wishes to construct scattering amplitudes, form factors, 
vacuum polarization tensors, 1 or any other function of inter­
est with known holomorphy domain, either from experi­
mental or theoretica12 data available at some given points Zi 

inside the holomorphy domain. 
However, from a mathematical point of view such a 

continuation is highly unstable, both because of the finite 
number of the data points and of the uncertainties-theo-

alPresent address: School of Theoretical Physics, Dublin Institute for Ad· 
vanced Studies, Dublin. Ireland. 

retical3 or experimental-of the data. Indeed, it is well 
known that in continuations off open contours, the errors 
propagate in an explosive and extremely anisotropic way in 
the function space under consideration,4 as they are en­
hanced by factors which grow progressively (usually expon­
entially) in the far dimensions of this function space. There­
fore, to make the extrapolation stable, we have to add some 
supplementary information such as boundedness or smooth­
ness, which mainly has the effect of confining the output 
function to a region of the function space which is progres­
sively flattened along the higher dimensions. In this way, the 
number of dimensions of the function space which really 
matter is very much reduced; this effectively counteracts the 
instabilities of the extrapolation, provided of course that one 
uses at the same time an adequate continuation technique. 

The method of accelerated convergence expansions 
(ACE) introduced by Cutkosky and his collaborators5

,6 pro­
vides such a continuation technique. The ACE are polyno­
mial expansions P ~I(W), in some special variable 
w(s) = ~(W(s) + lIW(s)) (see Refs. 5 and 6) which is chosen to 
optimize the convergence of these polynomials along some 
given (open) curve r l to functions F(s) analytic in the cut s 
plane. The cuts will be denoted by r R ; in the Z = z(s) plane 
r R is mapped onto the unit circle, A data function D (s) re­
presenting F (s), together with its associated errors €(s), is giv­
en on r l ; notice that the exact expansion polynomials P ~I(w) 
of F (s) are as unknown as the exact function F (s) itself is, The 
unique analytic functions at hand are the computer-con­
structed polynomials P t;> I(w) which best fit the (error-affect­
ed)dataD (s) onrl.1t can then be shown6 that one can find an 
upper bound En for the deviations of these polynomials 
Pt;>I(w) with respect to the unknown function F(s) at any 
points = sp' If the errors of the dataD (s) on r, are constant 
[if €(s) = n and if 'Tf n is the rate of convergence on the cuts 
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r R of the unknown expansionp~l(w) toFts), then the error 
bound En consists of two terms 

En = 37Jn(P(s)/R)" + 2lp(s)" (1) 

wherep(s) = I W(sp) I depends on the positions = sp of the 
point where the extrapolation is carried out. Since the opti­
mal variable W(s) maps the analyticity F(s) onto an annular 
region such that the data region r I maps onto the circle 
I WI = 1 and the cuts r R onto the circle I WI = R, pIs) is in 
general greater than one, and hence the second term of Eq. 
(1) explodes when n increases too much 

The optimal polynomial extrapolation P~!.!w) is ob­
tained7 for precisely that n = nopt for which En reaches its 
minimum; it is obvious that the value of nopt depends strong­
ly both on the magnitude of the imprecisions E of the dat~ on 
r l and on the error-bound 7Jn which measures the way m 
which the exact polynomials P~I(w) converge to the func­
tion F (s) on the cuts r R' It is clear that the smoother the 
function F (s) on r R' the more rapid will be the convergence 
of the P ~I(w) there, and hence the smaller 7J n will be. Sinc~ 
according to the theory of maximally converging polynomI­
als on r l we have IP~I(w) - F(w(s))lr, < 7Jn/R n, it follows 
that for a smooth F (s) one should be able to approximate the 
data D (s) on r I with low-order (with low n) polynomials 
P~I(w). Hence the exploding term lp(s)" ofEq. (1) may als~ 
be kept small, and thus one takes full advantage of the optI­
mality of the variable w(s): Indeed, the latter is optimal only 
for n greater than some N asmp' since the optimality of t~e 
P~I(w) expansion of F(s) is proven only in the asymptotIc 

case. h" b h . The value n = Nasmp where t IS asymptotIc e aVlOr 
begins depends in an essential way on the smoothness ofF (s). 
In the following we shall refer to the situation when 
n > N as the "near asymptotic situation" (NAS), to be opt asmp 

contrasted with the "far asymptotic situation" (F AS) to be 
discussed later. 

Let us begin with the NAS case, when, as shown, one is 
able to take full advantage of the qualities of the accelerated 
convergence expansions. One should, however, remember 
that the ACE, as well as the theory of maximally converging 
polynomials8 on which they are based, were primarily meant 
for the constant error case. The theory, as it stands, may be 
extended also to the nonuniform error case, but this involves 
some loss of information since the error propagation is gov­
erned by the maximum modulus theorem9 and by other iO 

maximum principles. It is important, therefore, to be able to 
reduce the nonconstant error case to the constant one with­
out loss of information, by means of a suitable holomorphic 
and zero-free weight function. 

The main motivation behind the present paper was to 
solve this problem. 

Case a (NAS case): An important use of the functions 
X (z) which will be constructed in this paper will be to provide 
the zero-free weight function 

C(z) = exp!X(z)j (2) 

which will transform a set of data with unequal errors into a 
new set fj (z) = C (z)D (z) with a constant error E, while the 
boundedness/smoothness condition on the cuts, which pro­
vides the stability of the whole approach, is altered as little as 
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possible. Note that Problem A means in fact a condition for 
the modulus I C (z) I = exp { Re X (z) I on the cuts, II while 
Problem B limits the variation of the phase of C (z). Notice 
also that C (z) = exp{X(z)j has no cuts at all in the data region 
r l and does not alter the analyticity domain ofthe initial 
problem. 

If the function F (s) has a lot of "structure" so that the 
asymptotic behavior of 7Jn is reached only for n > N asmp 
where Nasmp is large, then, in order to get nopt > Nasmp (i.e., to 
have the NAS case again), one has to have extremely precise 
data (very small E'S). If this condition is satisfied then one can 
proceed as above and use the function C (z) in the standard 
way, (case a) to bring the errors to a constant value. 

But this might not be the case. The FAS situation will 
arise if, on the one hand, the data have quite a lot of structure 
(for instance if they appear to have an exponential-like for­
ward peak) so that it is obvious that they could not be ap­
proximated satisfactorily by a low degree polynomial 
p~l(w), and if, on the other hand, E is not small enough to 
prevent Ep" from becoming exceptionally large. In this case 
one way to proceed would be as follows: 

Case {3 (FAS case): A weight function Cstr(z) could be 
constructed to contain as much of the structure of the initial 
data as we choose to remove, leaving a relatively smooth 
weighted data function Dsm (z) = Cstr (z)D (z), while preserv­
ing as far as possible the boundedness or smoothness on the 
cuts in order to make 7J" fall as quickly as possible. Again, 
the role of the conditions A and B is obvious. Notice also 
that, in contrast with some factors like plain exponentials 
which we might have used to remove structure, the function 
Cstr = exp {X (z) I has the advantage that it does not intro­
duce any spurious singularities (in particular essential singu­
larities) which might be theoretically unacceptable. On the 
contrary, by its very method of construction, it is the most 
bounded or smoothest function on r R which one can find 
having the prescribed structure in the physical region rl' 

A few words upon other possible applications of the 
solutions of the problems A and B will be given. Because 
X (z) = X(Z), the conditions X (Zj) = aj are in fact conditions 
satisfied by the harmonic function Re X (z). Moreover, we 
may use the Cauchy equations in Problem B to make the 
replacement 

JImX(z) 

J¢i 
JReX(z) 

Jr 

on the boundary r R' and hence both Problems A and Bare 
in fact extremal problems for the harmonic function ReX (z) 
alone. The solutions of these extremal harmonic-functions 
problems are likely to be of value in potential theory or in 
dealing with the types of inverse problems which arise, for 
example, in geophysics and in heat-transfer theory. 

2. USE OF DUALITY 

In this section we show how the duality theorem, which 
is a direct consequence of the Hahn-Banach lemma, enables 
us to reformulate and solve the extremum problems A and B. 
A derivation of the duality theorem is given in Appendix A. 
We shall apply this procedure initially to Problem A, as this 
is the easier of the two cases to handle. 
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A. Notation 

We shall use capitals, e. g., X (z), Y (z), M (z) ... to represen t 
analytic functions, and correspondingly subscripted sym­
bols X Re (Z),xlm (z),. .. , to denote their real and imaginary 
parts. z' will be used to denote points on the unit circle 
z' = e'''', and we shall frequently write 

XRe(Z')=XRe(e'''')~(¢ ), (3) 

using the lower case letter to denote real functions of 1,6 ob­
tained as shown. The functions x(¢ ) will always be periodic 
so that X(21T - 1,6 ) = x( - 1,6 ); since X (z) = X(Z), x(¢ ) is even, 
x(¢ ) = x( - 1,6 ). Further, [z, J = [Re z, J is the set of given 
points on the real axis and [a i J the real values specified. 

It will become apparent as the calculation proceeds that 
the boundary value functions x(¢ ) are of central importance 
both for defining linear functionals and also norms for X (z), 
each chosen in such a way as to suit the extremum problem 
under consideration. For instance, one may define a norm 
for F(z) related to the L 2 norm off(¢ ) 

IIF(z)11 = 2~ f1T If(I,6 )fO"(¢ ) d<,6, (4) 

where, following the above notation, 

(5) 

and where a(¢ ) is a real, positive weight function satisfying 
the condition 

0"(1,6 ) = 0"( - 1,6 ). (6) 

In Sec. 4. we shall also consider spaces of analytic functions 
whose norms are related to the (tangential) derivative of the 
boundary values of their imaginary part, as these are rel­
evant for problems in which solutions of maximum smooth­
ness (least phase variation) are sought. 

We shall also have to deal with linear functionals y* 
acting on the analytic functions X (z). Since the functions X (z) 
may be expressed linearly in terms of their boundary values 
x(¢ ), the functionals Y * may be seen as functionals y* acting 
on these boundary value functions. The Riesz theorem (see 
Appendix A) may then be used to associate each linear func­
tional y* with a real function y(¢ ) (even in 1,6 ) as follows: 

1 121T (X,Y*)=(x,y*) = - y(¢ )x(¢ )a(¢) d¢, 
21T 0 

where we have introduced the following notation for 
functionals, 

Y*=(.,Y*). 

For more details, the reader is referred to Appendix A. 

B. Formulation of Problem A; Duality 

(7) 

The objective is to construct a function X (z) with the 
properties 

(i) X (Zi) = ai where the points Zi are real and the values 
a, are also real; 

(ii)X (z) is holomorphic in the unit disk, andX (Z) = X(z); 
(iii) subject to (i) and (ii) above, X (z) should satisfy the 

condition that IIX (zlll should have the least possible value. 
Here the norm IIX II is defined according to which of the 
conditions A or B we wish to implement. 
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We shall first solve Problem A and return later to Problem 
B, which will be solved in Sec. 4. The procedure we adopt is 
the following. A particular function X I I I(Z) is constructed to 
possess properties (i) and (ii); this is really an easy task. For 
instance we may make the choice .......-....... 

III (z - zJ!(z - Z2)"'(Z - Zi)"'(Z - zn) 
X (z) = Ia j ::;>'........... (8) 

i (Zi -ZI)(Zi -Z2)"'(Z, -Zi)"'(Zj -zn) 

with the convention that the factors marked are to be de­
leted. Now if M (z) is any function which has value ° at each 
of the points Z,' is holomorphic in the unit disk and satisfies 
M (z) = M (z), then the function X I II(Z) - M (z) also possesses 
properties (i) and (ii); conversely, any function with those two 
properties may be represented in this form. So the function 
XIOI(z) possessing properties (i), (ii), and (iii), (which gives the 
solution to our problem) is 

X1ot(z) X(II(Z) - M{oI(Z), (9) 

where M10I(Z) is the solution to the minimization problem 

(10) 

the minimization being with respect to the class of functions 
M (z) which satisfy 

M(z) holomorphic for Izl < 1, 

M(Z) = M(z), (11) 

M(z,) = 0, i = 1, ... ,n. 

The duality theorem (see Appendix A), when applied to 
this minimization problem reads 

80 = infllXIIi - M II = sup(XIJI,Y*), 
M Y· 

( 12) 

where the functional (.,y*) is as defined in Eq. (7) and the 
extremum problem is now with respect to the class of func­
tionals (.,Y*) which satisfy the conditions 

(a) _1 (21T (y(¢ ))2a(¢) d¢ = 1, (13a) 
21T Jo 

(b) (M,Y*) = 0, 

for all M (z) satisfying the conditions (11), 

(c)y(¢) =y( - 1,6). 

(13b) 

(13c) 

c. An explicit representation for the functionals (.,)1'*) 

We need to identify the class of functionals satisfying 
conditions (13), but before doing this it is necessary to look 
more closely at the class of functions M (z). Associated with 
each holomorphic functionM (z) there is a real function m(¢ ), 
which, following the notation we have established, is 

(14) 

Conversely, once m(¢ ) is specified [any real, even [i.e., 
m(¢ ) = m( - 1,6 )] square-integrable function on [0,21T] J, the 
analytic function M (z) is completelyl2 determined and may 
be expressed as 

21T .'" 
M(z) = _1_ ( e' + z m(¢) d¢. (15) 

21T Jo e'''' - z 
Equation (15) is the Schwartz-Villat formula, which is sim-
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ply the complex extension of the well-known Poisson inte­
gral by means of which harmonic functions M R (z) are con­
structed from their boundary values: 

1 521T 
M R (z) = - P (z,z')m(¢ ) d¢. 

2rr 0 

(16a) 

Here P (z,z') is the Poisson kernel 

P(z,z'l=Re(e
i
4>+z) 1-~ . (16b) 

ei 4> _ z 1 + ~ - 2rcos(O - ¢ ) 

Consider now the set offunctionals (., y *) defined by 
the following special functions: 

(17) 

where theYi are arbitrary real constants. We first observe 
that 

= DiMR(Zi) 

=0 
since MR(Zi) = Re M(Zi) = O. 

(18) 

We have thus shown that any functional (., y *), constructed 
by means of the functions y(¢ ) defined in Eq. (17), automati­
cally satisfies the requirements (13b). We shall prove at the 
end of this section that conversely, any linear functional 
( ., y *) satisfying ( 13 b) can be expressed in terms of a function 
y(¢ ) having the form (17). But before doing this consider first 
the normalization (13a), which becomes 

LaijYiYj = 1, 
ij 

(19) 

where the constants aij are 

1 1
2IT 

i4> i4> -I aij = - P(zpe )P(zj,e )oi¢) d¢. 
2rr 0 

(20) 

To enable us to evaluate this integral explicitly we first intro­
duce a holomorphic function S (z) whose real part has the 
value (oi¢ )) - 1 when z' = ei4>. This may be done immediately 
using the Schwartz-Villat formula 

21T ',p 
S(z) = _1_ ( e'. +z _l_ d¢. (21) 

2rr Jo e't/> - Z oi¢) 

The weight function oi¢ ) was restricted to be a positive func­
tion so that (a(¢ ))-1 is bounded. It is also required to satisfy 
the condition oi¢ ) = oi - ¢ ) [Eq. (8)] from which it follows 
that 

Sri) = S(z) , 

and in particular we note that whenz is real so isS (z), so that 
for each of the points Zj,s (Zi) is real. Again because 
oi¢ ) = oi - ¢ ), we may write 

S(z) = _1_ (1T{ e',p+z + e-
i
,p+Z}_l_d¢ 

2rr Jo e'.p - Z r ,,p - Z oi¢ ) 
= 2.. (1T (1 - Z2) _1_ d¢ (22) 

rr Jo 1 - 2z cos ¢ + r oi¢) . 

For real Z with Izi < 1 the integrand is positive since oi¢ ) is 
positive and it follows that S (z) is positive too. 
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As an alternative to Eqs. (21) and (22), S (z) may be con­
structed by expanding (f-I(¢ ) in a Fourier series (only the 
cosine terms are present, since (f-I(¢ ) is even), 

(f-I(¢) = So + fSncOs(n¢), 
1 

2 - Dna i1T 1 Sn = d¢ cos(n¢ )0"- (¢), 
rr 0 

and then writing S (z) as 

S(z) = fSnein4>. 
o 

From Eqs. (20) and (21) we obtain 

aij = _1_ (21Tp (z;,ei4»p(Zj,ei4»(oi¢ ))-1 d¢ 
2rr Jo 

(23a) 

(23b) 

= Re{ 2~ f1T P (zpei,p)p (Zj ,ei4>)S (z'=e;,p) d¢ }. (24) 

Now, 

( 
z' + Zi ) { z' + Zi Z' + Zi } 

P(z;,z')=Re -,-- =! -,-- + -_,-- ,(25) 
Z - Zi Z - Z; Z - Z; 

since the z; are real. Further, since z' = ei4>, Eq. (25) becomes 

( 
z' +Zj 1 +Z'Z;) 

P(Zi,z') =! -- + . (26) 
z' - Zj 1 - Z'Zi 

Substitution into Eq. (24) yields 

a .. = lRe[ _1_ r (_Z'_+_Z_; + _l_+_Z_'Z_;) 
If 4 2rri Jc z' -Zj 1 -Z'Zj 

(
Z' + Zj 1 + Z'Zj ~ , dZ'] 

X --+ (z)-. 
z' -Zj 1-z'zj z' 

(27) 

Deforming the contour C around the poles and noting that 
the residue at z' = 0 vanishes we get 

For i = j the result of the integration is (S '==dS Idz) 

au = ZiS'(Zi) + S(z;)«(1 + zJ)I(I - zJ))· (28b) 

Note that if the weight function oi¢ ) were a constant, which 
we would settobe I sothatS(zi) = S(Zj) = I, we would have 
for all i and j, 

aij = (I +z;zj)l(l -Z;Zj)' (29) 

In this case, all the coefficients aij are clearly positive; in fact, 
since ~aijYiYj is a norm and hence cannot vanish unless ally; 
are identically zero, the matrix aij is always positive definite 
and ~aijYiYj = 1 represents an ellipsoid. 

We shall now show that Eq. (17) includes all possible 
functionals satisfying Eqs. (13b) and (Bc). For if this is not 
so, suppose that (.,r *) is a functional which is not included 
in the set defined by Eq. (17) but which none the less satisfies 
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(13b), that is, 

(M,r*)==_1 t"r(ifJ)m(ifJ)a(ifJ)difJ=O (30) 
21T Jo 

for all M (z) satisfying the conditions (11). 
Since all Zi occurring in Eq. (11) are real and hence the 

imaginary part of M(z) vanishes there identically, and re­
membering that M R (z) may be expressed in terms of m(ifJ ) by 
means of the Poisson integral (16a), it is equivalent to say that 
the integral from Eq. (30) has to vanish for all m(ifJ) satisfying 

1 12

" - m(ifJ )P(zi>el~) difJ = 0, i = 1, 2, ... ,n, 
21T 0 

(31) 

m(ifJ)=m(-ifJ)· 

Now define 

(32) 

and 

r(ifJ) = r(ifJ) - i Yi(a-l)ijP(zj,ei~)(a(ifJ ))-1 (33) 
ij~ 1 

= y(ifJ) - IYjP(zj,ei~)(a(ifJ ))-1, 
j 

where 

Yj=IYk(a-l)kj' 
k 

(34) 

In order that the function y(ifJ ) should have a form different 
from that of the y(ifJ )'s, (Eq. 17) it is necessary that y l(ifJ ) 
should not be identically zero. But from Eq. (33) one sees that 
for any Z = Zk [cf. also (32)], 

_1_ f21T r(ifJ )P(zk,ei~)difJ 
21T Jo 

- - - 1 1 12
" i~ i~ difJ = Yk - IYi(a )ij - P(Zj,e )P(Zk,e )--

ij 21T 0 a(ifJ ) 

= Yk - IYi(a-l)ijajk = 0, 
ij 

(35) 

so that the function Y l(ifJ ) satisfies all the necessary require­
ments [see Eq. (31); note also that y l(ifJ ) is even] "to be an 
m(ifJ )" defining a holomorphic function M (z) satisfying all the 
conditions (11). Hence, putting m I (ifJ )==r(ifJ ), we get 

1 1217" (M1,r*) = - y(ifJ)mtlifJ)a(ifJ)difJ 
21T 0 

1 1217" 
=- r(ifJ)mtlifJ)u(ifJ)difJ 

21T 0 

1 12

" =- (mtIifJ jfU(ifJ) difJ>O; 
21T 0 

(36) 

[unless y1(ifJ) is identically zero] a result which is in direct 
contradiction with the conditions (l3bl. Hence yl(ifJ) has to 
vanish identically. We have thus shown that the set offunc­
tionals (., y *) defined by Eq. (7) and (17), is precisely the set 
offunctionals satisfying Eqs. (13b) and (l3c). 
3. EXPLICIT SOLUTION OF THE 
EXTREMUM PROBLEM A 

We wish to determine 00 , where 

oo-in~IX(t) - Mil, (37) 
M 
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FIG. I. The ellipsoid "I-aijYfYj = I and the vector y~OI whose projection on af 
is largest. 

and we also want to know the function M (0) giving the mini­
mum, so that we will have obtained the function 
X IOI XII) - MIO). We saw from Eq. (12) that the extremum 
problem (37) could be replaced by 

00 = sup(X(I),y*), (38) 
y. 

where the supremum is taken with respect to the set offunc­
tionals satisfying Eqs. (13a)-(l3b). We have been able to 
specify this set of functionals and to show that it can be 
represented by the set off unctions y(ifJ ), defined in Eq. (17). 
When we substitute for (.,y*) in Eq. (38) we see that 

1 1217". 00 = -sup Iy; P(z;,e'~)(U(ifJ ))-I(ifJ lu(ifJ )difJ 
21T Yi i 0 

(39) 

since the integrals appearing here yield by definition the val­
ues of X \II(z) at Z = Zi ,i.e., the constants a i • On the other 
hand, the coefficients Yi must satisfy also the condition 

IaijYiYj = 1, 
iJ 

(19) 

where the constants aij are given by Eqs. (28a) and (28b). 
In geometric terms the problem is illustrated in Fig. 1. 

Since a;- is positive-definite it represents an n-dimensional 
ellipsoid, and we look for that vector Yi on the ellipsoid 
whose component in the direction a is a maximum. 

We can solve the problem analytically using Lagrange 
multipliers. We put 

4J = Diai - A (I.aijYiYj - 1) (40) 
I lJ 

and differentiate to get 

a4J -a = ai -UIaijYj =0. 
Yi j 

(41) 

It follows that 

Yi = _1_ I(a-I)ijaj . 
U j 

(42) 

A is determined from Eq. (19) by substituting from Eq. (42) 
for Yi; the result is 

{ }

1/2 

A =! ~(a-I)ijaiaj . (43) 
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The required vector Yi is 

y,(O) = ~(a-l)ija/{~(a-l)ijaiaJII2, (44) 

and so the corresponding optimal functional (.,y (0)·) is de­
fined by the function 

y<Ol(ifJ) = ~y/o;P(zi,eitP)(a(ifJ ))-1. (45) 

Substitution from Eq. (44) into Eq. (39) gives the value of Do: 

(46) 

The fact that we have already an explicit form [Eqs. (44) and 
(45)] for yf°)(ifJ ) allows us to determine also the optimal func­
tion M (Ol(z): indeed, if the extremum is realized with M (01 and 
y(OI, we simply have 

Do = IIX(1) - M(OIII = (X(1),Y(O)O) = (X(1) - M(oI,Y(O)O), 
(47) 

where the last step follows from Eq. (l3b). But [put 
XO(ifJ )=xl(ifJ ) - mO(ifJ )] from Schwarz's inequality we have 
usually [see also the definition (A3)] 

(XO,yO) < IIxolll!.v°II=llxoll (48) 

(the norm of l!.v°ll == 1) unless XO(ifJ ) = const.yf°l(ifJ ), when 
equality occurs. Hence, Eq. (47) tells that XO(ifJ ) and yO(ifJ ) 
should be "aligned"; further, since [again (47)] IIx(OIIi = Do 
and 1!.v(011l = 1, const equals Do and hence, 

x(1)(ifJ) - m(OI(ifJ )==x(OI(ifJ) = DoY(OI(ifJ). (49) 

So the optimal function X(OI(ifJ ) can be written in terms of 
known entities alone: 

X(OI(ifJ) = 2)a-l)ijajP(zjPeitP)(a(ifJ ))-1. 
iJ 

Finally, the corresponding complex function X (OI(Z) is 

1 
X(OI(z) = {;(a-I)ijaj 2; 

(50) 

(51) 

We can immediately verify from Eq. (51) using Eq. (24). that, 
as must be the case, X (O)(Zj) does indeed have the value a j' 

A modified extremum problem (Problem A') 

In Sec. I we referred to the function C (z)=exp I X (z) J. In 
specifying the values of C (z) at the points Xi we are often only 
concerned with the ratios of the values C (Xi ),C (Xj ),"" that is, 
we may replace C(x i ) = Ci by C(x i ) = rCi' For X(z) this 
means that the value ai of X (z) at Xi may be replaced by 
a i + a. This modified extremum problem takes the form 

Do = infliXoI - a - M II = sup(X(t),y*), (52) 
a,M Y· 

where the functions M are defined as before and a is a con­
stant. The infimum is with respect to all the functions M and 
all possible constants a. Since the set offunctionsM (z) + a is 
larger than that of problem A, in evaluating the supremum 
the functionals (.,Y*) must satisfy a further restriction in 
addition to Eqs. (l3aH13b), namely, 

(a,Y*) = 0 . (53) 

If we take the set offunctionals defined by Eq. (17) then the 
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additional condition (53) becomes 

Di=O. (54) 

This may be treated as an additional auxiliary condition and 
as such is incorporated through a second Lagrange multipli­
er j-L. We write, in this case, 

<P = Diai -A. (IaijYiYj - 1) -j-LDi' 
, IJ 

Then 

a<p -a = ai - j-L - U I aijYj = 0, 
Yi j 

which gives 

Yi = ~ I(a-I)ij(aj - }.t). 
1 

(55) 

(56) 

(57) 

Equation (54) may be used to eliminate j-L; substituting from 
Eq. (57) yields 

(58) 

If we introduce the vector a; = ai -}.t, with the constant Il 
given by Eq. (58), then Eqs. (43) and (44) give us A. and y/Ol 

provided that we replace ai by a;. To evaluate Do we write, 
using Eq. (54), 

and substitution for Yi (0) gives 

Do = {t(a-I)ija;a/r
ll

. 

Proceeding as before we obtain the results 

X(OI(ifJ) = I(a-l)ijajP(zi,eitP)(a(ifJ ))-1, 
ij 

Again we observe that Eq. (62) gives 

(59) 

(60) 

(61) 

X(OI(Zi) = a;=ai - I(a-I)mnan/I(a-I)mn' (63) 
mn mn 

It is, of course, clear that the relaxation ofthe original 
problem introduced here, and the corresponding restriction 
of the supremum problem, must lead to a value of Do as given 
by Eq. (60) which is less than that in Eq. (46). This result may 
also be seen from a direct comparison of the right-hand sides 
ofthe two equations. Equation (54) allows us to write 

I(a-I)ijaiaj = I(a-I)ija;a; + j-L2I(a- l )ij' (64) 
ij ij ij 

Since aij is positive definite, so is (a-I)ij' and hence, the sec­
ond term on the right ofEq. (64) is positive and will only be 
zero if Il = O. 

IV. THE NEUMANN BOUNDARY CONDITION 

In this section we consider the alternative problem 
where the selection criterion A, is replaced by B (see the 
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Introduction). The integral, taken over the unit circle, which 
we wish to minimize is 

_I 1217" I~ Imx(ei¢)12 cr(rp) drp. 
21T 0 arp 

(65) 

Now the Cauchy-Riemann relations imply that 

~ aX1m = aXR = Re( dX az)= ~Re(X'(z)z), (66) 
r arp ar dz ar r 

where z = re i
¢. Equation (66) allows us to write the optimiz­

ation condition B as 

1 S21T lax (re
i
¢) 12 

- R CJ(rp ) drp I r = I -least. 
21T a ar 

(67) 

In order to proceed we need to be able to construct a 
complex function X (z) which is holomorphic in the unit disk, 
when the radial derivative of the real part, aXR/ar, is speci­
fied on the unit circle. This Neumann type problem may be 
solved in terms of a Green's function analogous to the Pois­
son kernel ofEq. (16b). The Neumann kernel is derived in 
Appendix B where we see that a subtraction is required. Ifwe 
introduce the following notation 

(68) 

usingfr(rp ) to denote the radial derivative of the real part of 
the function F (z) atthe point z = ei

¢, the required result takes 
the form [Cf. Eqs. (B8)-(BlO)] 

1 So21T 
FR(z) = FR(zo) + - fr(rp )N(zo;z,ei¢) d</>, 

21T 0 

(69) 

where 

N(zo;z,e i¢) = _ 2lnl ~: -z I 
e -zo 

= - 2Re{ In( ;: ~ :J}. (70) 

Further, the complex function F(z) is given by 

1 L21T (i¢ ) F(z)=F(zo)- - fr(rp)ln ~¢ -z drp. 
1T 0 e - Zo 

(71) 

If we are to proceed in analogy with the Dirichlet case, 
the next step should be to try to define a norm for F (z) by 
means of the boundary functionfr(rp): 

171 { 1 r21T 
}112 IIF(zlil = 2; Jo (fr(rp Wcr(rp) drp . (72) 

The difficulty which immediately faces us is that because of 
the subtraction in Eq. (71), the right-hand side of (72) does 
not define a valid norm for F (z) since the latter might be =I- 0 
even if the right-hand side of (72) is zero. 

Fortunately we can circumvent this difficulty by re­
stricting ourselves to the space \3 {F (z) I of F (z) vanishing at 
z = zo0 Moreover, we choose one of the pointszi at which the 
values a i of X (z) are prescribed as subtraction point zo; to be 
specific we take zo==z \. Indeed, we may immediately see that 
the optimization condition, Eq. (67), is not altered if we re­
place the initial function X (z) by X (z) - a; that is, if we re­
place the set of values a), .. ·,an by 0, a2 - a),· .. ,an - a). Fur­
ther, the functions M (z) will be required, as usual, to be zero 
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at all the points z),"·'Zn' In this way we have a unique func­
tionF(z) associated with each real radial derivative function 
fr(rp ): 

1 L21T (e i
¢ z) F(z) = - - fr(</> )In . - drp 

1T 0 e'¢ - Zl 

(73) 

and the integral from the right-hand side ofEq. (72) is now 
indeed a norm for the F(z))s. 

We proceed as before and we start with a function X 121(Z) 

defined to be holomorphic and to take the values 
0,a2 - a , .... ,an - a, at the points Zi' Specifically we choose 

Xt2l(z) = X (Il(z) - aI' (74) 

where XI11(z) is defined in Eq. (8). We then want to solve the 
infimum problem 

80 -in~IX(2) - M [I ' (75) 
M 

where the norm is defined as in Eq. (72). The infimum is with 
respect to the set of functions M (z) defined in Eq. (11). The 
function M (z) which gives the least value of 8 will be denoted 
by M (0)(Z), and the corresponding X (z) by X 101(z); 

X101(Z) = X (21(z) _ M(O)(z). (76) 

As before we use the Duality theorem to replace the infimum 
problem by a supremum one 

oo==in~IXI21 - M [I = SUp(XI21,y*). (77) 
M y. 

The supremum is with respect to the set offunctionals <., Y *) 
defined by Eqs. (13a)-( 13c). We shall show that in this case 
the set of functionals satisfying Eqs. (13a)-( 13c) is precisely 
the set defined by 

y(rp) = IYiN(z);z"ei¢)(CJ(rp ))-1, (78) 
i= 2 

where the constants Yi are real and take all possible values 
subject to the normalization condition (13a). The summation 
is from 2 to n since 

(79) 

To show that the set offunctionals with respect to which the 
supremum is to be taken, is that defined by Eq. (78) we pro­
ceed in much the same way as in Sec. 2. Some care is needed 
however, particularly in view of the effective elimination of 
the point Zl' We first observe that for any y(rp ) given by Eq. 
(78), 

n 1 121T 
(M,Y*) = LYi - N(z);zi,ei¢)m.r(rp) drp 

i= 2 21T 0 

= IYiMR(Zi) 
i= 2 

=0. 

(80) 

(81) 

Now consider the normalization condition (13a). When 
we substitute for y(rp) from Eq. (78), Eq. (13a) becomes 

n 

L aijYiYj = 1, 
iJ= 2 

where 

1 1217" aij = -2 N(Z,;Ziei¢) 
1T 0 

XN (z);zj,ei¢ )(CJ(rp ))-1 drp. 
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Note that a lj = ajl = O. The constants aij are evaluated in 
Appendix C. Since 

n 1 (211" 
iJ2::2aijYiYj = 2rr Jo ly(1,6 Wo(l,6) dl,6 (84) 

it follows that the n - 1 by n - 1 matrix aij (where i andj 
range from 2 to n) is positive definite and the surface given by 
Eq. (82) is ellipsoidal. 

Following an argument similar to that from Sec. 2 [Eqs. 
(30)-(36)], one can show that the set offunctionals defined by 
Eq. (78) is precisely the set offunctionals satisfying Eqs. (13b) 
and (13c). 

Explicit solution of the extremum problem for the 
Neumann case 

The extremum problem expressed by Eq. (77) may now 
be written as 

n 1 (211" 
Do = SUPi~;i 2rr Jo N(zl;Zi,ei~)x(2).r(l,6) dl,6 

n 

= sup LYi(ai - al)' 
i= 2 

The coefficientsYi must satisfy Eq. (82): 
n 

L aijYiYj = 1, 
iJ= 2 

(85) 

(82) 

where the coefficients aij are constants whose values are giv­
en by Eq. (C11). In geometric and analytic terms this prob­
lem is completely analogous to that described by Eqs. (39) 
and (19) (see Sec. 3) except that it is now n - 1 dimensional. 
In Fig. 1 the ellipsoid is now in an (n - 1 )-dimensional space 
and the n vector ai is replaced by the (n - I)-dimensional 
vector(ai - al)' i = 2 to n. The extremum calculation, using 
a Lagrange multiplier to take account ofEq. (82), yields the 
value of Do and the functional (.,yIO)*) which gives the 
supremum 

Do = sup(X(2),Y*) = (X(2),Y(O)*). 

The results obtained are 

Do=( i (a~l)ij(ai -al)(aj -all)I'2, 
iJ= 2 

and(.,Y(O)*) is defined by means of the function 

Y!0)(I,6) = i y/O)N(zl,zi,ei~){O"(1,6 ))~I, 
ij = 2 

where the coefficients Yi (0) have the values 

y/O)= i (a~l)ij(aj -all 
iJ= 2 

(86) 

(87) 

(88) 

(89) 

The required function X (0)(z)-X (2)(Z) - M (Q)(z) may 
now be determined. We observe that 

Do = IIX(21 - MIOIII = (Xm,y IO)*) = (X(O),yIOl*), (90) 

where the last step follows from Eq. (13b). Now the equality 
between norm and functional 

(91) 

together with the fact that the functional (.,yIO).) has unit 
norm implies, by the Schwarz inequality, that 
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X IOl•r (1,6 ) = DoY(0)(I,6). 

So we have the following result: 

x IO),r(l,6) = i (a-I)ij(aj - adN(zt;Ziei",)(o(l,6 ))-1 
iJ=2 

and the corresponding complex function X (0)(z) is 

XIO)(z) = i (a~l)ij(aj - all 

(92) 

X 21J=(~11"{ _ 21n( e: -z )N(ZI;Zjei~)(o(l,6 ))~I dl,6}. 
rrJo e' -Zl 

(93) 

Equations (87), (92), and (93) represent the solution to 
the problem with the Neumann type boundary condition. 
Because of the choice made in the derivation, to single out 
the point Z I' this solution is not symmetic in form between 
the points Zi' It is clear, however, from the derivation that 
this solution has no specific dependence on Z I or a I; in other 
words, if any other one of the points Zi were selected instead 
of Z 1 the result would be the same, although this is not mani­
festly evident from the form of the solution given above. 
Note that the matrix aij is also explicitly dependent onzl.1t 
is interesting and also of some practical value to recast this 
solution in a form which involves each of the Zi in an equiv­
alent way and is thus manifestly symmetric in form under 
interchanges of the! Zi J. 

We have seen that the set offunctionals with respect to 
which the supremum ofEq. (77) is determined, is defined by 
Eq. (78) where the Yi range over all real values subject to the 
normalization condition (13a). We rewrite Eq. (78) as 

y(l,6) = 2)(I)iN(zl;zi,ej~)(o(l,6 ))~I, (94) 
i¥1 

where the subscript (1) is inserted to indicate the special role 
of Z 1 in N (z I;Zi>ei~). The normalization condition (82) will 
similarly be written as 

(95) 

emphasizing the fact that the coefficients aV) depend in a 
special way on ZI [Eq. (83)]. We now introduce a point Zo on 
the real axis which does not coincide with any of the Zi' It 
now turns out that each y(1,6 ) given by Eq. (94) can be ex­
pressed in the form 

y(l,6) = iY(O)iN(zo;zi>ei~)(o(l,6 ))-1. (96) 
j= I 

This follows from the relationship 

N(zl;zi,eiQ» = N(ZO;Zi,eit/» - N(zo;Zl>eiQ». (97) 

When Eq. (97) is substituted into Eq. (94) the result takes the 
form ofEq. (96), the coefficientsY(O)i being related to theY(I)i 
as follows: 

Y(O)i=Y(I)i forii=l, 

Y(O) 1 = - LYllli' 
i#1 

(98) 

Equation (98) implies that 

iY(o)j =0. 
1=1 

(99) 
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This is an essential constraint on the Y(O)i: it comes from the 
fact that only n - 1 oftheY(I)i contribute, sinceY(I)1 plays no 
role, and hence only n - 1 of the YIO)i should be linearly inde­
pendent. The normalization constraint Equation (95) comes 
from 

_I r21T 
(Y(<P ))20'(1,6 )d<P = I, 

21T Jo (13a) 

and this may be expressed in terms of the coefficients Y(O)i by 
substituting from Eq. (96) for Y(<P ). The result is 

n 

L a~~(O)iY(Oli = I, 
ij= 1 

where 

(100) 

1 r21T , . 
a~) = 21TJo N(zo;z;.e'~)N(zo;Zj,e'~)(O'(tP ))-1 dtP· (101) 

Equation (98) allows us to rewrite Eq. (85) in terms of the 
coefficients Y(O)i' Note the following equality 

iY(O)iai = LY(l)iai + (- LY(1)i)a l 
i=1 i#1 1#1 

(102) 

The supremum problem ofEq. (85), where theYII)i(;¥: I) take 
all real values subject to the normalization condition (95) 
may now be expressed in terms of the Y(O)i as follows: 

Do = sup iY(O)ia;. 
;= 1 

(103) 

where the constantsY(O)i take all real values subject to the two 
constraints 

iY(O)i =0, 
i= 1 

n 
~ (0) I L.. aijY(O)iY(Oli = . 

ij= 1 

5. CONCLUSION 

(104) 

(105) 

In this paper we have been concerned with the problem 
of constructing zero-free holomorphic functions which as­
sume specified values at some finite set of data points. Defin­
ing the function on a finite data set is, of course, a non unique 
prescription, and further specification is required if a par­
ticular function is to be selected. The additional constraints 
which have been considered here and which are of particular 
interest, correspond to stabilizing conditions on the analytic 
continuation process which typically are boundedness or 
smoothness requirements. Hence, the following optimiz­
ation problems have been solved: Values are specified at a 
finite set of points within a data region r]. A boundedness or 
smoothness condition is specified on the cuts r R and we look 
for the holomorphic function which takes the specified val­
ues in r, and which best satisfies the stabilizing condition on 
r R' Since we are looking for zero-free functions we worked 
directly with their logarithm. Minimal conditions involving 
the real part of the latter or the tangential derivative of its 
imaginary part, were treated separately. A solution ex­
pressed in closed form is obtained in each case. 

The initial motivation for solving this problem was in 
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connection with the method of accelerated convergence ex­
pansions (ACE) devices by Cutkosky et al. 5~ for construct­
ing optimum polynomial expansions in order to perform an 
analytic continuation from a region r l to other points of the 
analytically domain, subject to stability constraints on the 
cuts r R • In order to apply this method to a set of data with 
unequal errors, without incurring an unncessary loss of in­
formation, we need to construct a weight function which 
allows us to renormalize the data so that the errors will all 
assume the same value. This must be achieved however, 
without introducing additional instability in r R' The prob­
lem of constructing an appropriate weight function is pre­
cisely that which has been solved here. 

An important by-product of the above procedure is an 
explicit numerical expression for Do, the minimal distance (0 ) 
between some given function X (I) assuming the specified val­
ues ai at z = Zi and the function m(z), vanishing at each Zi' In 
other words, depending on the norm in use (either problem A 
or B), the value of 00 represents the least L 2-norm for the real 
part of X (z) or for the (tangential) derivative of its imaginary 
part still compatible with the data and with the analyticity of 
X (z). Hence this quantity (00 ) could be a sensitive device for 
detecting bumps due to resonances and for use in other simi­
lar problems. Cutkosky was the first 14 to recognize, ten years 
ago, the importance of supplementing the usual X 2 test used 
in fitting data by including a term which is related to the 
predictive power of the continuation procedure under con­
sideration. This led to his well-known 14 "modified X 2 test." 
The quantity 00 gives a measure of the quality of the func­
tions in terms of the stability criterion and we shall show in a 
later paper how the results obtained here may be used to 
solve the continuation problem, without involving an expan­
sion procedure. 

Although the problem has been posed in terms of ana­
lytic continuation and the construction of holomorphic 
functions, it is important to observe that the results could 
equally well have been expressed in terms of harmonic func­
tions. This is possible because first of all the stability condi­
tions which have been considered may all be expressed in 
terms of the real parts of the function on r R' Then secondly, 
the data region r l is taken to be a segment of the real axis and 
the holomorphic functions are required to possess the reflec­
tion symmetry X (z) = X (Z), which means that the data values 
are real. Consequently the results obtained for holomorphic 
functions may be expressed in terms of the real parts alone. 
These are real harmonic functions and so the problem which 
we have solved is in fact that of obtaining harmonic func­
tions which take specific boundary values on r l and which 
satisfy various minimum conditions on r R • 

APPENDIX A: THE HAHN·BANACH LEMMA AND THE 
DUALITY THEOREM 

The functional-analytic techniques used in this paper 
depend on a theorem, a consequence of the Hahn-Banach 
lemma, which allows nonlinear optimization problems ex­
pressed in terms of norms to be recast into linear integral 
form. This "Duality theorem" states that 

DO=infllx - mil = sup (x,y*), (AI) 
mEM yO (llyOIl = 1 and 

(m,yO) = 0 for all mEM ) 
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where Ilx - mil is the distance 8 between the function x(¢ ), 
not contained in the function subspace M, and the function 
m(¢) from M. Here (.,y*) (we use the mathematicians' way 
of denoting linear functionals, which is the reverse of Dirac's 
one) is a linear functional which "annihilates" every function 
m(¢ ) from M. But, at least for the spaces in which we shall be 
interested [the L P spaces, see below Eq. (A4)], such a func­
tional can always be expressed as an integral (F. Riesz) 

1 (b 
(.,y*)= b - a L d¢y(¢) .(¢) (A2) 

(replace the dot"·" by the name of any L P function). Hence, 
in order to determine the functional y*, it is sufficient to give 
the corresponding function y(¢ ). 

The norm oj a linear Junctional y* acting on some func­
tions n(¢)EN is defined by means of the numbers 15 (n,y*) as 
follows: 

Ily*IIN=SUP! (n,y*)/lInll J, 
nEN 

(A3) 

where lin II is the norm of the function n(¢). However, in a 
practical situation one does not use the definition (A3) di­
rectly, but takes advantage of some theorems which in some 
cases (e.g., L P spaces, see below) provide simple formulae for 
the computation of the functional norms (A3). Indeed, if the 
function space N coincides with an L P function space, i.e., if 
the norm oftheJunctions n(¢) are defined to be 

IInll={-l- (bd¢ln(¢w}I/P, l<p<oo, (A4) 
b -a Ja 

the norm (A3) of the corresponding linear Junctionals y* is 
then given by the simple formula 

IlY*1I = {_l_ (bd¢ Iy(¢ W}I/q with ~ = 1 -~. (AS) 
b - a Ja q p 

Hence, if the functions m(¢ ) in (AI) are of classL P, the set of 
functionals with respect to which the supremum in Eq. (AI) 
is taken, is defined [see (A2)] in terms of Junctions y(¢ ), which 
satisfy the two conditions 

1 lb -- d¢ y(¢ )m(¢ ) = 0 [for all m(¢ )eM 1. (A6) 
b -a a 

_1_ (bd¢ IY(¢ W = 1. (A7) 
b -aJa 

.sf. The Hahn-Banach theorem 

Before proving the duality relation (A 1), we shall sketch 
here a proof of the Hahn-Banach theorem for a separable 
space X, i.e., for a space in which there exists a dense count­
able set of points. 

The Hahn-Banach theorem states that, given a linear 
functional y:e defined on some subspace N of X (in other 
words it is supposed that the number (n,y:e) is known for 
each function n(¢ ) in N], one can extendy:e [i.e., define 
(x,y*) for x(¢ )'S outside N] to the whole space X in such a 
way that its norm over X should not exceed 16 the initial one, 
over N. The construction of this "most economical exten­
sion" ofy:e is done by induction, adding One new dimension 
after another to the subspace N. 
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We can suppose without loss of generality that the ini­
tial norm ofy:e over Nis equal to I; i.e., that [cf. (A3)] for any 
n(¢ )EN we have 

(n,y:e)..;llnll. (AS) 

To extendy:e to a functionaly* acting on the space [x + N] 
of vectors ax(¢ ) + n(¢ ) it is sufficient to give the value of the 
constant c=(x,y*). Since by definition the extensiony* of 
y:e acting on elements n(¢ ) of N yields the same values as y:e 
itself, 

(n,y*)==(n,y:e) [n(¢)ENJ, (A9a) 

we have 

«(ax + n),y*) = a(x,y*) + (n,y*) = ac + (n,y:e), 
(A9b) 

and hence the action ofy* on vectors from [x + N] is com­
pletely defined once the number c is given. For different c's 
we get, of course, different extensions of y:e. 

Our aim is to define the number c so that the supremum 
(A3) taken over all vectors ax + n should not exceed 1, in 
order that the norm of the correspondingy* on [x + N] 
should not exceed that of y:e on N. We shall see that this is, 
indeed, possible. To proceed we need the following inequal­
ity which comes from the linearity ofy*, from Eq. (AS) and 
from the "triangle inequality" of the norm: 

(nl,y:e) + (nz,y:e) = «(nl + nz),y:e)..;lln l + nzll 
=lInl+x+nz-xll..;lIx+ndl+llx-nzll (AW) 

(in the last step, the usual properties of a norm were used). 
Separating now the terms depending on n 1 from those de­
pending on nz, one gets 

-{llx-nzll- (nz,y:e)}..;{lIx+nlll- (n1,y:e)}. 
(All) 

This inequality remains valid if one takes the supremum over 
nz and the infimum over n l • Then we choose a constant 
c=(x,y*) to satisfy 

sup( - {lix - nzll - (n2,y:e) })..;c..;inf{l\x + ndl - (nl,y:e)}. 
n2 n l 

(A12) 

One can verify now that this choice for c is a good one. For 
a > 0 and any nEN, we see that [taking n I = nl a in Eq. 
(A 12)] 

«(ax + n),y*) = a({c + (nla,y:e)}) 

..;a{lIx + nlall - (nla,y:e) + (nla,y:e)} = lIax + nil. 
(A13) 

A similar inequality is obtained for a < 0, using the second 
side ofEq. (A12). But Eq. (A13) tells us that 

sup! «(ax + n),y*)/lIax + nlll<1. (AI4) 
a.n 

Actually in (AI4) we have equality since we have supposed 
that sup! (n,y:e)/llnlll==llY:eIlN = 1. In other words, the 
norm on the space [x + N] of this special [see Eqs. (A9) and 
(A12)] extensiony* of the initial functionaly:e, does not ex­
ceed (is equal to) the norm of y:e on the space N: 

IlY*lI(x+N 1= IlY:eIlN = 1. (AIS) 
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Now, since we have supposed that the large space X contains 
a countable dense set of vectors, we first select from those an 
independent basis, to which we extend our construction in a 
recurrent way. Since our functional is now defined for any 
vector in this dense set, we may extend it by continuity to the 
whole space X, its norm always remaining equal to 1, the 
norm of the initial functionaly~ defined on the subspace N. 

fiJ. The Duality theorem 

The proof of the "duality" relation (A 1) is now straight­
forward. 

(a) First of all, let us remark that the word "inP' in (A 1) 
means that for any positive t there exists at least one element 
m. (¢ )EM such that 

00 < Ilx - mE11 <00 + t. 
But since by definition 

(m.,y*) =0 

and 

(A16) 

(A17a) 

Ily*11 = l,i.e.,«(x - m.),y*)<llx - mE11 (AI7b) 

[see the definition (A3) of the norm], we have that 

(x,y*) = «(x - m.),y*)<llx - m.ll<oo + t. (AI8) 

Since this inequality is valid for any positive t, however 
small, and since (x,y*) itself does not depend on t, Eq. (AI8) 
means that 

(x,y*) <Do, (A 19) 

which is equivalent to the statement that sup(x,y*) from the 
right-hand side of (A 1) is smaller or at most equal to 

00(- inf Ilx - mil). Actually these two entities are equal, and 
mEM 

this will be proved by means of an effective construction 
(using the Hahn-Banach lemma) of a functional yt saturat­
ing the inequality (A19). 

(b) This construction is done in two steps. First we take 
into consideration the subspace N -[x + M] of functions 
n(¢) = ax(¢) + m(¢ ),andherewedefinethelinearfunction­
alyt by 

(n,y~ ) = «(ax + m),y~) aDo· 
,N .N 

It is obvious that (putting a = 0) 

(m,yt ) = 0 for all m(e )EM, 
,N 

(A20) 

(A2I) 

and, moreover, that the norm (computed on the subspace N ) 
is equal to 1: 

IlYtJN 
=sup! I (n,y~) IIlInlll = sup {ialool(lal-lix + mlalill 

n ~m 

(A22) 
m, 

Hence the functional y~ would have all the properties re­
quired by (AI) ifit wert possible to extend it to the whole 
space X, without altering its norm. But this is exactly the 
effect of the Hahn-Banach lemma described above! 

Combining the conclusions of section (a) above with the 
existence of such a functional y~ saturating the inequality 
(A19), we have proved that 
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00 inf IIx - mil = max (x,y*). (A23) 
mEM Ily"11 ~ 1 

(m,y*) =-= 0 

The word "sup" has been replaced here by "max" in order to 
point out that this maximal functional y~ really exists. 

This completes the proof of the Duality theorem. 

APPENDIX B: THE GREEN'S FUNCTION FOR THE 
NEUMANN PROBLEM WITH THE UNIT CIRCLE AS 
BOUNDARY 

The problem is to construct a real function X R (z), har­
monic in the unit disk Izl < 1, when we are given the bound­
ary values of its radial derivative JXRIJr on the unit circle 
Iz I = 1. Clearly the function X R (z) is determined this way 
only up to a constant, and hence a "subtraction" is required. 

We start from Cauchy's theorem for the (complex) holo­
morphic function X (z) = X R (z) + iXlm (z), using C to denote 
the unit circle: 

X(z) = _1_ f X (z') dz' 
21Ti Jc z' - z 

= _1_. f X (z')d (In(z' - z)) 
2m Jc 

= [_1_. X (z')ln(z' _ Z)] __ 1_. f X'(z')ln(z' - zo) dz', 
2m c 2m Jc 

(B1) 

whereX '(z')=dX (z')l dz'. Ifwe now select a pointzoinside the 
disk as subtraction point, we write 

X (zo) = _1_. [X (z')ln(z' - zo)] c 
2m 

- _1_. f X '(z')ln(z' - zo) dz', 
2m Jc 

and when this is subtracted from Eq. (B1) we get the result 

X (z) - X (zo) = - _1_. f X '(Z')ln( ~'- z ) dz' (B2) 
2m Jc z - Zo 

since 

[ 
1 ( z' - z )] -.X (z')ln -,-- = O. 

2m z - Zo c 
(B3) 

Equation (B3) follows from the fact that the logarithmic 
term is single-valued: if we make a cut from z to zo' this cut 
does not intersect C since both z and Zo are internal points of 
the disk (Fig. 2). 

Now introduce the points Z and Zo' the images of z and 
Zo in C: 

Z = liz, Zo = l/Zo, 

z 

z 
o 

FIG. 2. The cuts ofln((z' - z)/(z' - zo)); z' = ei~, Zo = lIzo, Z = liz. 
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and notice that 

~ r X '(Z')ln( ~' - Z ) dz' = 0, (B4) 
2m Jc Z - Zo 

since both dX (z')I dz' and In((z' - Z )(lz' - Zo)) are holomor­
phic inside the unit z' disk. 

Now, since on the unit circle C we have z' = liZ', we see 
that 

z' -Z liz' -liz z'-z 
(B5) = -, -z -Zo z' - Zo liz' - lIzo 

so that (B4) may be written as 

0= _1_. r X'(Z')ln( ~'-~)dZ" (B6) 
2m Jc z -Zo 

Equation (B6) may now be combined with Eq. (B2) to yield 
the result 

X(z) -X(zo) = ~ r X'(Z')ln! ~' -z ! dz' 
m Jc z - Zo 

= _ J.. r ax In! ~' - z ! d,p (B7) 
1T Jc ar Z - Zo 

where we have used ax I ar = (dX I dz)(azl ar)==X' ei4>. 

If we take the real part of each side of this equation, and, 
since on the right-hand side of (B7) only ax I ar is complex, 
we find 

I l217" aXR(e
i
4» I ei4> - z I 

XR (z) = XR (zo) - - a In i4> d,p, 
1T 0 r e - Zo 

(BS) 

which is the analog for the Neumann problem of the Poisson 
formula (16) which solves the usual Dirichlet problem. So we 
have shown that the Neumann-kernel, which we shall de­
note by N (zo;z,ei4», is 

N (zo;z,ei4» = - 21n 1 (e i4> - z)/(ei4> - zo) I. (B9) 

Equation (BS) clearly implies the following representation 
for the holomorphic (complex) function X (z) in terms of the 
normal derivative of its real part X R : 

Il
2
17"axR(e

i
4» (ei4>_z) X(z} = X (zo) - - In. # 

1T 0 ar e'4> - ZO 

(BIO) 

Equation (B IO) is the analog for the Neumann problem of the 
Schwarz-Villat formula (15). 

APPENDIX C: CALCULATION OF THE COEFFICIENTS 
aij IN THE NEUMANN CASE 

We have to evaluate the coefficients a'j defined in Eq. 
(S3), 

au = _1_ r2
17"N(zl;Zuei4>}N(zl;zj,ei4>}(0'(,p )i-I d,p, (S3) 

21T Jo 
where, from Appendix Band Eq. (70), and putting 
ei4> = z', the Neumann kernel is 
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I 
z' -z I N(zl;Z,z') = - 21n -,--
z -Zl 

= -2Re{ln( ;'~:)} 

= - {In(;'~:) +In( II~::,)} (el) 

As in Sec. 2, we shall introduce the holomorphic function 
S (z) [Eqs. (21-23)], in order "to extend" the function lIO'(,p } 
defined initially on the unit circlez' = ei4> also to pointsz with 

Izl < 1. 
217" '4> 

S(z) = _1_ r e' +z _1_#, 
21T Jo ei4> - z O'(,p) 

lIO'(,p) = Re{s(ei4»}. 

(e2) 

(e3) 

Noticing that both Nfactors appearing in (S3) are real, sub­
stituting this in Eq. (3S) and changing the variable integra­
tion from ,p to z' = ei 4> we obtain 

1 i { (Z' - Zi ) ( I - Z'Zi )} a .. =Re- In --- +In 
IJ 21Ti c Z' -Zl I-z'zj 

X {In( z: - Zj ) + In( I - Z:Zj )} S (~') dz', 
Z -ZI I -z Zj Z 

(e4) 

where the contour C is the unit circle taken in a counter­
clockwise direction. It is convenient to choose the point ZI 

such thatz l <zJor r = 2, ... ,n, and also for the moment we 
assume that Zi < Zj' Now the only singular factors in the inte­
grand which lie within the disk are: 

(a) In((z' - z;)I(z' - ZI)) with branch points ZI,zi; 

(b) In((z' - Zj)l(z' - Zj)) with branch points zl,zj; 

(P ) liz', a simple pole at z' = O. 

This means that aij may be written in the following form: 

a. = [al.al + a lbl + a labl + a IPI} 
l} 1.!J} IJ IJ 'J' (e5) 

where atland at I contain either the factor (a) or (b) [see be­
low Eqs. (e6) and (eS)], atbl contains both of them [see Eq. 
(e9)], while aIr I is the pole contrib~tion. Since the residue at 
z' = 0 ofln((1 - Z'Zk )/(1 - z'ztl) is nil, only the term in (e4) 
containing In((z' - z;)I(z' - ztl)ln((z' - zj)/(z' - ZI)) 

contributes to aYjI [(CIO)]. The term containing 
In((1 - z'z;)I(1 - z'ztl)ln((1 - z'zj)l(1 - z'ztl) having no sin­
gularities inside the unit circle, vanishes identically. 

By moving the integration contour we may write 

alai = _ In __ ' In J S (z')~, (e6) I i ( z' - z.) (1 - z'z. ) d ' 
IJ 2' , I' , 1Tl c"" Z -Zj -ZZj Z 

Cz,z, being a contour which encircles the cut from Z I to Zi in a 
counterclockwise direction. The discontinuity of 
In((z' - Zi )I(z' - ztl) across the cut is 21Ti, so that 

atl= -P In -, j S(z')~. i
Zi II z' Z I d ' 

z, 1 - Z Zj Z 
(e7) 

The principal value of the integral is to be taken if DE(z j ,Zi)' 
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The second term in Eq. (C5) is 

1 1 ( z' - z.) (1 - z'z. ) d 1 J 1 ' S(') Z -- n---n z-
211'i c'J" z' - Z. 1 - z'z. z' 

-p 'In -, j S(z')~. i
Z

- 11 z'z I d ' 
z, 1 - z z. z 

(C8) 

The third term is 

- In --' In __ J S(z')-1 1 ( z' - z· ) (Z' - z· ) dz 
211'i c"'J z' - z. z' - z. Z' 

i
ZJ I Z' -z· I dz' - P In -,--' S(z')-, 

Zi z -z. Z 

1 1 (Z' -z.) (Z' -z')s dz' + --. In -,--' In _, __ J (z')-, 
211'l C"'i z - z. z - z. Z 

i
ZJ I z' -z'l dz' - P In -,--' S (z')-, 

z, z - z. Z 

iZi{ I Z' - z'l I z' - z'l} dz' - P In -,--' + In -,--' S (z')-, 
z, z-z. z-z. Z 

i
Zi I z' -z'l dz' - P In -,--' S (z') -, 

z, Z - z. z 

i
Zj I z' -z'l dz' - P In -,--' S(z') -, . 

z, Z -z. z 
(C9) 

In evaluating the above integral we noted that the disconti­
nuity in In((z' - z;)l(z' - z.l)ln((z' - Zj)/(z' - z.ll across the 
cut form z. to Zj is 211'i(ln I (z' - Zj )I(z' - z.ll 
+ Inl(z' - Zj)l(z' - z.lll and 2mln I (z' - z;)l(z' - z.) I 

across the cut from Zj to Zj' 

The fourth term is the residue at z' = O. A little care is need­
ed in defining this due to the presence of the cut. It is not 
difficult to see that the correct result is 

aW' = {In(( -Zj)/( -z.l)ln(( -Zj)l( -z.ll}S(O) 

= {In Iz;lz.lln Iz/z. I - rO ( - z.lO (Zj)O (Zj)}S(O), 
(ClO) 

where the factor 0 ( - z.lO (Zj)O (Zj) is equal to one if z = 0 lies 
between z. and min (Zj,zj)' and is zero otherwise. 

We may combine these terms to get 

aij = {In Iz;lz. lin IZj/z. I - rO ( - z.lO (z;)O (Zj)}S (0) 

+ Aij + Ajjl (CII) 

where 

i
Zi 

{ 11 - Z'Zj I I I z' - Zj I} S (z') d ' Aij= -P In , + n -,-- --,- z 
Z I-zz. z-z. z 
, (CI2) 

and whereS (z) is given by Eq. (C2). The symbol "Re" present 
in Eq. (C5) is here unnecessary, since all quantities appearing 
in (C 11) are real. Nor is the restriction z. < Zj any longer 
necessary, since Eq. (CII) is symmetric in the variables 
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zjand Zj' It may also be shown that this formula gives the 
correct result also in the case i = j. 

'See for instance R. Oehme and W. Zimmerman, preprint (University of 
Chicago, 1980). 

'Q.e.D. perturbative calculations are carried out in spacelike regions, but 
in order to produce predictions also in the timelike region one might use 
the spacelike information in conjunction with some adequate continuation 
technique. See also I. Caprini and e. Verzegnassi, ICTP preprint (1980). 

'For instance in perturbative calculations, there are uncertainties since any 
practical computation takes into account only a finite number of graphs. 

4See for instance the review paper S. Ciulli, e. Pomponiu, and I. S. Ste­
fanescu, Phys. Rep. 17, 133-224 (1975). A simple example of the explosive 
propagation of error is provided by the analytic continuation procedures 
(see Ref. 5,6) which make use of the mapping W(s) which maps the data 
region r, onto the unit circle I W(s)1 = 1 and the cuts, r R , onto the circle 
I W(s)1 = R (R is here a conformal invariant). A given point sp of the cut­
plane will then map at some point W (sp) on the circle rp of radius 
pp==IW(sp)l· 

Now, on each of these circles the amplitude F(s) might be seen as a 
function of 8 = arg W, i.e., the function F (s) is an element (a point) in the 
function space spanned by the infinite basis {em,,}. Hence analytic continu­
ation from r, towards r"and r R can be viewed as a flow inside this space of 
functions. This flow is extremely anisotropic and divergent, as a spacing E 

on two points along then'h dimension, alp = I, will become EP;' atp = pp. 
'R. E. Cutkosky and B. B. Deo; Phys. Rev. Lett. 22,1272 (1968) and Phys. 
Rev. 174, 1859 (1968). R. E. Cutkosky, 1. Math. Phys. 14, 1231 (1973); see 
also next reference. 

6S. Ciulli, Nuovo Cimento A 61,787 (1969); 62, 301 (1969). 

7A rough estimate of this number is given by the minimal number of terms 
in P" ID '(wi necessary to approximate the data better than E. 

XI. L. Walsh, Interpolation and Approximation by Rational Functions, Vol. 
20, 2nd ed. (Am. Math. Soc.,Providence 6, RI, 1956). 

"The derivation of the expression (I) for the error bound is primarily based 
on (Ref. 6) the computation of the bound (E + TJ"/ R ") for the deviation 

between the exact but unknown polynomials P;~"(w) and the data-con­
structed ones P',~'(w) in the data region r,. One recognizes next the analy­
ticity of(P;~'(w) - P;~I(W))/W" outside the unit disk (i.e., also in the cuts 

region, I WI = R and even for W~oo), such that one might use the maxi­
mum modulus principle. 

'''See for instance Chap. V of Ref. 8. Here the weight n(z) is essentially lIE(Z). 
There is a factor I/N,~ I/min(n(z)) = maxE(z) which appears in the right­
hand side of the inequality (5) (page 91 of Ref. 8), which worsens hence the 
error bound TJ,,/R" of the P'/-I(W) in the data region r,(==c). 

"From now on it is assumed that the cut complex s plane has been mapped 
onto the unit disk Izi < 1, by means of standard methods [see for instance 
S. Ciulli and 1. Fischer, Nucl. Phys. B 24,537 (1970)]. 

"An analytic function is determined by its real part up to a pure imaginary 
constant, but the latter vanishes in our case because of the condition 
M (z) = M (Z). Strictly speaking, to ensure one-to-one correspondence be­
tween the functions M (z) and their boundary values m(¢> ), the interior 
functionMR (z) must be restricted to the class hP (i.e. sup IIMR(z = re''')11 p 

0..;,,. ... 1 L 

has to befinite) for P> I, when m(rj> )ELP
• In this paper we have been con­

cerned with P = 2. 
"The set [F(z)l of analytic functions having a representation (71) but van­

ishing at z = Zo indeed forms a space. Further, there is a linear one-to-one 
correspondence between the elements of this space and the L 2 space of the 
functions/,(¢» (the boundary values of the normal derivatives), each lin­
ear functional over [ F I being a linear functional over 1/, ,I and vice versa. 
As we have already stressed in Sec. 2, this is essential for the use of duality 
in conjunction with the Riesz representation (which is valid for L P 

spaces). 
14R. E. Cutkosky, Ann. ofPhys.(NY) 54, 350 (1969); see also R. E. Cut­

kosky, 1. Math. Phys. 14,1231 (1973). 
"The effect of the functional (.,y*) on the function n(¢», is, by definition, 

the number (n,y*). 
'6Since the supremum in (A3) is taken over the larger set X, it cannot be 

smaller than that taken over the set N. 
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Initial-boundary-value problem for diffusion of magnetic fields into 
conductors with external electromagnetic transients 
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The initial-boundary-value problem for the diffusion of an initially homogeneous magnetic field 
into a slab of conductivity u < 00 and width .1x = 2a is solved, under consideration of the 
electromagnetic wave pulses generated at the surfaces of the conductor by its interaction with the 
external magnetic field, which propagate into the surrounding vacuum. The analytical solutions 
show that (i) the external electromagnetic transients are necessary in order to correctly satisfy the 
boundary conditions for the tangential electric and magnetic field components, and (ii) the spatial 
and temporal development of the electromagnetic field and electric current in the conductor is 
quantitatively determined by a new dimensionless parameter group gp = !louac[c = tuoEo) -1/2]. 

This "magnetic Reynolds number of the vacuum" determines the coupling between the transient 
fields in the conductor u> 0 and the ambient space (u = 0). 

PACS numbers: 02.60.Lj, 41.90. + e 

1. INTRODUCTION 
[ 

4 00 (-lr- 1 

B(x, 1) =Bo 1- - L -'--~-
1T n = I (2n - 1) 

Xe-Kj2n-ll'''',I4a'cos 2n - I1Tx] 
2a ' 

Ixl<a, t;;;'O, (4) 

The diffusion of electromagnetic fields B(r, t ), E(r, t ) in a 
conductor of finite conductivity u and normal surface vector 
n(s), when the electromagnetic field Bo(r, 1) and Eo(r, 1) out­
side of the conductor are known, is in general described by 
MaxweU's equations without displacement current, where 
the tangential field components are assumed to satisfy the 
boundary conditions l

•
2 nX [B(r, 1) - Bo(r, t)] = 0 and 

withB (x,t j---.Boin Ixl <afort-+oo.SinceVXB =!loUE,the 
electric field E(x, t ) = {O,O,E (x, t ) 1 in the conductor is 

n X [E(r, 1 ) - Eo(r, 1)] = O. If the external electromagnetic 
field is time-independent and electric potential fields are ab­
sent, then Bo = Bo(r) and Eo = 0 (since VXEo = - aBo! 
at = 0 and Eo = - VCPo=O), so that the tangential bound­
ary conditions reduce to l

•
2 n X [B(r, 1) - Bo(r)] = 0 and 

n X E(r, 1) = O. These boundary conditions have found wi­
despread use in mathematical physics, I electromagnetic the­
ory/ and the theory of magnetic flux compression (at the 
outside surface of the liners)?·4 However, these boundary 
conditions are questionable approximations, since they do 
not take into consideration the wave fields B(r, t), E(r, t) 
propagating away from the conductor into the surrounding 
medium, which have their sources in the transient current 
fields j = !lo-IV XB of the conductor. 

For a concrete illustration of the problematics, consider 
the diffusion of an external (homogeneous) magnetic field, 
Bo = {O, Bo, 01 for Ix I > a, into a conducting slab in the re­
gion Ixl <a which is field-free at time t = 0 (Fig. 1). Using 
the conventional boundary conditions, the transient mag­
netic field B(x, 1) = {O, B (x, 1 ), Olin the conductor is deter­
mined by the parabolic initial-boundary-value problem5

: 

aBlal=Ka2Blax2
, Ixl<a, 1>0, 

B(x, t = 0) = 0, Ixl <a, 

B (x = ± a, t) = Bo, 1> 0, 

(1) 

(2) 

(3) 

whereK = lI!loU. By means of Fourier's method, the general 
solution ofEqs. (1 H3) is obtained as a superposition of eigen­
functions5

: 
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E(x,t)= 2Bo I (-lr- 1 

!loUa "= I 

X e - Kj2n - 1)''''' 14a'sin 2n - 1 1TX 
2a ' 

Ixl<a, t;;;.O. (5) 

In accordance with the boundary conditions (3), the 
space outside of the conductor remains unperturbed while 
the electromagnetic field diffuses into the conductor, 

Bo(x, t) = Bo, Eo(x, t) = 0, Ix I ;;;'a, t;;;.O. (6) 

The transient currents j = V X B/!l0 in the conductor are 
"eddy currents," and, therefore, cannot produce transient 
magnetic fields Bo(x, t) = Bo(x, 1) - Bo=l=O in the outside re­
gion Ix I > a. The net current 1(1) through any cross section 
z = const vanishes, due to the boundary conditions (3): 

I(t )/.1y = !lo-I f_+aa [aB (x, 1 )lax] dx 

(7) 

FIG. 1. Magnetic field Bo(xl for t = O. 
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BI •• I) 

1>0 _----r----

FIG. 2. Diffusion field B (x,t) and transients iJ "" (x,t) for t> 0 and t • > 0 
(qualitative). 

By comparing the conductor solutions (4) and (5) with 
the vacuum solutions (6), it is seen that B (x = ± a, 
t) - Bo = 0, but E (x = ± a, t) - Eo(x = ± a, 
t) = E (x = ± a, t ) =I O! Thus, the conventional boundary 
conditions 1,2 lead to a violation of the fundamental law of the 
continuity of the tangential electric fields at interfaces. 

The correct formulation of the boundary conditions re­
quires consideration of the simultaneous wave fields 
B ± (x, t), jj; ± (x, t) propagating with the speed oflight c into 
the positive and negative half-spaces x > + a and x < - a 
surrounding the conductor (Fig, 2), which are excited by the 
transient current fields} (x, t) = J-lo- laB (x, t )lax in the 
(space-charge free) conductor. No matter how small the ex­
ternal transients B ± (x, t) and jj; ± (x, t) are (in comparison 
with Bo=lO and Eo = 0), they have to be taken into account 
in order to rigorously satisfy the boundary conditions 
n X [B] = 0 and n X [E] = 0 for the continuity of the tangen­
tial electromagnetic fields at conductor interfaces. 

The quantitative assessment of the significance of the 
external transients of the diffusion process leads to the dis­
covery of a new dimensionless parameter combination, 
which has the physical meaning of a "magnetic Reynolds 
number of the vacuum": 

:!It = J-lot7ac, c = (PO£O)-I/2 = 3 X 108 m/s. (S) 

In the following, the formulation of the initial-bound­
ary-value problem for diffusion processes with external tran­
sients and its analytical solutions for the transient electro­
magnetic fields inside and outside the conductor are 
presented. The qualitative and quantitative importance of 
the new boundary conditions and the external wave fields 
are discussed in terms of :!It. 

The presented theory has important implications for 
the evaluation fo the flux losses through the liners of magnet­
ic field compressors,3,4 the electromagnetic acceleration of 
conducting macroparticJes, 6, 

7 the electromagnetic induction 
in conductors moving relative to external magnetic fields,8,9 
and for the interaction of transient plasma shock waves with 
external magnetic fields. IO

,1I The general significance for 
theoretical physics is obvious. 

2.INITIAL-BOUNDARY-VALUE PROBLEM 

The subject of the following considerations is the diffu­
sion of the magnetic field into a conducting slab Ixl <a, 
which is initially embedded in a homogeneous magnetic field 
Bo = ! 0, Bo, 0 J ' under simultaneous emission of electromag­
netic waves from the conductor surfaces x = ± a (Fig. 1). 

The transient electromagnetic fields B ± = ! 0, 
B ± (x, t ), 0 J and E ± = ! 0, 0, E ± (x, t ) J in the infinite vacu-
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um half-spaces (17 = 0, J-l = J-lo) x > + a and x < - a are de­
termined by the initial-boundary-value problems ( ± ) for 
the wave equation: 

a2B±lat2=c2a2B±lax2, ±x>a, t>O, (9) 

B ± (x, t = 0) = Bo, ± x > a, (10) 

B ± (x = ± a, t) = Bo + 1f ± (t ), t> 0, (11) 

since 

aE ± lat = ciaB ± lax, aE ± lax = aD ± lat, (12) 

by Maxwell's equations with displacement current. The so­
lutions of Eqs. (9)-( 11) for the still undetermined boundary 
values 1f ± (t) are 

D± (x, t) 

=Bo+1f±(t+(x+a)lc), a< ±x<a+ct, 

= Bo, a + ct < ± x < 00, ( 13) 

and 

E± (x, t) 

= +C1f±(t+(x+a)lc), a< ±x<a+ct, 

= 0, a + ct < ± x < 00. (14) 

These solutions are typical for hyperbolic equations, i.e., the 
boundary values 1f ± (t) are "transported" into the half­
spaces ± x > a with the speed oflight c, so that discontin­
uous wave fronts result at x = ± (a + ct ). 

Let the external magnetic field Bo be switched on at 
t = 0 so that no electromagnetic fields exist in the conductor 
for t < 0. 1

•
2 The conductor has a finite conductivity 17 and 

can, therefore, not carry surface current densities (Ref. 12), 
j* = limAx---ot7E..:1x = 0 for 17 < 00 and E bounded. Accord­
ingly, the boundary conditions for the tangential electric and 
magnetic field components at the conductor vacuum inter­
faces are 

B (x = ± a, t) = Bo + 1f ± (t), t> 0, 

E(x= ±a,t)= +C1f±(t), t>O, 

where 

E(x, t) = KaB (x, t )Iax, Ixl <a, t>O, 

(15) 

(16) 

(17) 

by Ohm's law is the electric field in the conductor, and B (x, t ) 
is the magnetic field in Ixl <a. Furthermore, 

K = lIJ-lot7>O. (IS) 

(The boundary conditions n·[£E] = Oand n.[B] = 0 are satis­
fied since E and B have no normal components.) By elimina­
tion of the unknown boundary values E (x = ± a, t) and 
1f ± (t) from Eqs. (15)-( 17), boundary conditions involving 
only the magnetic field D (x, t ) in the conductor are obtained: 

aB (x = + a, t) ±:. B (x = ± a, t ) = ± :. Bo, t> O. 
~ K K 

( 19) 

These are the new boundary conditions for the diffusion of 
magnetic fields B (x, t ) into conductors. They differ from the 
conventional boundary conditions 1.2 through the curl terms 
aB (x = ± a, t )lax #0, which consider the emission of mag­
netic dilution waves from the conductor surfaces x = ± a 
into the vacuum Ixl >a. 
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Within the conducting slab of finite width 20, the prop­
agation of the magnetic field can be treated in the nonrelati­
vis tic or diffusion approximation. 1,2,12 Accordingly, B (x, t ) in 
the initially field-free conductor is determined by the para­
bolic initial-boundary-value problem: 

aBlat=Ka'lBlax2, Ixl<a, t>O, (20) 

B (x, t = 0) = 0, Ixl <a, (21) 

aB (x = ± a, t )1 ax ± hB (x = ± a, t) 

= ± hBo, t>O, (22) 
where 

h = CIK> 0. (23) 

The transformation 

B(x, t) = Bo + B(x, t), Ixl<a, t>O, (24) 

reduces Eqs. (21)-(22) to an initial-boundary-value problem 
with standard "radiation" boundary conditions: 

aBlat = Ka2Blax2, Ixl<a, t>O, (25) 

B(x,t=O)= -Bo, Ixl<a, (26) 

aB(x = ± a, t)/ax ± hB(x = ± a, t) = 0, t>O. (27) 

In accordance with Fourier's theorem, the solution of 
Eqs. (25)-(27) is obtained as a superposition of eigenfunc­
tions Bn (x, t) for the region Ixl <a which satisfy the bound­
ary conditions (27): 

_ 00 (h 2 + k ~)k n- 1 sin kna 
B (x t) = - 2Bo ~ ~--.:....-....::.:..~-----=:-

, n~1 [(h2+k~)a+h] 

Ixl<a, t>O, (28) 

where 

knatg(kna) = ha, n = 1,2,3, ... (29) 

gives the eigenvalues k n associated with the boundary condi­
tions (27). 

A. Conductor Solutions 
For a compact representation of the field solutions, di­

mensionless independent (5, 1') and dependent variables are 
introduced, 

5 = xla, l' = Kt la2, an = kna, (30) 

qJ (5, 1') = B (x, t )1 Bo, ~ (5, 1') = E (x, t )I(KBoi a), 
(31) 

A5, 1') = j (x, t )I(BoIf.loa). 

According to Eqs. (24) and (28), the solutions for the dimen­
sionless fields qJ(5, 1'), ~(5, 1') = aqJ(5, r)/a5, and,i(5, 1') in 
the conductor are given by 

00 (&t 2 + a 2 )a - 1 sin a 
qJ(5, 1') = 1 - 2 L n n n 

n= 1 [(&t
2 + a~) + &t] 

_a2 T 

Xe n cos a n5, 151 < 1, 1';;;.0, (32) 

00 (&t 2 + a~)sin an 
~(5, 1') = 2 L ~---.:..:..:~~ 

n=1 [(&t2+a~)+&t] 

2 

Xe-
anT

sinan 5, 151<1,1';;;.0, (33) 
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/"(5,1') = ~(5' 1'), 151 < 1, 1'>0, 

where 

(34) 

an tgan = &t, n = 1,2, 3, ... , &t = aC/K = f.loUac, 
(35) 

by Eqs. (8) and (29). For sufficiently large times r>ai 2
, the 

homogeneous magnetic field has diffused completely into 
the conductor, 

qJ(5, 1')-+1, ~(5, TH, /"(5,1')-+0, 1'-+00. (36) 

In the hypothetical limit of infinite magnetic vacuum Reyn­
olds number &t, Eq. (32) reduces to the known solution (4) 
for the conventional boundary conditions,5 

lim qJ (5, 1') = 1 - .i. f (- 1)n - 1 

gp-oo 1T n = 1 (2n - I) 

X e -(2n - 1)'''>T/4COS 2n ; 1 1T5, 

151 < 1, 1'>0, 

since 

. 2n-l 
hm an =--1T, n = 1,2,3, .... 
gp~oo 2 

(37) 

(38) 

Comparison ofEq. (32) with Eq. (37) indicates that the 
qJ (5, 1') solutions with the new and conventional boundary 
conditions differ not much if &t>a l = 1T/2. 

B. Vacuum Solutions 

In view of the boundary conditions (15), Eq. (32) yields 
for the boundary values 4/1 ± (1') = qJ(5 = ± 1,1') - 1. Ac­
cordingly, Eqs. (13) and (14) give for the electromagnetic 
fields in the positive (5) + 1) and negative (5 < - 1) half­
spaces the solutions 

qJ ± (5, 1') 

= 1 + 4/1 ± (1' + (5 + 1)1&t), 1 < ± 5 < 1 + &tr, 

=1, 1+&tT<±5<00, (39) 

and 

~ ± (5, 1') 

= + &t4/l(T+ (5 + l)/&t), 1 < ± 5 < 1 + &tT, 

= 0, 1 + &tT < ± 5 < 00, 

where 

(40) 

Equations (39) and (40) represent electromagnetic wave 
pulses which propagate with the dimensionless speed &tIc) 
from the conductor surfaces 5 = ± 1 into the vacuum 
spaces ± 5> 1 with discontinuous wave fronts at 
5 = ± (1 + &tr). They are kicked on at l' = ° and their 
emission lasts to the end (1'-+ 00 ) of the diffusion process in 
the conductor. The vacuum fields qJ ± (5, 1') are in the oppo­
site direction of Bo, i.e., they represent dilution waves (Fig. 
2). 
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In the case oflarge coupling numbers, ei'> 1, Eqs. (39) 
and (40) yield with Eq. (41) 

3iJ±(S,r)a:l+0[ei'-I], 1<±s<I+ei'r, (42) 

00 _ (2n - 1 ".)2[T+($" Of l)I9fj 

if ± (S, r) a: ± 2 L e 2 

n=1 

1 < ± S < 1 + ei'r, (43) 

since cos an a:( - l)n -1(2n - 1)17/2ei' for ei'> 1 by Eq. (35). 
The magnetic field Do outside of the conductor remains 

nearly unperturbed during the diffusion process, fj ± 
- ei' - I, whereas the external electric transients if ± #- 0 are 
of order ei'0 behind the wave fronts, S = ± (1 + ei'r), for 
ei'>1. However, since VXD± = e- 2aE± /at, not only if ± 
- ei'0 but also fj ± - ei' - 1 cannot be neglected for ei' > 1. 

Thus, we have shown how self-consistent solutions can 
be obtained for the electric and magnetic fields in the con­
ductor and the surrounding vacuum, which satisfy the 
boundary conditions for the continuity of the tangential 
electric and magnetic fields at the conductor-vacuum inter­
faces. The conventional boundary conditions for electro­
magnetic diffusion processes,I.2 ignore the external electro­
magnetic transients, violate the boundary condition for the 
tangential electric field, and permit no Poynting vector 
S = EX H outside of the conductor. As a result, theconven­
tional boundary conditions 1.2 make it impossible for electro­
magnetic fields to diffuse through conductors and to escape 
into the ambient space. 

For both the conductor and vacuum solutions, the limit 
ei' -0, which implies u-o since a #- 0, is not realizable since 
the conductivity of conductors is by definition large. For 
insulators or extremely poor conductors (ei' ex: u-o), the 
nonrelativistic or parabolic diffusion equation is inapplica­
ble. 12 Therefore, the investigation of the limit ei'-o would 
require solution of Maxwell's equations with displacement 
current in the slab Ix I < a given elsewhere. \3 

The generalizations of the theory required for conduc­
tors and external media (vacuum, gases, fluids) with different 
permittivities E and J.L are trivial but complicate the notation. 

3. DISCUSSION 

It is known that Maxwell's equations with displace­
ment current and the nonrelativistic Ohm's law j = uE com­
bine to a hyperbolic diffusion equation for the magnetic field 
B(r, t) in conductors, 12 

a 2D + _1_ aD = e2V2D, (44) 
at 2 

TR at 
where 

TR = Eo/U (45) 

is the field relaxation time, e.g., TR ~(1O-9 /3617")16 X 107 

-1O- 19 sforcopperwithu = 6x 107 n- l /m.Equation(44) 
reduces to the parabolic diffusion equation in the limit TR 

<ale: 

(46) 

The parabolic diffusion equation is an excellent approxima-
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tion, since the relaxation time of conductors is extremely 
small, TR <a/c. Dy Eqs. (45) and (46), the field relaxation 
time TR and the diffusion time To are interrelated by 

(47) 

where a is the extension of the conductor. For conductors, 
the diffusion time is relatively large if a is not microscopical­
ly small, e.g., To = 41TX 1O-7 X6X 107 X 10-4 _10- 2 s for 
a copper slab of width a = 10-2 m. 

Comparison of the neglected term a 2BI at 2 with the sec­
ond and third terms ofEq. (44) reveals the relation of the 
parabolic diffusion approximation to the new coupling num­
ber ei' = J.Louae: 

_ 2... = EcPo = ei'-2. (48) 
To lJ.toua)2 

This result again confirms the validity of the parabolic diffu­
sion equation for conductors, for which ei' = J.Louae> 1. E.g., 
ei'~41TX 1O- 7 X6X 107 X 1O-23x 108 _108 for a copper 
slab a = 10-2 m. More important, Eq. (48) demonstrates 
that the neglected relativistic term a 2BI at 2 in the conductor 
is small of order ei' -2 < < < < 1, whereas the calculated 
electromagnetic fields in the conductor are of order 
3iJ - if _ei'0 [Eqs. (32)-(33)], and the external electromag­
netic transients are of order fj ± -!1l( - 1 and if ± _ ei'0 
[Eqs. (39)-(40)], since in Eq. (41) for large ei' 

Icosan 1= [l + (ei'la n )2] -1/2~anl!1l(-!(2n - 1)1T!1l(-I, 

ei'> 1, n = I, 2, 3, .... (49) 

In conclusion, it is noted that, in conductors, magnetic 
field diffusion is a nonrelativistic process (as in electric con­
duction, j = uE). The electric transients '&' ± in vacuum 
must be of the same order as the electric field'&' in the con­
ductors, '&' ± - '&' - !1l(0, since otherwise the tangential elec­
tric field is not continuous across the conductor-vacuum in­
terface. On the other hand, the external magnetic transients 
fj ± are small of order ei' - 1 = 1J.t0ua) - 1 e - 1 since the mag­
netic field energy flows with the speed oflight towards the 
conducting cavity. The deeper physical reason for these elec­
tromagnetic transients is to be seen in the conservation laws 
for electromagnetic energy and momentum, which follow 
from Maxwell's equations. 12 

IB. M. Budak, A. A. Samarskii, and A. N. Tikhonov, Mathematical Physics 
(Pergamon, New York, 1964). 

2W. W. Batygin and I. N. Toptygin, Problems on Electrodynamics (Aca­
demic, New York, 1964). 

'G. Lehner, J. G. Linhart, and J. P. Somon, Nucl. Fusion 4,362 (1964). 
4G. Lehner, Ergeb. Exakten Naturawiss. 40, 67 (1968). 
'Reference I, p. 347. 
OF. Winterberg, Atomkernenergie 35, 34 (1980). 
7S. C. Rash1eigh and R. A. MarshaJl, J. Appl. Phys. 49, 2540 (1978). 
8C. M. Fowler, W. B. Garn, and R. S. Caird, J. Appl. Phys. 31, 588 (1960). 
"V. Y. Poljudov, Y. M. Titov, and G. A. Shvetsov, J. Appl. Mech. Tech. 
Phys. 6,41 (1973). 

10H. Matsuo, Phys. Fluids 22, 1618 (1979). 
"A. Sakurai and T. Takao, J. Phys. Soc. Jpn. 28,1329 (1970). 
12J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1949). 

I3H. E. Wilhelm, Technical Report, Naval Weapons Center, 198 J. 

H. E. Wilhelm 1768 



                                                                                                                                    

Some comments about the tensor vi rial theorem and orthogonal linear 
transformations 

Francisco M. Fernandez and Eduardo A. Castro 
INIFTA, Seccion Quimica Teorica, Sucursal4, Casilla de Correa 16, La Plata 1900, Argentina 

(Received 11 March 1980; accepted for publication 24 July 1981) 

The tensor virial theorem is analyzed in relation to orthogonal linear transformations. The 
physical implications are discussed. 

PACS numbers: 03.20. + i 

I. INTRODUCTION 

The tensorial generalization of the virial theorem (TVT) 
was introduced in classical mechanics by Parker I and it was 
recently reformulated by Miglietta. 2 The corresponding 
quantum tensor virial theorem was deduced by Pandres3 and 
Cohen.4 

The former author used a linear coordinate transforma­
tion plus the variational principles to make the demonstra­
tion. Such procedure allows one to obtain the equations that 
have to satisfy the eigenfunctions of the Hamiltonian opera­
tor. and furthermore the conditions under which approxi­
mate functions satisfy those equations. Later, Cohen de­
duced the TVT from the Heisenberg equations of motion. 
Recently. we have discussed the importance of the groups of 
transformation in relation to the TVT.5

•
6 

Pandres' procedure3 consists of the insertion of n2 inde­
pendent parameters in the trial wave function. through an 
n X n square matrix. and a posterior imposition of the extre­
mum conditions of the energy functional with respect to 
such parameters. This method gives a set of n2 independent 
equations which compose the TVT. 

Naturally. when the number of independent param­
eters is less than n2

• the TVT will be satisfied in a partial and 
incomplete way. 

The purpose of this communication is to show which is 
the class of equations that will be fulfilled when an ortho­
gonal matrix is used. The physical implications will be self­
evident. 

II. ORTHOGONAL MATRIX 

An orthogonal matrix Cnxn satisfies the well-known 
relationships 

C'C = CC' = In;<n. 

C:Cj = 8ij.iJ = 1,2 .... ,n, 
(1) 

(2) 

where C' is the transpose matrix of C,l is the identity matrix, 
and Ci represents the ith column of the matrix C. Equation 
(2) follows from Eq. (1) and it assures us that C contains just 
n(n - 1 )12=s independent elements. These independent ele­
ments will be denoted by Z I ,z2'''',zs . 

From Eq. (1) it is deduced that the s matrices A i defined 
by the formulas 

A .=C,JC . 12 
I , 1= , , ... ,s, 

Jz; 
(3) 

are antisymmetric. 

III. TENSOR VI RIAL THEOREM AND ORTHOGONAL 
TRANSFORMATION 

Let us consider a system composed of N identical parti­
cles, whose Hamiltonian is 

1 N 3 

H= - 2: 2: P~j + V(X), 
2m a~ Ij~ I 

(4) 

where m is the mass of each particle, and Paj is the conjugat­
ed momentum ofthejth Cartesian coordinatexaj corre­
sponding to the ath particle. X represents the set of coordi­
nates of all the particles. 

V (X) takes into account internal as well as external po­
tentials, i.e .• 

V(X) = V;(X) + Ve(X). (5) 

When V(X) possesses a well defined symmetry, some rela­
tionships which constitute the TVT are trivia1.7

•
8 In order to 

be sure of the nontriviality of the relations that we will dis­
cuss, we assume that Ve (X ) is asymmetrical enough. 

From a normalized well-behaved function ¢> (X), we can 
define the variational function ¢> (Y), where Y symbolizes the 
set of variables ( Ya; J given by the following orthogonal 
transformation 

3 

Ya; = 2: CijXaj ' i = 1,2,3. 
j~1 

(6) 

The value of the Jacobian of the transformation (6) is one, so 
that¢> (Y) is normalized. The derivative of ¢> (Y) with respect 
to the s-variational parameters Z; (i = 1, ... ,s) is given by 

J¢> (Y) = 2: 2: J¢> (Y) JYaj = 2: 2: (A;),kVkt¢> (Y) 
Jz; a j JYaj Jz; k t 

(7) 

where 

J 
Vij = 2: Xa; -. (8) 

a JXaj 

Imposing the extremum conditions to the functional E, 

E(zl,z2'''''ZS) = (¢>(Y)IH¢> (Y), (9) 

with respect to the s parameters Z;, we obtain at once 

JE 
- = 2: L ([H,v kt - Vtk ])(A;)tk = O. (10) 
JZ i k '>k 

If L; denotes the ith component of the angular momentum 
operator of the system, then Eq. (10) is transformed into 

([H,L;]) = 0, i = 1,2,3. (11) 
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Evidently, the set of parameters introduced via an orthogo­
nal matrix implies the conservation of the expectation value 
of the angular momentum. 
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For evolution equations which can be written in Hamiltonian fonn two ways, there exists a 
relation between two functions Q (I) and Q (2), both of which are gradients of conserved functionals. 
The relation can be extended to define (recursively) functions Q (n). It is shown that the Q (n) 

corresponding to the general evolution equation associated with the Zakharov-Shabat eigenvalue 
problem are all gradients of conserved functionals. This in turn implies all these functionals are in 
involution. 

PACS numbers: 03.40. - t, 03.65.Fd 

I. INTRODUCTION 

Previouslyl we have seen that the simple properties of 
most of the known completely integrable Hamiltonian sys­
tems follow directly from the existence of two Hamiltonian 
fonnulations. 

Specifically, we have the following situation in mind: 
There is a nonlinear evolution equation of the fonn 

u, =K(u), - 00 <x< 00. (1) 

Between any two functionals Fj> Fj two different Poisson 
brackets of the fonn 

J'" DE DE 
[F;,Fj] = -' L_l dx 

- '" DU DU 
and 

J'" DE DE 
[F;,Fj]' = -' M_l dx 

- '" DU DU 
(2) 

are defined. (Naturally these must be antisymmetric and sa­
tisfy the Jacobi identity). 

Further, there exist two constants of motion of Eq. (1) 
(H,H ') such that Eq. (1) can be written as 

u,=[u,H) 

or 

u, = [u,H')'. 

If we define 

Q(O = DH'/DU, 

Q(2) = DH /DU, 

these equations imply 

LQ(2) = MQ(I). 

(3) 

More generally, we can define functions Q In) by the recur­
sion relation 

LQln+ I)=MQln). 

Now if the Q(n) are gradients, i.e., 

Q
(n) = DIn 

tiu' 

(4) 

(5) 

-I Supported in part by the National Science Foundation under grant MCS 
80-17781 and in part by the Office of Naval Research under Contract No. 
NOO 14-79-0537. 

bl Permanent address. 

it follows 1.2 thatthe In are constants of motion for Eq. (1) and 
they are in involution, i.e., 

(6) 

Here we give a proof that the Q (n) arising from all evolu­
tion equations associated with the Zakharov-Shabae eigen­
value equation are indeed gradients. 

The method of proof is the following. First, it is shown 
that a generating function for the Q (n) satisfies a set of three 
linear coupled first order equations. The idea is then to show 
that any solution of these equations is a gradient. This is 
done by relating solutions of the third order system to bilin­
ear combinations of the Z-S eigenvalue problem. Using vari­
ational principles,4 it is shown that these bilinear combina­
tions are indeed gradients. 

A special case here is the Kortweg-de Vries equation. 
Since, however, the mathematics for this case is possibly 
more familiar to the reader, we treat this first in Sec. II. In 
Sec. III, the gencu-al evolution equation associated with the 
Z-S problem is introduced. The related hierarchy of evolu­
tion equations is discussed in Sec. IV. The proof of the gen­
eral gradient theorem is then given in Sec. V. 

II. THE K-deV EQUATION 

Two Hamiltonian fonns for the K-deV equation have 
already been presented in Ref. 1. They are obtained from the 
Poisson brackets defined by Eq. (2) when 

and 

v=U, 
L=ax , 

M = - 2a! - ~uax - jux, 

H = f~ 00 [~3 - (U x f ] dx, 

H' = f~ '" 1u2 
dx. 

Then it is easy to verify that 

a,u = [u,H) = [u,H')' = - 2uux - 2uxxx , 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

which established the specific fonn of the K-deV equation to 
be considered. The Qn are generated by the recursion for­
mula given by Eq. (4). It is to be shown that they are gradi­
ents. 
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We now consider the linear eigenvalue problem for the 
function defined by 

Using Eqs. (4) and (13), we obtain 

MI/' = UL 1/', 

or specifically 

AI/I." = I/';ux + jul/'x + !ux 1/'. 

(13) 

(14) 

(15) 

This last equation is a third order linear differential equation 
for I/' and has three linearly independent solutions. 

The eigenvalue problem for 1/', Eq. (15), is of a some­
what unfamiliar form. This is readily remedied, as in Ref. 1, 
by noticing that if IP satisfies the Schrodinger equation 

(16) 

then 

(17) 

satisfies Eq. (15). 
We find it more convenient to consider two integral 

forms of the SchrOdinger equation, 

¢± = ¢o± + Y ±v¢±, (18) 

where the operators Y ± are defined by 

(Y +f)(x) = - - sin k (x - x')f(x') dx', 1 Loo 
k x 

(Y -f)(x) = ~ fX sin k (x - x')f(x') dx', 
k -00 

where 

k 2 = -A/4 

and the ¢o ± satisfy the equation 

(ax 2 + k 2)¢O ± = O. 

Note that the substitution 

u 
v= --

6 

(19a) 

(19b) 

(20) 

(21) 

(22) 

has been used. The ± superscripts denote two related scat­
tering problems, each of which has two forms. Correspond­
ing to the + ( - ) superscript, we associate two functions t/J, 
¢(t/J,¢ ) defined by their asymptotic values at + 00 ( - 00), 

t/J ---+ eikx, x---+ + 00, (23a) 

¢ ---+ e - ikx, X---+ + 00, (23b) 

t/J ---+ eikx, x---+ - 00, 

- -ikx t/J ---+ e ,x---+ - 00. 

(23c) 

(23d) 

We define reflection and transmission coefficients by the 
asymptotic relations 

.1, 1 ikx R - ikx 
If' ---+ T e + T e ,x---+ - 00, 

::i, 1 - ikx R * ikx 
If' ---+ - e + - e x---+ - 00. 

T* T*' 

Using the invariance ofthe Wronskian, 

W(t/J(I),t/J(2)) = t/J(I)t/Jx (2) - t/J(2)t/Jx (I) 
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(24a) 

(24b) 

(25) 

for all mixed pairs of the functions t/J, 7;;, t/J, and ¢, we find that 

and 

1 'kx R 'kx A. ---+ _ e' - - e - , x---+ + 00, 
'I' T* T ' 

A;---+ + ~ e - ikx _ ~ eikx 
'I' T T*' 

RR * + IT* = 1. 

x---+ + 00, 

(26) 

(27) 

(28) 

Functional forms for the reflection and transmission 
coefficients may be obtained from Eq. (18), thus 

and 

1 1 foo 'kx' - = 1 - -.- e - , v(x')t/J(x') dx' 
T 21k - 00 

= 1 - _1_. foo eikx'v(x')¢ (x') dx' 
2lk -'" 

= 1 - -.- t/J(x')(v - vY -v)t/J (x') dx', 1 f'" -
21k - '" 

~ = ~ f'" eikx'v(x')t/J(x') dx' 
T 21k _ '" 

= ~ fOO eikx'v(x')t/J (x') dx' 
21k _ '" 

= -. t/J (x')(v - vY +v)t/J(x') dx', 1 foo 
21k _ '" 

R* 
T* 

- _1_. f'" e - ikx'V(X')¢(x') dx' 
21k - "" 

= - ~ f'" e - ikx'V(X')¢ (x') dx' 
21k - 00 

= - -. t/J(x')(v - vY -v)t/J (x') dx'. 1 f"" - -
21k - 00 

(29a) 

(29b) 

(29c) 

(30a) 

(30b) 

(30e) 

(3Ia) 

(3Ib) 

(3Ic) 

In order to obtain expressions which are stationary with 
respect to variations of t/J, ¢, t/J, and ¢, we define 

and 

S~ 00 e - ikx'V(X')t/J(x') dx'S': 00 eikx'v(x')¢ (x') dx' 
A 

S': 00 t/J(x')(v - v~ -v)t/J (x') dx' 

= 2ik (1 - ~). (32) 

B 
S': 00 eikx'v(x')t/J(x') dx'S': 00 eikx'v(x')t/J (x') dx' 

S': "" t/J (x')(v - v~ +v)t/J(x') dx' 

=2ik~, 
T 

(33) 

B* 
S': '" e - ikx'V(X')¢ (x') dx'S': 00 e - ikx'V(X')¢(x') dx' 

S': 00 t/J(x')(v - v~ -v)t/J (x') dx' 

R* 
=2ik-. 

T* 
(34) 

That A, B, and B * are stationary as claimed may be verified 
by direct computation. Therefore, the variational derivatives 
of A, B, and B * may be computed by considering only the 
explicit dependence on v. From Eq. (32) we have 
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SA = f: 00 e - ikx'SV(X')rP(X') dx' + f: 00 eikx'Sv(X')(fo (x') dx' 

-f: 00 rP(x')t5v(x')(fo (x') dx' 

+ f: 00 ¢(x')t5v(x')[? -v(fo (x') dx' 

+ f: 00 rP(x')v(x')[? - SV(fo (x') dx'. 

From Eqs. (18) and (23d) we have 

[?-v(fo = (fo - e- ikx, 

so that Eq. (35) reduces to 

SA = f: 00 eikx'Sv(x')(fo (x') dx' 

+ f: 00 ¢(x')v(x')[? - Sv(fo (x') dx'. 

(35) 

(36) 

(37) 

The second term on the right-hand side of Eq. (37) may be 
integrated by parts, 

f oo [ d i"" 1 - -, rP(x)v(x)eikx dx -. 
- 00 dx x' 21k 

X f:' 00 e - ikx" Sv(x")(fo (x") dx" ] dx' 

- foo [_ ~ ioo 
rP(x)v(x)e - ikx dx ~ 

- "" dx x' 21k 

X f:' 00 eikx" Sv(x")(fo (x") dx" ] dx' 

= f: 00 ([? +vl/l)(x')t5v(x')iJ> (x') dx'. (38) 

Now, from Eqs. (18) and (23a) we have 

[? +v¢ = ¢ _ eikx, 

so that Eq. (37) becomes 

SA = f: 00 ¢(x')Sv(x')(fo (x') dx', 

and we conclude that 

In a similar manner we find 

and 

SB" -­
-=¢¢' ov 

(39) 

(40) 

(41) 

(42) 

(43) 

There are only two linearly independent solutions of 
Eq. (16). From the asymptotic forms (23a), (23b), (26), and 
(27). and Eq. (28), we may write 

and 

1773 

1 R -
¢ = T.¢--:r¢ (44a) 

- R· 1 -
¢=-¢+-¢. 

T· T 
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(44b) 

Therefore, ¢ and (fo may be eliminated from Eqs. (41), (42), 
and (43). If we let S denote some linear combination of the 
scattering data, then SS / Sv will be a linear combination of 
t/?, tfij, and if? Now, if? and t/? are solutions ofEq. (15) since 
each of ¢ and ¢ is a solution of the Schrodinger equation. 
But, (t/! + ¢) is also a solution ofthe Schrodinger equation 
and therefore (¢ + ¢)2 is a solution ofEq. (15). Thus, by the 
linearity of Eq. (15), tfij is a solution. The three solutions t/?, 
tfij, and if? are linearly independent since the Wronskian 

=2ik 

(45) 

does not vanish. Thus, the general solution of Eq. (15) satis­
fies 

(46) 

This last equation may be used to compare the Laurent ex­
pansion for S with Eq. (13). This yields the result that each 
Qn is immediately seen to be the variational derivative of 
some functional. By virtue of the discussion in Sec. I, we 
have proved that the dual Hamiltonian structure of the K­
deY equation implies that the K-deV equation constitutes a 
completely integrable Hamiltonian system. 

III. EQUATIONS ASSOCIATED WITH THE ZAKHAROV­
SHABAT PROBLEM 

Consider the system of two coupled nonlinear evolution 
equations given by 

aA = - a(qxx - 2q2r), (47) 

(48) 

Since there are two unknowns, we must extend our notation 
for variational derivatives. Let 

(49) 

Then, for any functional F, define 

SF = (SF /Sq). 
SV SF /Sr 

(50) 

We shall demonstrate that the eigenValue problem asso­
ciated with the system of equations (47) and (48) is the Zak­
harov-Shabat problem. First, the dual Hamiltonian struc­
ture of the nonlinear system may be verified by choosing 

L=(_OI ~). (51) 

( 
2qax -Iq ax - 2qax -Ir) 

M=a -I -I' ax - 2rax q 2rax r 
(52) 

ax -\ = ~(fX '" dx' - ioo 
... dX'), 

2 - 00 x 
(53) 

(54) 

(55) 
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and 

u = (;), (56) 

so that 

u, = [u,H] = [u,H']. (57) 

Here, the two Poisson brackets are the natural extention of 
Eq. (2), i.e., for any two functionals FoFj, 

f'" (OF; OF,) (OFj/Oq) 
[F;,Fj] = _ '" r;q'E;; L oFj/or dx, (58) 

and similarly for [,j' with L replaced by M. 
We now define an infinite sequence of two component 

functions, Qn' by the recursion formula 

(59) 

Analogous to the K -de V case, we consider a two-component 
function 

(60) 

The linear eigenvalue problem for 'fI is obtained from Eqs. 
(59) and (60), 

(61) 

or, in component form, 

- 2i;1/I2 = 2qax -I(ql/ll) + ax 1/12 - 2qax -1(rI/l2X )' (62) 

2i~1/I1 = ax 1/11 - 2rax -I(ql/ld + 2rax -I(rl/lz), (63) 

where 

;= - ~iaA. (64) 

The third-order character ofEqs. (62) and (63) becomes ob­
vious when we define 1/13 by 

ax 1/13 = ql/ll - rl/lz, (65) 

so that we obtain 

(66) 

and 

(67) 

A second-order system of equations may be related to Eqs. 
(66) and (67) by the substitution 

1/11 = ¢/, I/Iz = - ¢/, and 1/13 = ¢I¢Z' 
so that we find 

ax ¢I + i;¢1 = q¢z 
and 

(68) 

(69) 

(70) 

These last two equations constitute the Zakharov-Shabat 
eigenvalue problem for 'ifl and'if2· 

IV. THE HIERARCHY OF EQUATIONS 

If we choose 

and define 
2" = (a)-IL -1M, 
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(71) 

(72) 

then it is easy to verify that 

oH' 
2"Qo= --. oV (73) 

Using Eqs. (57), (58), and (72), the system of equations (47) 
and (48) may be written as 

(74) 

The recursion formula for the Qn and the definition of it' 
lead us to consider a hierarchy of equations given by 

u, = ( - a)L2" jQo, j = A ± l,A ± 2,... . (75) 

Each equation in this hierarchy is of dual-Hamiltonian form 
and each has associated with it the same set ofQ's defined by 
Eq. (59). The system of equations we started with corre­
sponds to j = 2. In that system, the substitution a = - i, 
r = - O'q* (0' = ± 1) gives the NLS equation 

a,q = i(qxx + 2O'q*q2) (76) 

and its complex conjugate 

a,q* = - i(q':x + 20'qq*2). 

Other equations in the hierarchy are 

j = 3, a = - 2, r = - t, q = u++-deV 

[cf. Eq. (12)] and 

(77) 

j = - 1, a =!, q = - r = ux /.j2++sine-Gordon. 

These classic examples of nonlinear evolution equations are 
well known to be completely integrable. However, the hier­
archy of equations considered here contains infinitely many 
nonlinear evolution equations, each of which is completely 
integrable provided we can prove that the Qn are gradients. 
Furthermore, these properties of dual-Hamiltonian form 
and complete integrability would be shared by any system of 
two coupled nonlinear evolution equations that can be put in 
the form 

(78) 

where/is any entire function. In the next section we shall 
prove that the Qn are gradients of the scattering data for the 
scattering problem associated with the Zakharov-Shabat ei­
genvalue problem. 

V. ZAKHAROV-SHABAT SCATTERING PROBLEM 

The coupled system given by Eqs. (69) and (70) may be 
written in vector form as 

,j,x + i;0"3,j, = V,j" (79) 

where 

(SO) 

and 

0"3=(~ ~J (SI) 

There are two useful integral forms of Eq. (79) given by 

,j,± =,j,6= + ~ ±V,j,±, (S2) 

where 
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(~+f)(x)= - fOexP[it(X-X')a3] f{x')dx', 

(~ -f)(x) = J~ "" exp [it (x - x')a3] f{x') dx', 

and ¢l satisfies 

(a." + ita3)¢0± = 0. 

(83) 

(84) 

(85) 

The ± superscripts denote two related scattering problems, 
each of which has two forms. Corresponding to the - ( + ) 
superscript, we associate two vector functions eI»,+(",,;ji) de­
fined by their asymptotic values at - 00 ( + 00), 

and 

eI» -- (~)e - i~X==¢O- (II, x-- - 00, (86a) 

ij; __ (0_ Jei~X==¢o- (21, x ........ - 00, 

"' ........ (~)ei~X-¢o+(lI, x __ + 00, 

(86b) 

(86c) 

(86d) 

[Note that these asymptotic forms are solutions of Eq. (85) 
and have been so indicated by additional superscripts.] We 
define the scattering data by the asymptotic relations 

eI» ........ (::i~xi~) x ........ + 00, (87a) 

+ __ (be ~i~:x)' x ........ + 00. (87b) 
-ae 

Using the invariance of the Wronskian, 

WW 11,,,,(21) = t/f/1t/f221 - t/f211t/f121, (88) 

for all mixed pairs of vectors ¢,¢,tP, and ¢, we find that 

(89a) 

(89b) 

and 

aa + bb = 1. (90) 

Functional forms for the scattering data may be ob­
tained from Eqs. (82), (86), (87), and (89), 

a = 1 + J: 00 e + i~Xq(X)¢2(X) dx 

= 1 - J: 00 e - i~Xr(X)tPl(X) dx, 

b = J:ooe-i~Xr(X)¢I(X)dX 

= J: 00 e - i~Xr(X)¢I(X) dx, 

(91a) 

(91b) 

(na) 

(nb) 

a = 1 - J: 00 e - i~Xr(X)¢I(X) dx 

= 1 - J: 00 ei~Xq(x)¢2(X) dx, 

b = J: 00 ei~Xq(x)¢2(X) dx 

= - J: 00 ei~Xq(x)tP2(X) dx. 

(93a) 

(93b) 

(94a) 

(94b) 

Additional functional forms for the scattering data may be 
obtained if we consider an equation for adjoint functions 
defined by 

¢! - ita3¢t = - VT¢t. (95) 

If Eq. (95) is written in component form, it is easy to verify 
that the choice 

At _ A At _ A 
tPl - tP2' tP2 - - tPl (96) 

returns us to Eq. (79). We will have need ofintegral forms of 
the adjoint equation (95). The formula 

J: 00 f{x) • ~ ± .v(x) dx = - J: 00 -g 'Ff{x) . .v(x) dx (97) 

may be established by integrating by parts (here, -g 'F is the 
complex conjugate of ~ 'F). This suggests defining the inte­
gral form of the adjoint equations to be 

and 

el»t = (¢o-(lI)t - -g-VTeI»t, 

ij;t = (,'1,0- (21)t _ -g -vTij;t, 

¢t = (¢o+ (ll)t - -g +VT",t, 

;jit = (¢o+ (21)t _ -g +VT;jit. 

(98a) 

(98b) 

(98c) 

(98d) 

We now observe that 

J: 00 '" t(x)(V - V ~ -V)¢ (x) dx 

= - J: 00 ",t(x)VtPO-(II(x) dx [by Eq. (82)] 

= - J: 00 tPl(x)r(x)e - i~x dx [by Eqs. (86a) and (96)] 

= a-I [by Eq. (91b)). (99) 

In an analgous manner, we find additional forms for the rest 
of the scattering data, 

a-I = J: 00 ¢t(x) . (V - V ~ -V)¢ (x) dx, 

b = - J: 00 el»t(x). (V - V~ +V);ji(x) dx, 

(100) 

(101) 

b = - J: 00 ij;t(x). (V - V~ +V);ji(x) dx. (102) 

We now combine the three forms for each of a-I, a-I, b, 
and b to obtain 

a-I = f': 00 (¢o+ (l1(x))t . VeI»(x) dxf': 00 (¢o- (l1(x))t • V",(x) dx , 

f': 00 ",t(x). (V - V~ -V)¢ (x) dx 
(103) 

1775 J. Math. Phys., Vol. 23, No.1 0, October 1982 M. D. Arthur and K. M. Case 1775 



                                                                                                                                    

a-I = J~ co (~o+ (21(x))t • V~(x) dxJ~ co (~o- (21(x))t • V*(x) dx , 

J~ co t/l t(x) • (V - V ~ +V)tf(x) dx 
(104) 

b= _ J~co(~o-("(x))tvfP(x)dxJ~co(~O-(21(x))tvcl»(x)dx , 

J~ co \IIt(x) . (V - V ~ -V)tfJ (x) dx 

b = J~ co (~o+ ("(x))t • V¢> (x) dxJ~ co (~o- (21(x))t . V¢(x) dx , 

J~ co cI» t(x) • (V - V ~ +V)tf(x) dx 

The advantage of these seemingly more complicated expres­
sions for the scattering data [Eqs. (103HI06)] is that each 
one is stationary with respect to variations of cI», ~, 1\l, and * 
[this can easily be proved using Eqs. (97) and (9S)]. Therefore, 
in order to compute the variational derivatives, we need only 
consider the explicit dependence on V. We shall perform the 
calculation for (a - 1). First, 

8(0 - 1) = f~ co (~o+ ("(x))t • 8VcI»(x) dx 

+ f~ co (~o- ("(x))t . 8V1\l(x) dx 

-f~ co 1\lt(x) .8VcI»(x) 

+ f~ co 1\lt(x'). 8V~ -VcI»(x) dx 

+ LCOcotpt(X)'V~-8VcI»(X)dX. (107) 

But, from Eq. (S2) we have 

~-VcI»=cI»-~o-(lI, (lOS) 

so that with Eq. (97) we find 

8(0 - 1) = f~ co (~o+I'I(x)t. bVcI»(x) dx 

- f~00(~+VT1\lt(x)).8VcI»(X)dX. (109) 

Now we use Eq. (9Sc) to obtain 

8(0 - 1) = f: 00 1\lt(x). 8VcI»(x) dx; 

thus, using Eqs. (96), 

80 80 
8q = f/lzt/lz and Tr = - f/l,t/l" 

and from Eq. (50) we may write 

80 (f/lzf/lz) 
T,;= -f/l,t/l,' 

Similarly, one finds 

and 

(110) 

(111) 

(112) 

(113) 

(114) 

(115) 

Now, since 1\l and cI» are solutions ofEq. (79), the components 
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(105) 

(106) 

of the vectors, 

(116) 

are solutions of the system of equations (65H67). But, 1\l + cI» 
is also a solution ofEq. (79). Therefore, by the linearity of the 
system [Eqs. (65H67)], 

( 
f/l2t/l2 ) 

~131= -f/l,t/l, 
Hf/l,t/l2 + f/l2t/l,J 

(117) 

is also a solution of the third-order system. Note that the first 
and second components of [j; 131 [cf. Eq. (117)] are precisely 
the first and second components of 8 (a - 1)1 8V given by Eq. 
(112). Therefore, for the purpose of discussing linear inde­
pendence, we will define 

Then, the Wronskian of any three of these vectors may be 
computed. In particular we find 

~(lJIlal, 1JI1bl, 1JI1bl) 

f/lzt/lz 
-f/l,t/l, 

!(f/l,t/lz + f/lzt/ld 
a 

-"2' 

¢zt/lz 
-¢,t/l, 

!(¢,t/l2 + f/lzt/ld 

'Jr(1JI1al IJIlal 1JI1b l) =!!... 
" 2 ' 

and 

f/lz¢>z 
f/l,¢>, 

!(f/l,¢>z + f/lz¢>d 
(118) 

(119) 

(120) 

From Eq. (90) it is not possible for both a and b, or a and b, to 
be zero; thus we may always find three linearly independent 
variational derivatives of the scattering data. 

The general solution to the eigenvalue problem for \II 
[cf. Eq. (61)] may be written as a linear combination of three 
of the variational derivatives of the scattering data. Then we 
may write 

\11- 8S 
- 8V' 

M. D. Arthur and K. M. Case 

(121) 
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where S is some linear combination of those three terms of 
the scattering data. We expect the scattering data (and hence 
S) to have a Laurent expansion about A = o. Sis a functional 
since the scattering data may be expressed as functionals [cf. 
Eqs. (103H106)]; therefore, each term in the Laurent expan­
sion of S may be regarded as a functional, and comparison 
with Eqs. (60) and (121) shows that each Qn is the variational 
derivative of some functional. As a consequence of the dis­
cussion in Sec. I, we have proved that the dual-Hamiltonian 
structure of the coupled pair of nonlinear evolution equa­
tions, (47) and (48), implies that those equations and all the 
equations in the related hierarchy are completely integrable 
Hamiltonian systems. 

VI. CONCLUSION 

It has been shown that the general evolution equation 
related to the Zakharov-Shabat eigenvalue problem can be 
written in Hamiltonian form two ways. This then implies a 
recursion relation for functions Q(n l• It is proved that these 
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are functional gradients. This in tum implies that the corre­
sponding functionals are all constants and are in involution. 

The key point in the proof is the existence of variational 
principles for the scattering problem for the Z-S equations. 

A preliminary look at other completely integrable 
Hamiltonian systems suggests that similar proofs of the gra­
dient property are also possible-and simple. 

'K. M. Case, "Dual Hamiltonian Formalisms for Nonlinear Evolution 
Equations" M.I.T. Press (to be published); K. M. Case and A. Roos, J. 
Math. Phys. 23, 392 (1982). 

2F. Magri, J. Math. Phys. 19, 1156--1162 (1978). 
3V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34,62 (1972); M. J. 
Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, StUd. Appl. Math. LIII, 
249-336 (1974). We follow the notation in this paper. 

4J. Schwinger, lecture notes (unpUblished). This is discussed in M. L. Gold­
berger and K. M. Watson, Collision Theory (Wiley, New York, 1964), 
p. 320. 
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Wigner approach to quantization. Noncanonical quantization of two particles 
interacting via a harmonic potential 

Tchavdar D. Paleva) 
Institutfiir Theoretische Physik der Technischen Universitiit, Clausthal, Clausthal-ZellerJeld, West Germany 

(Received 7 December 1981; accepted for publication 9 April 1982) 

Following the ideas ofWigner, we quantize noncanonically a system of two nonrelativistic point 
particles, interacting via a harmonic potential. The center of mass phase-space variables are 
quantized in a canonical way, whereas the internal momentum and coordinates are assumed to 
satisfy relations, which are essentially different from the canonical commutation relations. As a 
result, the operators of the internal Hamiltonian, the relative distance, the internal momentum, 
and the orbital momentum commute with each other. The spectrum of these operators is finite. In 
particular, the distance between the constituents is preserved in time and can take at most four 
different values. The orbital momentum is either zero or one (in units 11/2). The operators of the 
coordinates do not commute with each other and, therefore, the position of anyone of the 
constituents cannot be localized; the particles are smeared with a certain probability in a finite 
space volume, which moves together with the center of mass. In the limit ~ the constituents 
"fall" into their center of mass and the composite system behaves as a free point particle. 

PACS numbers: 03.65. - w 

INTRODUCTION 

In ordinary, canonical quantum mechanics the opera­
tors of the Cartesian coordinates q» .. .,qn and momenta 
PI, ... ,Pn' corresponding to a classical system with a Hamil­
tonian 

satisfy the canonical commutation relations (CCR's) 

[ qj ,p d = iftfjjk' 
[qj,qk] = [Pj,Pk] = O. (2) 

The quantization with CCR's can be applied to any 
classical system, independently of the dynamics, i.e., for ev­
ery Hamiltonian, and in this sense it is universal. In 1950 
Wigner (See. Ref. 1, hereafter referred as to I) pointed out, 
however, that for a given Hamiltonian the canonical scheme 
can be in principle generalized. In particular, he has shown 
that the one-dimensional harmonic oscillator can be quan­
tized in several noncanonical ways, i.e., with position and 
momentum operators that do not satisfy the CCR's (2). In 
the present paper we shall consider another example, quan­
tizing noncanonically a system of two nonrelativistic point 
particles, interacting via a harmonic potential. 

In order to motivate the definition of the noncanonical 
quantization, which we shall follow, consider the canonical 
quantum mechanics in the Heisenberg picture. In this case 
the time evolution of a given system is described by the Hei­
senberg equations of motion 2 

. i A. i A 

Pk = --[Pk,H], qk = --[qk,H]. (3) 
II II 

The use of the CCR's then yield3 

(4) 

a) Present address: Institute of Nuclear Research and Nuclear Energy, Boul. 
Lenin 72, 1184 Sofia, Bulgaria. 

The relations (3) and (4) lead to operator equations, which 
formally coincide with the classical Hamiltonian equations4 

(5) 

Hence, the classical equations5 are a simple conse­
quence of the quantum equations (3) and the canonical com­
mutation relations (2). The key point for a generalization of 
the concept of a quantization comes now from the observa­
tion ofWigner l that the Heisenberg Eqs. (3) and the Hamil­
tonian Eqs. (5) have a more immediate physical significance 
than the CCR's. From this point of view the CCR's appear 
only as a tool to derive the Hamiltonian equations. There­
fore, it is logically justified to postulate from the very begin­
ning Eqs. (5), instead of the conditions that lead to them, 
namely the CCR's. 

On grounds of the above considerations, we define a 
(noncanonical) quantization of a given mechanical system 
with a Hamiltonian (1) as a replacement, 

qk~k' Pk-Pk' (6) 
of the classical canonical variables by operators, so that the 
Heisenberg Eqs. (3) and the Hamiltonian Eqs. (5) will be si­
mulaneously fulfilled. 

The first question that arises in connection with the 
above definition is whether the new definition is more gen­
eral than the canonical one. This can be the case if the com­
patibility relations (4), considered as equations with respect 
to the unknown operators ql,. .. ,qn'PI, ... ,Pn, also have solu­
tions which are different from the canonical solution (2). In I 
Wigner has studied this problem in the case of a one-dimen­
sional harmonic oscillator with a Hamiltonian (II = 1) 

H = ~(ft2 + q2). (7) 

The solutions he found are labelled by one arbitrary non­
negative integer Eo, the energy of the ground state. The oper­
ators P and q, corresponding to different Eo, are nonequiva­
lent; their representation spaces W(Eo) are 
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infinite-dimensional. If IEo;n), n = 1,2, ... , is a basis in W (Eo), 
then 

qIEo;n) = Xn _ I.n IEo;n - 1) + xn.n + I IEo;n + 1), 
pIEo;n) = - ixn _ I.n IEo;n - 1) + ixn.n + I IEo;n + 1), 

(8) 

where 

x n•n + I = (Eo + n/2)1/2 for even n, 
x n•n + I = (n/2 + ~)1/2 for odd n. 

Only in the case Eo = ! do the operators p and q satisfy the 
CCR's(2). 

To establish some further algebraical properties of the 
operators p and q, introduce the creation (S = +) and anni­
hilation (S = -) operators (CAO's) 

as = ~q - i5p). (9) 
\12 

Then 

H =~ ja+,a-} 

and the CAO's transform the basis vectors as follows. 

a-IEo;2n) = (2n)I/2IEo;2n - 1), 
a-IEo;2n + 1) = (2n + 2Eo)I12IEo;2n), 
a+ IEo;2n) = (2n + 2Eo)I/2IEo;2n + 1), 

(10) 

a+ IEo;2n + 1) = (2n + 2)1/2IEo;2n + 2). (11) 

By a straightforward computation one shows that for 
every Eo the operators a+ and a- satisfy one and the same 
relations, namely 

Here and throughout the paper 5,7],E,/) = ± or ± 1; 
[x,y] = xy - yx and {x,y} = xy + yx. 

(12) 

Thus, the solutions for different values Eo of a + and a­
appear as different irreducible representations of operators 
that satisfy the above equality (12). To every such representa­
tion there corresponds a self-consistent generalization of the 
ordinary quantization with position and momentum opera­
tors that are not unitarily equivalent to the canonical q and p. 

The results ofWigner can be easily extended to quantize 
noncanonically also a system of n noninteracting oscillators 
with a Hamiltonian 

H = ± (_I-PJ + mjUJJ qJ). 
j~1 2mj 2 

(13) 

In terms of the CAO's 

( 
mkUJk )112 A 1/2A af = ~ qk - is (2m k UJkli)- Pk, (14) 

Eq. (4), which is a compatibility condition for Eqs. (3) and (5), 
reads (5= ±) 

(15) 

One solution (among others) of the above equation is 
given with operators, which are a straightforward general­
ization of ( 12), 

[{af,a}},an =/)jk(E-5)a}+/)jdE-7])af. (16) 

The operators (16) are known in quantum field theory. 
They were introduced by Green6 as a possible generalization 
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of the statistics ofinteger-spin fields and are called para-Bose 
operators. The irreducible representations of the para-Bose 
operators, corresponding to Hermitian position and mo­
mentum operators and a nondegenerate ground state 10), 
are labelled by one non-negative integer p, the order of the 
statistics,7 which is defined by the relations 

aj-IO) = 0, aj- a/ 10) = p/)ij 10), P = 1,2,... . (17) 

Only in the case p = 1 do the position and momentum opera­
tors, corresponding to af, obey the CCR's (2). 

We see that the Wigner quantization of the one-dimen­
sional harmonic oscillator (with n = Ii = UJ = 1) is in fact a 
quantization with para-Bose operators. Therefore, it gener­
alizes quantum mechanics along the same line as the para­
Bose statistics extends quantum field theory. Different 
aspects of the Wigner quantization of the one-dimensional 
oscillator were studied in Ref. 8 and more recently in Refs. 
9-11. 

Since Eq. (4), which have to be satisfied by pj and qj, 
depend on the Hamiltonian, the properties of the position 
and momentum operators may depend on the interaction. 
This is a particular feature of the noncanonical quantization, 
which is not of geometrical origin, but rather of a dynamical 
one. Because of this propery we often refer to the noncanoni­
cal quantization as a dynamical one. 

In the canonical case the mapping (6) defines uniquely 
the quantum Hamiltonian H, corresponding to (1), and the 
derivatives au laqj [this is the reason to write down the Ha­
miltonian in the form (1)]. This is also true for any noncanon­
ical operators, if the classical potential can be represented in 
the form 

n 

U(ql,· .. ,qn) = I U(qj)' (18) 
j~ 1 

For an arbitrary interaction, however, since ql, .. .,qn may not 
commute, one has to give a rule for an ordering of the opera­
tors when passing from U(ql, ... ,qn) to the quantum potential 
U. This procedure, which is also not unique for arbitrary 
functions F (p,q) of canonical variables, 12-14 has to be defined 
for every interaction. Here we will not go into a discussion of 
this important point. Instead, we shall consider another ex­
ample of noncanonical quantization with a potential of the 
form (18), which exibits some new features and indicates that 
the ideas of Wigner in this respect deserve to be investigated 
further. 

We consider a system of two nonrelativistic point parti­
cles, interacting via a harmonic potential. Assuming that the 
center of mass variables are quantized canonically and com­
mute with the internal variables, we reduce the problem to a 
quantization of a three-dimensional harmonic oscillator for 
the internal degrees offreedom (Sec. IIA). Then (Sec. lIB) we 
quantize noncanonically a more general n-dimensional os­
cillator and study in more detail the two particle system (Sec. 
1lC). Section III is independent of the other part ofthe paper. 
It contains a motivation for the quantization of the oscialla­
tor we consider, which is of the Lie superalgebraical origin. 
Finally, we investigate the behavior of the system in the clas­
sicallimit Ii-o and give one possible interpretation of the 
results. 
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II. DYNAMICAL QUANTIZATION OF TWO POINT 
PARTICLES INTERACTING VIA A HARMONIC 
POTENTIAL 
A. Reduction of the problem 

Consider in the frame of nonrelativistic mechanics two 
point particles with masses m I and m 2 and a Hamiltonian 

2 2 2 
PI P2 m(i) 2 

H tot =--+--+--(r l -r2). (19) 
2ml 2m2 2 

Introduce the center of mass (CM) coordinates 

R - mlrl +m2r 2 _ - , r - r l - r 2 (20) 
m l +m2 

and let f.l and m be, respectively, the total and the reduced 
masses, P and p be the total mometum and the internal (the 
conjugate to r) momentum, respectively; r = Irl - r 2 i. Then 
the energy is a sum of the CM energy H CM and the internal 
energy H, 

Htot =HCM +H, 

where 

p 2 p2 m(i)2r 
HCM = 2f.l' H= 2m +-2-' 

Similarly, the angular momentum 

Mtot = MCM + M, 

with 

MCM =RXP, M=rxp. 

(21) 

(22) 

(23) 

(24) 

According to the definition we have accepted, to quantize 
the system we have first to find simultaneous solutions of the 
Hamiltonian equations, replacing in them the classical var­
iables. R, P, r, ~ by operators, Le., 

~ = 0, R = P1f.l, (25) 

P = - m(i)2i, i = plm, (26) 

and of the Heisenberg equations 

The operators R, P, i, P should be determined to give a solu­
tion of the above Eqs. (25)-(28). By Btot we denote the opera­
tor, obtained from the classical Hamiltonian after the re­
placement 

(R, P, r, p)_(H, P, i, pl. (29) 

Independently of the dynamics, Eqs. (25)-(28) are satis­
fied with canonical operators. We wish to study some other, 
dynamically dependent solutions. Our purpose is not the in­
vestigation of all possible operators (29) that satisfy the Eqs. 
(25)-(28). Rather than that, we restrict ourselves only to one 
particular noncanonical solution for the internal variables i 
and p and study its properties. To this end we first assume 
that the CM observables can be measured simultaneously 
with the internal observables. Thus, we accept 

Assumption 1: The CM variables commute with the in­
ternal variables, i.e., 

[R,i] = [R,p] = [P,i] = [P,p] = O. (30) 
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Under this assumption the quantization equations resolve 
into two independent groups. The first one, consisting of 
Eqs. (25) ~nd (27), depends only upon the .fM coordinate 
operator R and the momentum operator P. Here we make 

Assumption 2: The center of mass coordinates and mo­
menta are quantized in a canonical way, 

[~'~k ] = ifJ§;kJ-.­
[Rj,Rk] = [Pj,Pk ] = O. 

,!hus, we are lef! with the equations 

p = - m(i)2i, ;- = plm, 

;... i"A A ;,.,A 
p= --[p,H], r= --[r,H] 

Ii Ii 

(31) 

(32) 

(33) 

for the operators i and p, which follow from Eqs. (26), (28), 
and (30). 

Equations (32)-(33) coincide with the Hamiltonian and 
the Heisenberg equations of a three-dimensional harmonic 
oscillator. We now proceed to quantize it noncanonically. 
Since the generalization to the case of any dimension is 
straightforward, in the next section (lIB) we quantize an n­
dimensional harmonic oscillator (n > 1) instead of a three­
dimensional one. 

B. Noncanonical quantization of an n-dimensional 
harmonic oscillator 

Consider an n-dimensional harmonic oscillator with a 
Hamiltonian 

(34) 

To quantize it we have to replace as a first step the 
classical phase-space variables (rl, ... ,rn ,PI, ... ,Pn) with opera­
tors that have to satisfy the operator Hamiltonian equations 
(i = 1,2, ... ,n) 

A 2A A Pi 
Pi = - m(i) r;. ri = - , 

m 
and simultaneously the Heisenberg equations 

Ai,,'" J..... j,.,A 
Pi = -~[p;.H], ri = -~[ri,H]. 

These equations are compatible only if 

[ B,Pk ] = ilimul'k' 

[H'" A ] iii A ,rk = --Pk' 
m 

Introduce in place of ,;.p;.i = l, ... ,n new operators 

(s= ±) 

(
(n - l)m(i)) 112 A • (n - 1 )112 A af = rk +15 --- Pk' 

41i 4m(i)1i 

(35) 

(36) 

(37) 

(38) 

which will be referred to as creation (s = +) and annihila­
tion (s = -) operators (CAO's). In terms of these operators 
the Hamiltonian (34) and the compatibility conditions (37) 
read 

(39) 

i [{at ,ai - },a%) = - s(n - l)a%. (40) 
i=1 
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As a solution ofEq. (40) we choose operators a l± , ... ,an± 

satisfying the relations 

[Ia/ ,aj- J,at] = {jjk a/ - {jijat, 

[{a/ ,aj- J,ak-] = - {jjkaj- + {jijak-, 

la/ ,a/ 1 = la j - ,aj-I = o. (41) 

We recall that all considerations are in the Heinsenberg 
picture. The position and the momentum operators depend 
on time and they also have to satisfy the Hamiltonian Eqs. 
(35), which read in terms of the CAO's 

ilf(t) = - ismaf(t). (42) 

Hence, 

af (t ) = exp( - ismt )af (0) , (43) 

and, therefore, if the defining relations (41) for the CAO's 
hold at a certain time t = 0, i.e., for af = af (0), then they 
hold as equal time relations for any other time t. One can 
easily check that the Heinsenberg Eqs. (36) (written in terms 
of the CAO's), 

ilf(t) = ~[Iaj+(t),aj-(t )I,af(t)], 
n-1 

agree at any time with the Hamiltonian Eqs. (42). 

(44) 

It remains to define the position and the momentum 
operators rk andpk' correpsonding to the CAO's (41), as a 
linear Hermitian operators in a Hilbert space, which will be 
the space of the states of.t;he oscillator. In terms of the CAO's 
this means that the Hermitian conjugate to ak+ should be 
equal to ak- , i.e., 

(45) 

One can find several spaces where the operators (41) are 
linear and satisfy (45). Since a priori there exists no reason to 
exclude any of the possible spaces, one has to determine and 
study all of them and subsequently rule out those that are not 
appropriate for physical applications, in other words, one 
has to determine those representations of the CAO's (41) for 
which the condition (45) also holds. Here we shall consider 
only representations which are obtained by the usual Fock 
space technique. These Fock representations are labelled by 
one non-negative integer p = 0,1, .... To construct them as­
sume (as in case of the para-Bose statistics) that the corre­
sponding space W (n;p) contains a single vector (up to a multi­
ple) /0), called a vacuum, such that 

a j - 10) = 0 and a j - a/ 10) = p{jij 10), i,j = 1,2, ... ,n. 
(46) 

Since (a/ )2 = 0, from (46) one derives that the vectors 

Jp;81, ... ,8n ) = (p!)-1/2( (p - jtl 8)yl2 (at) 9' .•. (an+ )9"/0), 

(47) 
n 

with 8j = 0,1 and I 8 j <p, constitute an orthonormal basis 
;=1 

in W(n;p) with respect to a scalar product, defined usually 
with "bra" and "ket" vectors and (0/0) = 1. 
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The CAO's transform the basis vectors according to 

ak-/···,8k ,··) 

= 8d - 1)9, + ... +9k _'(p - ~8j + 1 YI2/···,8k - I, .. ), 

(48) 
a k+ / ... ,8k ,··) 

= (1 - 8
k

)( - 1)9, + ... + 9k _,(p - ~8J/2/ ... ,8k + 1, ••• ). 

One can check that within any Fock space the relation 
(45) holds, so that rj and .oj are Hermitian operators. The 
Hamiltonian (39) is diagonal in the basis (47). To determine 
its spectrum, call the vector Jp;81, ••• ,8n )EW(n,p) an m state 
and denote it by Jp;m) if ~7= 18j = m. Then from (39) and 
(48) one obtains 

H Jp;m) = Em /p;m), (49) 

where 

mfz 
Em =--(np-nm +m). 

n-l 
(50) 

Since m can run only through the values 0, 1, ... ,min (n,p), the 
energy of the n-dimensional oscillator for a statistics of order 
p has min (n + l,p + 1) different values. The dimension of 
the subspace W m (n;p) of all m states is 

dim Wm(n;p) = (:), (51) 

so that the different (linearly independent) states with energy 
Em are (;:'). In particular, the state /P,O) with the highest 
energy is nondegenerate. A given ground state /p,min(n, p)) 
is nondegenerate only if p>n. 

C. Quantization of the two-particle system 

Here we apply the results of the previous section to 
quantize the internal motion of the two-particle system. In 
this case n = 3 and in terms of the CAO's 

af = (2fz)-1/2(mm)l12rk + is (2mmfz)-1/2pk , (52) 

the internal Hamiltonian reads 

HA 1 ~2 mm
2 

A2 mfz ~ 1 + - 1 =-p +--r =- ~ aj ,aj . 
2m 2 2 j= I 

(53) 

For the operators of the squared distance between the 
particles, i 2 = rf + ~ + ~ , and the squared internal mo­
mentum, .,2 = pi + p~ + p~ , one obtains 

A2 fz ~ 1 + -I r = -- ~ aj ,aj , 
2mm j= I 

(54) 

A2 mmfz ~ 1 + - 1 p = -- ~ aj ,aj . 
2 j=1 

(55) 

Inserting in the classical expression (24) for the internal 
A 

angular momentum M the operators rk andA (in terms of 
the CAO's), one obtains 

MA ifz ~ 1 + -I k =- ~Eklm al ,am . 
2 I,m 

(56) 

These operators satisfy the commutation relations for the 
generators of the rotation group 

A A A 

[M;,Mk ] = - ~ifzEjkIMI' (57) 
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We remark, however, that the angular momentum is mea­
sured in units of "/2. 

As it should be, the position and the momentum opera­
tors transform as vectors under rotations, 

[~,rk] = - Ffl£jk/ r" 
[~,A] = -1ifl£jk'P" (58) 

It is a straightforward calculation to show that all oper­
ators 

A 2 2 ""2 A H,i ,j) ,M ,M3 , 

commute with each other and, therefore, can be measured 
simultaneously. If [P;k) is a k-state in a representation for a 
statistic of order p, then 

HI p;k) = !OJ"(3p - 2k)1 p;k), 

i2[P;k) = ("/2mOJ)(3 p - 2k)1 p;k), 

j)2[P;k) = (mOJ"/2)(3 p - 2k)1 p;k), 

M2Ip;k)=0 for k=0,3, 

= !,,2[P;k ) for k = 1,2. 

(59) 

(60) 

(61) 

(62) 

There is only one state, the state Ip;O,O,O), correspond­
ing to the maximum distance between the constituents and 
to the maximum of the internal energy, 

( 
3fzp )1/2 

r max = -- , Emax = ~ OJfzp. 
2mOJ 

(63) 

This state carries momentum zero. If p;;, 3, then I p; 1,1,1) is 
the ground state; it is nondegenerate, with zero momentum, 
and corresponds to the minimal distance and energy 

( 
3"(p - 2) )1/2 

r min = , Emin = ~OJ"( P - 2). 
2mOJ 

(64) 

If, however, p = 1 or 2 then the ground state is degenerate; 
there are three different states with the same energy and 
orbital momentum 1 (in units "/2). In this case 

rmin = (~)1/2, Emin = OJ" p, P = 1,2. (65) 
2mOJ 2 

We see that after the quantization the two particles are 
bound to each other; they are movir ~ together with their 
center of mass in such a way that the distance between them 
is fixed. The position, however, of anyone of the constituents 
cannot be localized in the space. The latter follows from the 
observation that the operators rk of the internal coordinates 
do not commute with each other, 

[r;,rj]#O, i#j= 1,2,3, 

and, therefore, they cannot be diagonalized simultaneously. 
Thus, trying to visualize the picture, one can say that the two 
particles are moving as the ends of a massless ridged stick, 
whose length depends on the internal energy and can take no 
more than four different values. The stick itself is rotating 
around the center of mass of the system; however, its orienta­
tion in the space cannot be localized. 

III. QUANTIZATION, STATISTICS, AND LIE 
SUPERALGEBRAS 

The results, obtained in the previous section, were es­
sentially based on the properties of the creation and annihila­
tion operators (41). The latter appear as one possible way to 
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satisfy the compatibility equations (40). The reason for selec­
tion of the CAO's (41) as a solution ofEqs. (40) is ofa Lie 
superalgebraical origin; these operators generalize in a na­
tural way some known Lie superalgebracial properties of the 
Bose and the para-Bose operators, which will be reviewed 
now shortly. 

To this end we recall that the set of operators A is a Lie 
superalgebra (LS) with a product [, ] ifls 

(a) the set A is a linear space (with respect to the usual 
sum between operators and multiplication by numbers), 
which is a direct sum of its subspaces Ao and A I' 
A = Ao + A I' The elements au EAu are called homogeneous 
even (a = 0) and odd (a = 1) elements, respectively. 

(b) for any two homogeneous elements auEAu and 
bf3EAf3 the product is defined as 

[au ,bf3] = au bf3 - ( - l)uf3bf3 au' (66) 

and is extended by linearity to arbitrary elements from A. 

(c) if a + fJ = y(mod 2), then 

(67) 

The algebra is simple if it has no nontrivial ideals. A 
representation of the LS A is a linear map () of A onto another 
LS"1, which preserves the product [,l 

Consider now n pairs a I± , ••. ,an± of para-Bose operators 
(16) and let (sum over repeated indices; i,j = 1, ... ,n; 
S,Tj = ±; C: complex numbers) 

Ao = I atn (af,a] lla~'1EC l, 

AI = lafaflafECJ, 

A = fasas + a s'1fas a'1llaf a s.'1ECl· t I f I) l l' J I' lJ 

(68) 

(69) 

(70) 

We now show that the set (70) oflinear operators is a Lie 
superalgebra. Clearly A, Ao' and A I are linear spaces and 
A = Ao + A I' Consider two arbitrary odd elements 

al=afafEAI and bt=fJJaJEA I , (71) 

and two arbitrary even elements 

ao = a}naJ,a% lEAo, bo = fJfzli{ar,aflEAo' (72) 

From the definition of the product (66) one has 

[al,b l] = (al,bll =arfJJ{af,aJ1EAo' 

The relation (16) yields 

[ao,a t] = [ao,a l ] = a]1<af[ {aJ,a~ j,an 
= a]1<afHs - Tj)8ija~ + (5 - E)8;k a])EA l· 

Finally, using the equality 

[(af,a]j,(aLafl] 
= (E - 5 )8;k! aj'1,an + (E - Tj)8jk I af,afl 
+ (8 - 5 )8il ! a],a~ 1 + (8 - Tj)8jl! af,a~ l, (73) 

which is a consequence of (16), one easily shows that 

[ao,boJ = [ao,bo]EAo' 

Hence, A is a lie superalgebra. 16 A more detailed inves­
tigation shows that this LS is isomorphic to the simple ortho­
symplectic LS osp (I ,2n). 17 Since, moreover, the elements of 
A-see (70)-are polynomials of the para-Bose operators, to 
every (irreducible) respresentation of a l± , ... ,an± there corre­
sponds an (irreducible) representation of osp (1,2n) and vice 
versa. 
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The representation of the CAO's (12), corresponding to 
an order of the statistic p = 1 in (17), is of particular impor­
tance for the quantum physics, since in this case the para­
Bose operators reduce to Bose creation and annihilation op­
erators, 

[af.al] =~(7J-5)c5ij' 
Inserting these operators into (70) one obtains an infinite­
dimensional irreducible respresentation of the LS osp( 1.2n). 
The canonical quantum mechanics is essentially based on 
this particular representation. On the other hand, the non­
canonical quantization (p =1= 1) of Hamiltonian ( 13) with para­
Bose operators (and in particular the Wigner quantization of 
the one-dimensional oscillator) is a quantization according 
to some other representations of the same orthosymplectic 
Lie superalgebra. Having observed that. one may wonder 
why among the several available Lie superalgebras the orth­
osymplectic one plays such a distinguished role in quantum 
physics. One may also ask whether it is not possible to quan­
tize with position and momentum operators that lead to re­
presentations of other LS·s. and in particular [since 
osp (1 ,2n) is simple] other simple LS's. The example we have 
considered gives a positive answer to this question. The oper­
ators (41) were chosen in such a way that when inserted in 
(70) instead ofthe para-Bose operators. they give a simple Lie 
superalgebra. which is isomorphic to the special linear LS 
sl (l,n).ls . 

Since I af.afl = O,S = ±, the even part (68) of A IS 

(i.j= t ...• n) 

(74) 

If 

(75) 

then one obtains from (41) 

[eij,e kl ] = 8jk ei/ - 8i/ekj , (76) 

which are the commutation relations for the generators of 
the Lie algebra gl(n);Ao = gl(n). TheCAO'sa 1±, ... ,an± are the 
odd generators; they define the even generators (75) and, 
hence, the whole algebra uniquely. Therefore, also in this 
case to every irreducible representation of the creation and 
the annihilation operators (41) there corresponds an irredu­
cible representation of sl (I,n) and vice versa. Thus, the quan­
tization of the n-dimensional oscillator, considered in Sec. 
lIB, is according to a set of finite-dimensional irreducible 
representations of the LS sl(l,n). The nonequivalent finite­
dimensional irreducible representations of this LS are la­
belled by n + 1 numbers (ao,a I,. •. ,an ), where a o is an arbi­
trary complex number and al, ... ,an are arbitrary 
non-negative integers. 19 The representations (48) of the 
CAO's or, equivalently, of the position and the momentum 
operators q I ,. .• ,q n ,P I'" .,p n , are labelled only with one integer 
p and, therefore, described a small part of all possible repre­
sentations. 

From (43) one concludes that the generators (75) of gl (n) 
and, hence, the even part of sl( I,n), is preserved in time. The 
Hamiltonian (39) is an element from the center of gl(n) and, 
therefore, commutes with the even subalgebra (this is an­
other way to conclude that Ao is preserved in time). 
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Up to now we have not specified whether we consider 
sl( I.n) as a real or a complex LS. One of the real forms of Ao is 
given with the linear envelope of all operators {qjJqj}, 
{p~ p~.j and {q~ . .p~.j The latter is isomorphic to the algebra of 

it) ' I' ] • A 

the unitary group U (n) and commutes with H. Therefore, as 
in the canonical case we obtain that U (n) is a symmetry 
group of the oscillator. At the same time the odd generators 
a j± are shifting the energy so that. starting with a given ener­
gy state. one can ~btain a state with any other energy from 
the spectrum of H. Hence. the LS sl(l,n) appears as a spec­
trum generating algebra of the n-dimensional oscillator. In 
the case of the two-particle system the internal symmetry 
group is U (3) and since every irreducible U (n) representa­
tion is also SU (n) irreducible, the internal symmetry group 
of the composite system is SU (3). 

IV. A POSSIBLE INTERPRETATION AND FURTHER 
GENERALIZATIONS 

One of the interesting features of the example, consi­
dered in Sec. lIC, is that after quantization the initial two 
particles are bound to each other. the distance between. t~e.m 
is bounded from above. The position of anyone of the 101tlal 
constituent particles cannot be localized in the space and, 
therefore, the particles are smeared with a certain probabil­
ity within a finite volume. The composite system exhibit~ an 
internal structure. it has eight different states. charactenzed 
completely by the internal energy, the orbital momentu~. 
and its third projection. If k = OJ + O2 + 03 then. measunng 
the energy E in units wfz/2 and the orbital momentum in 
units fz/2, one has [k<;;;min(p.3)] 

number of 
k the states E M M3 
0 I 3p 0 0 
1 3 3p-2 0, ± 1 
2 3 3p-4 1 0, ± 1 
3 1 3p-6 0 O. 

Using a particle terminology, i.e., intepreting the inter­
nal energy as a mass (the picture is, however. nonrelativistic!) 
and the orbital momentum as a spin of the composite system. 
we may say that the quantized system behaves as a mUltiplet 
of two spin zero particles and two spin one particles, all of 
them with different masses. 

The noncanonical and the canonical quantizations of 
the two particles lead to essentially different pictures. In the 
noncanonical case the internal state space is finite-dimen­
sional; as a result (contrary to the canonical one) the spec­
trum of the internal energy is finite and the composite system 
occupies a finite space volume. The difference becomes even 
more evident in the classical limit fz...-..o. Since (k = 1,2,3) 

Tk = (fzI2mw)1/2 (ak- + a/), 

Pk = i(mwfz/2)II2(a; - a/), (77) 

in the limit ~ the internal position and momentum opera­
tors tend to zero. As a consequence-see also (62)-(63)-the 
internal energy, the distance between the particles, and the 
relative momentum converge to zero. Hence, 

lim Erna. = lim r max = 0 when fz...-..o. (78) 

The radius vectors of both particles coincide in the limit with 
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the radius vector of the center of mass, i.e., if Ii---+O, then 

lim il = lim (a + m2 i) = a, 
ml+m2 

lim i2 = lim (a - m l i) = a. (79) 
. m l +m2 

Thus, in the classical limit the composite system col­
lapses into a point. Since the equation of motion of this parti­
cle is (25), it moves as a free classical point particle with a 
massm l + m 2• We remark, however, that the internal varia­
bles are zero operators in an (no more than) eight-dimension­
al space, i.e., every point of the space preserves in the limit 
~ its internal structures. 

The above results hold only for the Fock representa­
tions (48). In he general case (we omit the proof, which will be 
given elsewhere) the representation space L of the position 
and the momentum operators q I,Q2,q3'P I,P2,P3 is a direct sum 
of (at most) four SU (3) irreducible subspaces, 

L =L 1 +L2 +L3 +L4 • 

Within every subspace L; the operators if, i, and p2 are 
proportional to the unity and, hence, the energy, the distance 
between the initial constituents, the internal momentum 
have as before (no more than) four different values, and the 
composite system is smeared in a finite volume of space. The 
orbital momentum of the system can take, however, arbi­
trarily large integer values and the SU (3)-irreducible sub­
space L; may contain states with different orbital momenta. 

The present investigation makes no pretentions to being 
a generalization of the canonical quantization for the case of 
an arbitrary interaction. For certain potentials it could be a 
difficult problem to find simultaneous solutions of the quan­
tum Eqs. (3) and the classical Eqs. (5). To develop an ap­
proach, which can be applied for any interaction, one has to 
define in addition a general rule for ordering of the position 
operators, when replacing them in the classical potential 
U (q I, ... ,q n) and to give a precise meaning to the derivates 
au laQk' In order to interpret the states of the composite 
system as a multiplet of particles one has, as a next step, to 
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develop a relativistic analog of the present approach. In this 
paper we have considered only an example of a noncanonical 
quantization, which exhibits some new features and shows 
to our mind that the Wigner ideas for generalization of the 
ordinary quantization deserve further investigation . 
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Starting from the axioms of quantum mechanics as formalized by the systems of imprimitivity for 
homogeneous Riemannian manifolds, the classical theory is derived as a consequence, complete 
with: its phase space realized as the space of pure classical states; a generalized version of the 
Wigner-Moyal correspondence rule; the Jordan and Lie algebra structures of functions on the 
cotangent bundle, given by point-wise multiplication and Poisson bracket; and the momentum 
map. A comparison is also given of the quantum and classical dynamics and equilibrium 
statistical mechanics of free particles on compact manifolds of constant negative curvature. 

PACS numbers: 03.65. - w, 02.40.Ky 

I. INTRODUCTION 

1. The purpose of this paper is to propose a solution to 
the Dirac problem when the configuration space manifold M 
is not flat. Briefly stated, the problem is to build up the classi­
cal and quantum theories from an identification of the fun­
damental observables, in such a manner that a correspon­
dence principle be established giving a phenomenological 
meaning to the formal analogies between the Jordan and Lie 
structures of quantum and classical mechanics. In quantum 
theory both of these structures originate in the noncommu­
tative operator product AB: the Jordan structure is obtained 
by forming the symmetric productAoB = (AB + BA )/2 (or 
[(A + B)2 - A 2 - B 2]12), whereas the Lie structure is de­
fined by the quantum commutator !A,B J1I = [A,B]/ill[i.e., 
(AB - BA )/ill]. In classical theory the Jordan product is the 
point-wise multiplication of functions on the cotangent bun­
dle T· M, whereas the Lie structure, defined by the canonical 
symplectic form IV ( = I.% = 1 dPk 1\ dqk in local coordinates) 
on T· M, is given by the Poisson bracket. 

d 

!f,gJ = L aq.fap.g - aq.g.ap.f 
k=1 

Some serious objections to a straightforward mathema­
tization of the Dirac problem, and the associated putative 
correspondence principle, have been raised 1 and formalized 
as no-go theorems. To illustrate the essence of this type of 
argument in the simplest possible case, we sketch the proof 
of the following result. 

2. Scholium: For M = R d, and d = 1, no linear map can 
exist between the classical observables (j,g, ... ) and the quan­
tum observables (F,G, ... ) and sastisfy the following condi­
tions: (i) the classical Poisson bracket! l,g J corresponds to 
the quantum commutator [F,G ]/ill; (ii) the identity function 
1 corresponds to the identity operator I; (iii) the operators P 
(corresponding to the classical momentump) and Q (corre­
sponding to the classical position coordinate q) together act 
irreducibly on some Hilbert space ~. 

Proof Suppose that such a putative correspondence 
principle exists. From (q, p J = 1, we have [Q,P ]/ill = I, and 
by recursion [Qn,pm]!ill = mI.Z= 1 Qn-kpm-1Qk-1 
= nI.j: 1 pm - jQ n - Ipj - I, a basic formula already noticed 

in Ref. 2. This relation, together with the putative correspon­
dence principle and the irreducibility of the representation, 

would make Qn (respectively, pm and [Qn,pm]jilinm) the 
quantum observables corresponding to the classical observa­
bles qn (respectively, pm and qn - Ipm - I). Since 
! q3, p3 J - 3! q2p,qp2 J = 0, this correspondence principle 
wouldgive[Q\p 3] - 3[PQ2 + Q 2p,p 2Q + QP 2]/4 = Oin­
stead of the correct value 3iM. • 

Remarks: This proof generalizes immediately to 
M = R d with 1 < d < 00; and the no-go theorem still remains 
true when one weakens its condition (iii) from irreducibility 
to finite multiplicity.3 It, however, breaks down when infi­
nite multiplicity is allowed, as shown by the existence of the 
"prequantization map,,4; in that case, however, the recovery 
of the usual Schroedinger representation involves the ma­
chinery of the "geometric quantization programme.,,5 The 
present paper shows than an alternate route can be travelled 
in the opposite direction, thus providing under rather gen­
eral circumstances another, and perhaps more natural, solu­
tion to the Dirac problem. 

3. An indication of what might have gone astray in the 
assumptions of the no-go theorems alluded to above, is pro­
vided (in case M = R d) by the Wigner-Moyal correspon­
dence principle, which attributes to the classical function 

I( p,q) = f fda db j(a,b )exp! - i(a1' + b.q) J 

the quantum operator 

F(P,Q) = f fda db j(a,b )exp! - i(a.p + b·Q) J. 

The quantum commutator [F,G ]/ill then induces the pairing 

{j,g} 11 :tER d X R d - f dz j(z)g(t - Z)1T 11 (z,t ), 

with 

1T1I (Z,t) = [X1I(z,t) - X1I(t.z)]/ill, 

X1I(z,t) = exp{ia(z,t)II/2J, 

a(z,t) = a·fJ - b·a, 

where 

z = (a,b), t = (a,{J)ER d XR d. 

Clearly, {j,g J 11 differs from the Fourier transform of the 
usual Poisson bracket { l,g J, but converges to it as Ii---+O. The 
reasons originally given by Wigner6 and MoyaC for their 
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correspondence principle were merely its formal simplicity 
and its convenience. Its phenomenological meaning in terms 
of the convergence of expectation values has recently been 
analyzed in Ref. 8. It is argued there that classical mechanics 
can be derived completely, with both its Jordan and Lie 
structures, from the more fundamental setting of quantum 
theory. This argument is generalized here, away from the 
flat situation M = R d, while the latter naturally still appears 
as a particular case. 

4. The classical geodesic flow on a compact surface of 
constant negative curvature is a typical model9 of an Anosov 
flow which is a Kolmogorov flow and thus enjoys very 
strong ergodic properties. These spaces being obtained as 
quotient of the Poincare half-plane by a discrete, nonabe­
lian, cocompact subgroup r of SL(2,R ), we first discuss the 
connection between classical and quantum mechanics on 
their universal covering space. In a wider context, we first 
consider models of space where M is a connected, simply 
connected, d-dim Riemann manifold M on which a symme­
try group G acts transitively. M is therefore geodesically 
complete lO and of constant curvature K. We restrict our 
analysis to the cases where K < 0 and, for notational simpli­
city, d = 2. 

II. QUANTUM AND CLASSICAL MECHANICS ON 
LOBATCHEVSKISPACE 

1. The formulation of the quantum theory of a particle 
whose configuration space is a homogeneous Riemannian 
manifold M, with symmetry group G, is based on Mackey's 
notion of an irreducible system of imprimitivityll resulting 
from the action of G on M. We therefore have a Hilbert space 
~,a unitary representation U:G_U(~), and a projection­
valued measure Q:~(M )_$(~) based on the C7-algebra ~(M) 
of the Borel subsets of M, satisfying 

(i) U(g)Q(.1 )U(g-I) = Q(g[.1]) V(gA lEG X~(M), 

(ii) 2(~) = [U(g),Q(.1 )lgeGAE~(M)) ". 

As usual Q describes the "position" observable on M; and 
the generators of U (G ), defined for everyone-parameter sub­
group T of G by 

Uta) = exp[ - iPalfz), 

are identified as the corresponding "momentum" observa­
bles. To assume that ~ = 22(M) amounts then to restricting 
one's attention to particles with no internal degree of free­
dom (e.g., spin). The aim of this section is to derive, from this 
framework alone, the corresponding classical theory, i.e., to 
control the limit fz-Q, and to exploit systematically its con­
sequences to establish the correspondence principle which 
will solve the Dirac problem. 

We now specify the manifold M and the symmetry 
group H we want to consider, and we describe them in a 
parametrization which is convenient for our purposes (al­
though the final results are ultimately independent of the 
coordinate system thus initially singled out). 

2. Seholium: (i) For O<e< 00, Mc==[; = (x,y)lx,yeR ) 
equipped with the metric 
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ds2 = exp( - y/c)[ dx2 + (x/c)dx dy 
+ [(x2/4c2) + exp(y/c)]dy2) 
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is a Riemann surface of constant negative curvature Kc 
= _e- 2. 

(ii) Every connected, simply connected, geodesically 
complete, two-dimensional, Riemannian manifold of con­
stant negative curvature Ke is isometric to (Me ,ds2

). 

(iii) For O<a < 00, Ha=[S = (s,t)ls,tER ) equipped 
with the composition law 

Ya :(SI,S2)eBa XHa 

-(slexp( - t2/2a) + S2exP( + t l /2a),t l + t2) 

is a noncommutative Lie group extension l-R-Ha 
_R_l, with Haar measure dlla(s,t) = exp( - t 12a)ds dt, 
and modular function .1a(S -I) = exp(t la). 

(iv) The map Ye :(S,; )eBe X Me-Ye (S,; )EMe defines a 
transitive, free, and isometric action of He on (Mo ds2

). 

Proof To prove (i) and (ii), it is sufficiene2 to verify that 
(Me ,ds2

) is isometric to the one-sheet hyperboloid 

M; = [(x' ,y' ,t )ER 31 x '2 + y'2 - e2t 2 = - e2;t > 0 ) 

equipped with the Riemannian metric g obtained by restrict­
ing to M; the Minkowski metric on R 3 given by 

(dS)2 = (dX')2 + (dy')2 - e2(dt t 
The natural symmetry group G of M; is the homogeneous 
Lorentz group of the linear transformation of R 3 leaving 
invariant the quadratic form X'2 + y'2 - e2t 2. Upon elimi­
nating t, M; is identified with [(x' ,y') lx' ,y' ER ) with metric 

(dS')2 = (e2 + X,2 + y'2) -I [ (e2 + y'2)(dx'f 

- 2x'y'dx'dy' + (e2 +x'2)(dy')2). 

Upon identifying the elements (x' ,y')EM; with the 2 X 2 ma­
trices of the form 

'=( _ x' y' + (e2 + X,2 + y'2)1/2), 
X - y' _ (e2 + X'2 + y'2) 112 x' 

G is identified with SL(2,R )/Z2 by identifying the elements 
AeSL(2,R )/Z2 with the Lorentz transformations 
X' _AX'A -I. The Lie subgroup H ~ of G, identified in this 
manner with 

, = {(exp(t 12a) 
Ha 0 sla ) I } s,tER , 

exp( - t 12a) 

is clearly isomorphic to the group Ha defined in (iii). More­
over, H; acts transitively, freely, and isometrically on M;; 
we can therefore use the parametrization of H; to define a 
new coordinate system on M;. A straightforward computa­
tion shows that the metric of M;, when expressed in these 
new coordinates, coincide with the metric of the Riemann 
manifold Me defined in (i). The reminder of the scholium 
follows by immediate inspection. • 

3. Remarks: (a) The proof ofthe scholium was presented 
here in a manner which emphasizes the explicit connection 
with the Lobatchevski plane in its usual presentation: The 
parametrization chosen here happens to be more convenient 
for our purposes. (b) In particular, in the limit a- 00 (respec­
tively, e-oo), Ha (respectively, Me) reduces to the transla­
tion group R 2 (respectively, to the flat Riemannian manifold 
R 2) with its usual Euclidean group structure and its invariant 
Haar measuredS = dsdt (respectively, with its usual Euclid-

Gerard G. Emch 1786 



                                                                                                                                    

ean metric dSZ = dX2 + dy2). (c) For c finite, however, He 
differs from R 2 in at least two mathematically important 
aspects: It is not abelian, and its one parameter subgroups 
cannot in general be identified with geodesics in Me; in this 
latter respect, A = { (O,t ) I teR I C He is an exception. One 
should notice also that A normalizes N == { (s,O) IseR I, and 
that He can be written as He = AN. (d) The structures sin­
gled out in the scholium carry over to higher dimensions 
[e.g., for d = 3, where G = SL(2,C), see the seminal work of 
Mackeyl3], where one can take advantage of the Iwasawa 
decomposition theory, which is in fact what is going on al­
ready in the case d = 2 chosen here for its explicitness. (e) 
Since He (and not merely G ) acts transitively 
on Me' we have already that { U(5 ),Q (..1 )lseHe, ..1E~(Me) I 
acts irreducibly on ~e = 22 (Me,df.Le)' Consequently, every 
observable of the quantum theory can be obtained as a func­
tion of the position observables and of the momenta relative 
to He alone. This is in particular the case for the angular 
momentum, thus generalizing to our curved configuration 
spaces an essential feature of the theory of a spinless particle. 
(f) For the passage to the classical limit, it is important to 
concentrate on the functional dependence on the momenta P 
rather than merely on the variables P If!. The parametriza­
tion of He' introduced in the scholium, allows one to achieve 
this by introducing, on the one hand, the unitary operators 
{UIi(s) = U(5Ii) IseHe), wheresli = (lis,fIt)fors = (s,t). We 
have thus on ~e 

(UIi(s)t/I)(t) = tP(Ye(S Ii- I,t))· 

Since 

Ye(5Ii,1JIi) = Yelli(S,1J)Ii' 

UIi:SeHelli-UIi(5)EU(~e) 

is a unitary representation of Helli . On the other hand, the 
functions/(Q) of position are defined as usual by 

(f(Q )t/I)(t ) = I(t )t/I(t ). 

This suggests the following realization of the algebra of 
quantum observables. 

4. Lemma: Let ill:e.1i be the vector space of functions 

f(s,t )eHelli XMe -/(s,t )EC 

which are continuous of compact support in S, and bounded 
C(J '" in t. Let further IEill:e.1i -1*Eill:e.li , and (I ,g)Eill:e.1i X ill:e.1i 
-Ye.Ii(f,g)Eill:e.1i be defined by 

1*:(s,t)eHelli X Me-/(s -1,Ye(S 1i- I ,t))*..1elli (5 -I), 

Ye.1i (f ,g):(5,t )eHelli X Me 

- f df.Lelli(1J)/(1J,t)g(Yclli(1J- I ,S),Ye(1JIi- I ,t))· 

Then the map/Eill:e.Ii-FE2(~e) defined by 

(Ft/I)(t) = f df.Lelli(S)/(s,t)t/I(Ye(S Ii-I,t)) 

is a *-algebra isomorphism from ill:e.1i onto a dense *-subalge­
bra of .I3(~e) such that 

(fog)e.Ii={ Ye.Ii(f,g) + Ye.Ii(g,J))12 , 
respectively, 

{/,gle.Ii={ Ye.Ii(!.g) - Ye.Ii(g,J) I/if!, 
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corresponds to (FG + GF)/2 (respectively, [F,G]/if!). 
5. Remarks: (a) The proof of the above lemma is made 

by straightforward inspection. (b) The assertion of the 
lemma would carry over if ill:e.1i were to be replaced by i e•1i 
= 21(Helli) X 2 "'(Mcl, with the composition laws extended 

accordingly; the formulation chosen in the lemma is, how­
ever, better adapted to the sequel (see, e.g., Lemma 7 and 
Theorem 11 below). (c) In casel andg are functions of S only, 
the involution/-I" [respectively, the twisted convolution 
product Ye.1i (/,g)] reduces to the ordinary involution (respec­
tively, the ordinary convolution product) usually defined on 
21 (Helli ). (d) At fixed c, but with f! free to run over, say (0,1], 
the objects in ill:e.1i do not change: only their composition 
laws do. One then verifies easily the following assertion. 

6. Lemma: As "-0, the nonabelian *-algebra ill:e.1i con­
tracts to the abelian *-algebra ill:e, whose elements are the 
functions 

f(s,t)eR 2X Me-/(5,t)EC, 

which are continuous of compact support in S, and bounded 
C(J '" in t; and whose composition laws are 

1*:(s,t)eR 2 X Me-/(5 -1,t)*EC, 

Ye(f,g):(S,t)eR 2XMe_ f drz[(1J,t)g(1J- Is,t)Eill:e, 

whered1J (respectively, 1J- Is) is the Euclideanmeasureds dt 
[respectively, the Euclidean addition ( - Sl + S2' - tl + t2)] 

inR 2. 

The contraction of the Lie structure of ill:e.1i as "-0 
requires a more detailed argument, which we now give. 

7. Lemma: for every IEill:e define 

j/Px,Py;x,y)eR 2XMe 

-f Jdx'dY'exp{ -i/pxx' +pyy'))f(x',y';x,y). 

Then (i) the Jordan product (fog)e.1i on ill:e.1i induces an ill:e the 
compo&ition law given by the point-wise multiplication in all 
variables /Px,Py;x,y); 

(ii) the Lie bracket {/,gle.1i on ill:e.1i induces on ill:e the 
Poisson bracket 

{f,gle= -we(XJ,xg) with XJJwe= -d]; 

where We is the symplectic form with Darboux coordinates 

{Px = exp(y12c)px'py =Py - (xl2c)exp(yI2c)px;x,yl· 

Proof Since the convolution product on ill:e (see Lemma 
6) is abelian, it coincides with the composition law induced 
on ill:e by the Jordan product on ill:e.li ; assertion (i) then fol­
lows by usual Fourier transform (in R 2(). A straightforward 
computation shows that, as "-0, the quantum Lie bracket 
reduces, in the Fourier transform realization ofill:e , to 

( f,gje/Px,Py;x,y) 

= exp( - yl2cHaj:apJ - axg·ap)'j/Px,Py;x,y) 

+ (xl2cHaj:api - axg·apJj/Px,Py;x,y) 

+ 1(a,J.apyg - ayg.apJI/Px,py;x,y) 

- /PJcH apr fapyg - apJ.apJj/Px,Py;x,y). 
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One then verifies that 

{x,ylc = 0, 

{x,py lc = ° = {y,Px le' 
{Px,py le = 0, 

{x,Px le = 1 = {y,py le· 
With the change_of variables /Px,Py;x,y)-+(jjx'Py;x,y), the 
expression for {/,g 1 e becomes 

{]; glc = - We (X1,xg) with X1Jwe = - d]; 

where 

We = dfix Adx + dfiy Ady. • 

8. Corollary: {A-Px + PPy IA-,IlER } equipped with the 
Poisson bracket {.,. J e is a representation of the Lie algebra 
~e of He· 

Proof On the one hand {Px,Py le = - Px/c. On the 
other hand, with our parametrization of He' we construct a 
basis for 1)c as follows: 

Ex=c-
1 (~ ~) = ! (~ ~/c) Ix=o' 

Ey =(2C)-1 (1 0 ) ° -1 

d (exP(Y/2C) 0 ) I 
= dy 0 exp( - y/2c) y=o' 

We have then [Ex,Ey] = - Ex/c, so that the representa­
tion is given explicitly by <P (A-Ex + pEy) = A-Px + PPy· • 

9. The Fourier transform, which appeared in Lemma 7, 
was introduced there as a mere mathematical convenience, 
although that lemma, and its corollary 8, do indicate that a 
deeper phenomenological meaning should be sought. The 
remainder of this section proposes such an interpretation. 

Let m:e.1! (respectively, m:e) be equipped with the topol­
ogy it inherits from 21 (Hell!) X 2 00 (Me) [respectively, 
21(R 2)X2°O(MclJ. A quantum state is defined as a positive, 
continuous linear functional of norm 1 on m:e.I!' A family 
{rpl! llIE(O, 1] J of quantum states is said to be classical 
whenever 

rpo: /Em:c f---+li1T4-.o (rp I! ;f) EC 

defines a positive, continuous linear functional of norm 1 on 
m:e' Equivalent definitions of a classical family of quantum 
states, and several classes of examples, have been described 
in Ref. 8 for the flat case (c = 00), but the above condition 
will suffice for our present purpose. 

10. Lemma: To every classical family {rpl! [IIE(O, 1] J of 
quantum states corresponds a positive measure drp, of norm 
1, concentrated on the space x (,....., R 2 X Me) of the pure states 
of ~e such that 

(rpo;f) = J drp /Px,py;x,y)f(Px,py;x,y), 

where 

j(Px,Py;X,Y)EX 

-+ J dx'dy'exp{ - i(x'px + y'py)l!(x',y';x,y). 
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Proof Upon writing 

rpf!:/em:c.f!-f dPell!(5)dPe(t)/(5,t)q;1I(5,t) 

we notice that the condition that rpl! be a positive functional 
on m:e.1! is equivalent to 

f dPe(t) j,kt I gdt )*gj(t)rp1l(reI1l(5 k-
I
,5'j),re(5' ~ I,t ));>0. 

This implies that 

rpo:/Em:c- J d5'dlle(t)/(5',t)q;o(5',t), 

where rpo satisfies the positivity condition 

f dpe(t) j.~ I gdt )*gj(t )q;o(5' k- 15'j,t );>0. 

From the generalized Bochner theorem, there exists there­
fore a positive measure drp of norm 1, concentrated on the 
pure states of m:c , such that 

rpo(5',t) = J drp (p,t ')ep,;-(5',t)· 

Since ~e is abelian, its pure states are product states of the 
form 

ep,d5',t) = ep (5' )8;,(t), 

where 

ep (5') = exp! - i(x'px + y'Py)}; 

J dlle(t)8Ht)g(t) =g(t')· 

Hence 

(rpo;f) = J drp(p,t) J d5'/(5',t)ep (t)· 

We collect our results in the following summary. 
11. Theorem: To every quantum observable 

F= J dll e1f!(5')/(5',,)UI!(5') 

[where (f(5',.)¢)(t) = /(5',t )¢(t); (U1I (5' )¢)(t) 
= ¢(re(5' f!- I,t)) 'rit/IEf)e = 22 (Me,dPe)] corresponds a clas­

sical observable, namely a functionf on 
x = {(p,t)[ p = (px,py)ER 2; t = (x,y)EMe 1 given by 

f(p,t) = J d5'/(5',t)ep (5') 

[where ep (5') = eMy (x' ,y') = exp{ - i(x'px + y'py)}] such 
that, for every classical family {rp1l[1IE(0, 1] 1 of quantum 
states, one has 

(i) li1T4-.o{ipf!;F) = J drp(p,t)f(p,t), 

where drp is a positive measure of norm 1 on x; 

(ii) lim~ (rpf! ;FoG) = f drp (p,t )(J.g)( p,t), 

where (J.g) is the point-wise multiplication offunctions on x; 

(iii)li~{rpl!;[F,G]!ili) = J drp(p,tHf,glc(p,t), 

Gerard G. Emch 1788 



                                                                                                                                    

where [j,g J e is the Poisson bracket associated with the sym­
plectic form We = dpx 1\ dx + dpy 1\ dy on ~, with Darboux 
coordinates given by 

Px = exp{y/2c)px and Py = Py - (xl2c)exp{y/2c)px· 

12. Remarks: (a) This theorem solves the Dirac problem 
for Me by constructing, via the classical limit n-o oft~e 
initial quantum theory, a correspondence principle F--! 
between quantum and classical observables. In this limiting 
procedure the Jordan and Lie structures of the classical the­
ory are obtained from purely quantum premises; so is the 
momentum map of Corollary 8. In that sense, the classical 
mechanics of a particle with curved configuration space Me 
is completely derived from the primary theory, namely from 
the quantum mechanics of such a particle, as axiomatized by 
the system of imprimitivity formulation of Mackey. 

(b) The classical limit selects unambiguously the varia­
bles PI-' as the physical observables respectively associated to 
the coordinates xl-' of Me. These momenta have to be distin­
guished from the variables PI-' which only appear as a math­
ematical convenience, namely as Darboux coordinates in the 
diagonalization ofthe symplectic form Wc canonicallyasso­
ciated with the classical Poisson bracket derived from the 
quantum theory. This distinction is intimately linked to the 
non vanishing curvature of the homogeneous Riemannian 
manifold Me; indeed the explicit form of the PI-' in terms of 
the PI-' shows that this distinction disappears in the limit 
C--oo, i.e., Ke-o. In this limit, the results of Ref. 8 are com­
pletely recovered, thus showing that the geometric dequanti­
zation program outlined there has a nontrivial extension to 
nonflat homogeneous Riemannian manifolds. 

(c) The starting point for the generalization to higher 
dimensions of the considerations presented in this section is 
indicated in Remark 3(d). 

III. QUANTUM GEODESIC FLOWS 

1. In this section we bring in perspective the role of the 
Laplace-Beltrami operator 

.J = g - l12a n/-'Vgl12a 
C C f.L15c c v 

in the quantization of classical geodesic flows, with special 
attention to the case where the configuration space is a Rie­
mannian manifold of constant negative curvature. We first 
discuss the case where the manifold is simply connected, as 
exemplified by the Lobatchevski plane; we then look at the 
modifications to be brought to the theory for mUltiply con­
nected manifolds which are compact and without 
boundaries. 

Our first remark is to notice that in the coordinates of 
the Lobatchevski plane with metric 

2 2 _ I (C2 + y2 - xy ) 
(gc.l-'v) = (? + x + y ) 2 + 2 ' -xy C x 

the operator Ho = - fz2 .JJ2 takes the form 

Ho = (~ + -rr; - c-2J2)12, 

where 

1T = - i.l;~- l12a 
Jl "5c 11-' 

J = - ifz(xay - yax) 
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are, respectively, the momenta canonically associated with 
the Lorentz boosts in the directions xl-', and to the rotations. 
Ho is thus invariant under the action of the unitary 
representation 

(U(g)¢)(x) = ¢(g-l[X]) 

of the group G = SL(2,R )lZ2; and .J c is in fact the corre­
sponding representative of the Casimir operator which gen­
erates the center of the universal enveloping algebra of the 
Lie algebra sl(2,R ). The questions then are (i) to derive the 
form of Ho from first (i.e., quantum) principles; and (ii) to 
relate this operator to the classical Hamiltonian of the corre­
sponding geodesic flow on rOMc. 

2. Scholium: For H self-adjoint in {)e = ,\f (Me,dJ-lc) the 
following conditions are equivalent: 

(i) H = - fz2.JJ2 + V(x) with V:xEMc--V(x)ER, 

(ii) [xl-',H ]lifz = g:Vg;l201Tv' 

where 1T1-' = - ifzgc- l12al-' andAoB = (AB + BA )12. 
Proof from [xl-',1Tv ]lifz=g;-I128"J and 

Ho = - fz2.JJ2 = 1T1-'g:v gc 1TJ2, we obtain [xl-',Ho]lifz 
= g:Vg~1201Tv. From (ii) we have thus [xl-',H - HoJ = 0, i.e., 

(H - Ho) is affiliated with [Q(.J )I.JE~ (MeW; since 
[ Q (.J ) I.J E~ (Mc) J " acting on £2 (Me ,dJ-le) is maximal abelian, 
we thus obtain (i). The converse implication (i)=>(ii) is 
trivial. • 

In conformity with the correspondence principle estab­
lished in Sec. II, the commutation relation (ii) in the above 
scholium, with the Jordan product appearing in the rhs, re­
flects the classical relation [x,Ho J e = g:v Pv for the Dar­
boux coordinates (xl-',Pv), with No = g:v pl-'pJ2, which is 
the Hamiltonian defining the classical geodesic flow on 
rOMe. In p~icular, in the flat case (c--oo), 1T1-' (respectively, 
Ho; PI-' and Ho) reduces to - ifz al-' [respectively, 
(~ + -rr;)12;pl-' and (p~ + p;)l2]. In this limiting case, the 
commutation relation (ii) can be interpreted 14 as an expres­
sion of the restriction further imposed on the theory by the 
condition that it be Galilean invariant. 

3. Scholium: For a continuous one-parameter group 
[V(t)ltER J of unitary operators on {)e = £2(McJdJ-le)thefol­
lowing conditions are equivalent: 

(i)V(t)=exp[-iHtJ with H=!(.Jej, 

(ii) U(g)V(t jU(g-I) = V(t )VtER,gEG = SL(2,R j/Z2. 

Proof Let K be the stabilizer of the origin in the Lobat-
chevski plane; we have then Me -:::::=.G I K, and 

K = f ( ~:i~ t? ~:~) I t?E[0,21T] }. 

U (G) is the representation of G induced by the identity repre­
sentation of K, and thus ~c can be seen as the space offunc­
tions ¢:G--C satisfying ¢(gk) = ¢(g)V(g,k }EG XK, and 
which are square integrable over G IK with respect to the 
canonical measure J-le. With X defined by 

(X¢)(g) = f dJ-le (g')X (g,g')¢(g'), 

the condition that X belong to U (G )' is equivalent to 
X(g,g'} = X(g-Ig,), wherexisa spherical function on Gwith 
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respect to K, i.e., that X is constant on the double cosets K:K. 
As a consequence of the following three facts, the algebra 
d K (G) of spherical functions is abelian 15: (a) K is compact; 
(b) K is maximal, i.e., K = [gEG IgKg- I = K ); and (c) the 
transposition g-g in SL(2,R ) is an antiautomorphism and 
satisfies k = k -I for all k in K. We thus have 
U(G)'<;;;; U(G )", i.e., U(G) is multiplicity free, and V(R) 
<;;;; U (G )' nU (G )" . From this and the remark atthe end of Sec. 
III. 1, condition (i) of the scholium follows immediately. The 
converse implication, (i)~(ii), is trivial. 

4. Corollary: For H self-adjoint in.\;>e = 22 (Me ,df-le) the 
following conditions are equivalent: 

(i) H = - ~AJ2 +,u with AER, 

(ii) VIR )=[ exp( - iHt IfiltER ) 

commutes with 

and 

[x'",H Vifi = g:Vg~/201Tv. 

Proof This follows immediately from Scholium 2 and 
the fact that He acts transitively on Me. • 

Each of the equivalent conditions of this corollary thus 
implies that VIR ) commutes with the full U(G )(andin parti­
cular that the Hamiltonian H is rotation-invariant). As 
shown by Scholium 3 the latter condition, namely that VIR ) 
commutes with U (G ), is weaker than the conditionsofCorol­
lary 4. Via the correspondence principle established in Sec. 
II each of the equivalent conditions of Corollary 4 character­
izes completely the classical geodesic flow on T· Me. The 
ambiguity left by Scholium 3 also has its equivalent in the 
classical limit: It only places in a general setting such well­
known facts as, for instance, that the trajectories of a free 
particle in flat configuration space are straight lines for spe­
cial relativity, i.e., H = ('l:kP~ + m 2

)1/2, as well as for Gali­
lean relativity, i.e., H = 'l:kPU2. 

5. We now tum to the formulation of the quantum and 
classical theories on compact Riemannian manifolds of con­
stant negative curvature. These manifolds are obtained as 
quotients r \Me = r \G IK ofthe Lobatchevski plane 
Me ~G I K by a discrete subgroup r C G. This is quite analo­
gous to the identification of the flat torus as the quotient of 
the Euclidean plane R 2 ~E 21 K by the discrete subgroup 
Z 2CE 2. There are, however, two essential differences: (i) the 
restriction imposed on the volume of r \ G I Kby the Gauss­
Bonnet formula; and (ii) the fact that, whereas the torus still 
has a continuous group of smooth isometries (namely 
Z 2\R 2, where R 2 is the translation subgroup of the Euclid­
ean group E 2), this is no more the case for the curved mani­
folds r \ G I K. This latter fact can be obtained as follows. 
Since r has no fixed point (it identifies opposite sides by 
pairs) and cannot be simply conjugate to a subgroup of either 
one of the maximal abelian subgroups 

we can assume without loss of generality that r is non-abe­
lian and contains an element yEA with y¥=e. As a conse­
quence, one obtains by contradiction (see, e.g., Ref. 16) that 
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NG(F)==[gEG Igrg- I = r) is discrete. So is then the group 
d GW) = r\NGW) of smooth isometries of r \G IK. 
Since this manifold is compact, d GW) is in fact finite. 

This precludes any direct use of the system of imprimi­
tivity approach to formulate the quantum theory of a parti­
cle moving onr \G IK. Since the covering space Me is never­
theless available, we start with the theory on Me' as 
established in Sec. II, and restrict it to r \Me by making use 
of the periodic boundary conditions provided by r. We ob­
tain in this manner the projection valued measure Qr: 

EE'13(r \Me )-Qr(E )ElIS (.\;> r), where.\;> r is the Hilbert space 
of square-integrable functions on r \Me with respect to the 
measure df-l r canonically inherited from df-lc. The Laplace­
Beltrami operator A ~ is similarly obtained, and its proper­
ties have been extensively studied. 17 

6. Scholium: With H r = - fi2 A ~/2, and V r(f) 
= exp[ - i Hrt lfi), the von Neumann algebra [Qr(E), 
Vr(t )IEE'13(r \Me ), tER )" coincides with 2 (.\;>r). 

Proof Impose first BQr(E) = Qr(E)B for all E in 
'13(r \Mc). Since the Q r (E )'S generate a maximal abelian von 
Neumann subalgebra of 2(.\;> r), we have (Bt/I)(x) = B (x)t/I(x) 

with B (.)E5..l'" W \Mc). Since r \Mc has finite volume, we 
have B (.)E5..l2 W \Mc)· Impose moreover BVr(t) = Vr(t)B 
for all t in R. From the fact that 0 is a nondegenerate eigenva­
lue of A ~ with eigenvector 1, we obtain that 

(Vr(t )E)(x) = (Vr(t)E l)(x) 

= (BVr(t )l)(x) = (B l)(x) = B (x) 

implies B (x) = A·l(x) with AEC, and thus B =,u. Hence 
[ Qr (E), Vr (t ) I EE'13 W \Mc ), tER J acts irreducibly on.\,) r·. 

In physical terms, this scholium asserts that all the ob­
servables of the theory can be expressed as functions of two 
kinds of fundamental observables: the position observables 
Qr and the energy Hr. This generalizes to the curved mani­
folds r \Me a result well known for the flat torus. Here, 
however, the scholium is important in that it allows one to 
bypass the absence of the momentum observables, a diffi­
culty inherent to the curved space situation where the geo­
metrical symmetry group d G W ) is discrete. 

7. Whereas the spectrum of -.6 ~ is discrete, and posi­
tive, some degeneracies might occur amongst its strictly 
positive eigenvalues, so that the quantum systems, in contra­
distinction with the corresponding classical systems (with 
c < 00), are not strictly ergodic. Still, as Ii--->-O, the Weyl for­
mula (in theformgiven for instance in Ref. 18) can be used to 
show that the number N" (E) of eigenvalues, for H r 
= - fi2.d ~ 12, contained in any interval (E,E + h 2) with 

E> 0, satisfies 

v(E)=li~N,,(E) = 21Tf-lrW \Mc). 

This again generalizes to the curved manifolds r \Me a re­
sult well known for the flat torus. Here, however, there is a 
difference in interpretation: Since, for c < 00, the classical 
system is ergodic, the rhs of the above expression is equal to 
the volume of TrW \Mc ), i.e., to the volume which is "oc­
cupied" by the classical particle in the phase space 
T *W \Mc)· Moreover, by the Gauss-Bonnet formula, this 
volume is determined, at fixed curvature Kc = - c- 2

, by 
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the genus g of the surface; we have thus 

v(E)l8~c2 = g - lEZ+. 

For finite, but small, values of", this result holds to 0 (,,4). 
One can actually do somewhat better, as the next result 
shows, when we compare the quantum partition function 

Zr(J3,",c) = Tr exp( - f3H~) 

with 

H ~ = - "2(.:1 ~ - al)/2 

and the classical partition function 

Zr(J3,c) 

= f f dPxdpy f L'McdXdY exp[ - f3(.,'V(x,yJpjtPv J 

= 21T'fL~(r '\Mc)lf3· 

8. Proposition: With H~ = _,,2 (.:1 ~ - al)/2 and 
a =ac=Kc/6 

h 2Zr (J3,",c) _ 1 = O((J3,,2)2) as f3fz2-o, 
Zr(J3,c) 

whereas one has only 0 (J3,,2) when a =lac' 
Proof The Selberg asymptotic formula reads l7 

2)Xp( - E.-l.n)~(41T'E) -d/2(ao + alE + ... + an~ + ... ), 
n 

whereA n are the eigenvalues 0 =Ao<A I <A2<'" ofthe La­
place-Beltrami operator -.:1 ~ for the two-dimensional 
(d = 2) manifold r '\Mc; 

and a I = 1.- ( dfL~Kc' 
6 Jr,\Mc 

From this one computes 

h2Z(J3fzc) 
r " _ 1 = ¥l,,2(iKc - a) + O((J3,,2)2). • 

Zr(J3,c) 

The interest of this result is that the curvature correc­
tion a c = KJ6 to the Laplace-Beltrami operator -.:1 ~ 
provides the best possible fit of the quantum partition func­
tion to its classical limit. This is to be compared with the 
original proposal 19 concerning the possible dynamics on 
curved, infinite, and simply connected spaces; see also Ref. 
20 for a connection with the BKS-kernel of the geometric 
quantization program, and the results21 based on the Feyn­
man path integral. 
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In this paper we derive in a completely rigorous way a family of inequalities holding for proper 
combinations of the squared norms of the states generated by the quantum evolution of a 
compound quantum system in the presence of additive conservation laws. The application of 
these inequalities to the quantum theory of measurement yields lower bounds for the 
malfunctioning of a measuring apparatus, which are valid under more general mathematical 
conditions and for a larger variety of physical situations than those considered up to now in the 
literature. 

PACS numbers: 03.65.Bz 

1. INTRODUCTION 

In this paper we consider the evolution induced by the 
interaction of two quantum systems Sand s when, in the 
interaction process, some additive quantity is conserved. 

The existence of additive conserved quantities gives rise 
to constraints on the norms of the states which are generated 
by the application of the unitary evolution operatior U to the 
states of the system S + s. The importance of this fact was 
first recognized by Wignerl in connection with the quantum 
theory of measurement. In fact, he has pointed out that the 
existence of additive conserved quantities by itself entails 
limitations upon the measurability of certain observables. To 
be more precise, let us denote by Hand h the Hilbert spaces 
of the systems Sand s, respectively, and identify S with a 
measuring apparatus devised to measure the observable J( 

associated to the self-adjoint operator M of h, and s with the 
measured system. In the Wigner formulation one assumes 
that M has a purely discrete spectrum with eigenvalues m{ 
and a complete set of eigenstates tf{, and that the unitary 
operator U describing the system-apparatus interaction 
commutes with an additive quantity 
N = N H ® [h + [H ® Nh • Then one can prove that, unless 
the operators M and Nh commute, it is impossible for U to 
act as required by the ideal measurement scheme hypoth­
esized by von Neumann 2 

(1.1) 

where ¢o is the initial state of the apparatus and the ¢{t 's are 
the final states satisfying (¢{t'¢v) = t5{tv' Araki and Yanase,3 
and subsequently Stein and Shimony,4 have shown that the 
theorem originally suggested by Wigner can be rigorously 
proved when Nh is a bounded operator and the initial appa­
ratus state ¢o belongs to the domain of definition of N H' 

Moreover, Stein and Shimony have made conceptually clear 

-) Work supported in part by Istituto Nazionale di Fisica Nuc1eare, Sezioni 
di Trieste e Pavia. 

what has to be the mathematical requirement corresponding 
to the physical occurrence of an additive conservation law. 
In fact when N is unbounded (as happens in almost all phys­
ical cases) the sense of the statement" U commutes with N" 
has to be made mathematically precise. 

In the case in which the measured observable of the 
system s does not commute with the part Nh of the additive 
conserved quantity N, since (1.1) cannot hold, we must resort 
to a nonideal measurement scheme. To this purpose, let us 
start by writing an equation expressing the most general type 
of evolution which can be induced by U on the state ¢o ® tfm: 

U¢o ® tfm = ¢m ® tfm + L ¢mn ® tfn' (1.2) 
n#m 

In the case of the quantum theory of measurement the prob­
lem then arises of making as small as possible the norms of 
the states ¢mn' and almost orthogonal the states ¢m' In fact, 
both the nonorthogonality of the states ¢m and the presence 
of the states ¢mn give rise to errors, ambiguities, and distor­
tions in the measurement process, as discussed in detail in 
Ref. 5. This problem has been the subject of various investi­
gations. First of all, it can be easily proved that the norms of 
the states ¢mn can be made very small only by making very 
large the expectation value of the operator N 1 on the state 
¢o' 1,3,6 Besides this general result, it then becomes relevant to 
obtain a quantitative estimate ofthe minimal deviation from 
the ideal measurement scheme, and this is usually expressed 
through the derivation of bounds for proper linear combina­
tions of the squared norms of the states ¢mn' Up to now, such 
bounds have been obtained only in the case in which the 
conserved quantity is the total angular momentum, the Hil­
bert space is the finite-dimensional spin space of a particle of 
given spin, and the measured quantity is a spin component. 
More precisely, in Ref. 7 the case of spin ~ has been dealt with 
in a rather heuristic way. In Ref. 5 the Yanase bound has 
been rederived in a simpler and more rigorous way and equa­
tions defining an optimal measuring apparatus have been 
obtained. In Ref. (8) we have built an explicit example of a 
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physically reasonable measuring apparatus working almost 
ideally. Finally, in Ref. 9 the derivation of Ref. 5 has been 
generalized to the case of a particle of arbitrary spin. 

Summarizing, the bounds for the terms related to the 
malfunctioning of the apparatus have been obtained up to 
now under the following rather restrictive assumptions: 

(i) the conserved quantity is the total angular momen­
tum' 

, (ii) the measured quantity is a component of the spin; 
(iii) the spin space, i.e., the space h, is finite dimensional. 

It is then interesting to derive explicit bounds for the 
general case of an arbitrary additive conserved quantity, of 
an arbitrary measured observable and for an infinite Hilbert 
space h. We do this in Sec. 3 by making use of a theorem 
which will be proved in Sec. 2 under rather general assump­
tions. This theorem consists in the derivation of a family of 
inequalities which must be satisfied by proper linear combi­
nations of the squared norms of the states ifimn appearing in 
(1.2). These inequalities are valid for any unitary operator U 
which commutes with an additive conserved quantity N sa­
tisfying some general requirements. Therefore, the theorem 
could find applications to other quantum problems besides 
the quantum theory of measurement. 

Before coming to the statement and to the proof of the 
theorem, we want to comment briefly about the correct 
mathematical formulation of the assumption that an addi­
tive conservation law holds for U. In fact, while for a bound­
ed self-adjoint operator A the fact thatA is conserved can be 
unambiguously expressed as [U, A ] = 0, in the case in which 
A is unbounded this relation can be meaningless. In such a 
case, by the statement "A is conserved," we will mean that 
for every real number r 

[ U,e;rA ] = o. (1.3) 

As discussed in Ref. 4, this condition, from the point of view 
of every essential mathematical and physical consideration, 
should be regarded as the meaning of the proposition that 
the operators U and A commute. 

2. A GENERAL THEOREM 

Before stating our theorem let us specify the notations 
we will use. 

We shall deal with the tensor product JY' = H ® h of 
two separable Hilbert spaces. In h we consider a complete 
orthonormal set of states I tPl J and denote by PI the projec­
tion operator on tPl' 

Given a pair of integers i andj, i=j=j, we define two pro­
jection operators 9; and 9 j according to 

9 1 =P, +Q" l=i,j, (2.1) 

with 

QI = IPk, 1= i,j. (2.2) 
kEN/ 

Here and in the following N; and Nj are two subsets of the set 
N of the positive integers which are arbitrary except for the 
condition that Nj>Nj and the pair i,j form a partition ofN. It 
follows from the definition that 

(2.3) 
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(2.4) 

Given a unitary operator U onto JY' and a normalized 
vector ifioEl!, one can write with complete generality 

Uifio ® tPm = ifim ® tPm + I ifimn ® tPn' (2.5) 
n#m 

where the states ifim and ifi mn belong to H. In connection with 
the expansion (2.5) we define the quantity '1]1 according to 

'1]7 = I Ilifi'k 112. (2.6) 
k #1 

For the sake of brevity we shall use shortened notations 
such as, e.g., 9 I for IH ® 9 I and N H for N H ® I". Further­
more, the same symbol II . II will be used to denote operator 
norms and vector norms in JY', H, and h. 

Theorem: Let U be a unitary operator on 
JY' = H ® h, I tPl J a complete orthonormal set in hand ifio a 
normalized vector in H. If there exist two self-adjoint opera­
tors N Hand N" acting on Hand h, respectively, such that 

(i) N" is bounded, 
(ii) ifio belongs to the domain DNH of N H' 

(iii) for all real numbers r, [U,ei(NH + N.lr] = 0, 
then for any pair of positive integers i andj, i=j=j, the follow­
ing inequalities hold: 

11 - (ifi;,ifij) I . I (tP;,N" tPj)1 

< liN Hifioll -( C~}lifijlI12 + lIifiji w) 112 

+ C~}ifil/ 112 + Ilifiii 112) 112) 

+ liN" 11(2'1]; + 2'1]j + 'I];'I]j)' (2.7) 
where the vectors ifik,ifikl of H are defined by the expansion 
(2.5), the positive real numbers '1]1 are given by Eq. (2.6), and 
the sets of positive integers N; and Nj are arbitrary except for 
the condition that their union covers the whole set of positive 
integers except the pair i andj. 

Proof Having chosen the pair i,j and defined the opera­
tors 9 I through Eqs. (2.1), Eq. (2.4) allows us to write the 
operator identity 

e;(N" + H.lr =e;(NH + H.lr9. + 9. e;(NH + N.lr 
I J 

_ 9
j
e;(NH +N. lr9 i + 9; + 9;ei(NH +N. lr9

j
• 

(2.8) 

Multiplying by U + on the left and by U on the right, taking 
into account the commutativity condition (iii) one gets the 
relation 

e;(Nu + N.lr = e;(NH + N.lru + 9. U + U + 9. Ue;INH + N.lr 
I J 

- U + 9 .e;N.r9.e - iN.rUe;(N" + N.lr 
J I 

+ U + 9 ;eiN• r9
j
e - iN.rUe;(NH + N.lr. (2.9) 

In the right-hand side of the above equality we have brought 
the operator eiN 

H r either to the left or to the right in each term 
appearing in it; this has been done since we will sandwich 
this equation between the states ifio ® tPi and ifio ® tPj and we 
will subsequently take the limit for r--+o. We obtain in this 
way a correct expression, since the operator N H will then act 
on the vector ifioeD N H • 
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For r#O let us define two bounded operators girl and 
G (r) through the equations 

eiN
, , = R" + irg(r), 

eiN
" r = rrH + irG (r), (2.10) 

and note that under the limit r-..o the operator girl converges 
strongly to N" and the state G (r)<po converges strongly to 
N H<PO' Sandwiching (2.9) between the states <Po ® !/Ji and 
<Po ®!/Jj with i # j and using (2.10) we have 

(<PO,(RH + irG(r)]<poH!/Jj'[[h + irg(rl]!/Jj ) 
= ([[H - irG +(r)]<po®!/J" 

[R" + irg(r)] U + 9 i U<po ®!/Jj) 

+ (9j U<Po ® !/J"U [rrh + irg(r)] 
X [RH + irG (r)] <Po ® !/Jj) 

- (9 j U<Po ®!/J ... [[h + irg(r)] 
X9,[Rh -irg+(r)]U[[h +irg(r)] 
X [RH + irG(r)]<po®!/Jj) 

+ (9 i U<Po ® !/J" [[" + irg(r)] 
X 9 j [Rh - irg+(r)] U [Rh + irg(r)] 

X [[H + irG (rll <Po ® !/Jj)' (2.11) 

Due to Eqs. (2.3) and (2.4) all terms not containing r cancel. 
Dividing by r and taking the limit for r-+O, we get 

(!/J"Nh!/Jj) = (UNH<Po®!/J,,9 jU<Po®!/Jj) 

+ (9j U<P0®!/J"UNH<P0®!/Jj) 

+ (UNh <P0®!/J,9,U<P0®!/Jj) 

+ (9j U<p0® tP"UN,,<po® !/Jj) 

- (9jU<P0®tP"Nh9jU<Po®!/Jj) 

+ (U<Po® !/Ji,9 iNh 9 j U<po® tPj)' (2.12) 

For the last term in the r.h.s. of (2.12), recalling (2.1), we 
write the identity 

9 iN" 9 j = P,NhPj + PiN"Qj + QiN" 9 j . (2.13) 

Observing that 

(2.14) 

we get from Eq. (2.12) 

[1- (<Pi,<Pj)]-(!/Jj,Nh !/Jj) = (UNHtPo ® !/Ji,9 jUtPo® !/Jj) 

+ (9 j UtPo® tPi,UNH<Po®!/Jj) 
+ (UNh<po® tP,,9 iUtPO®!/Jj) 

+ (9 j UtPo ® !/J"UN,,<po ® !/Jj) 
- (9 j UtPo ® tPj,N" 9, UtPo ® !/Jj) 
+ (P, U<po ® !/J"N" Qj U<po ® !/Jj) 
+ (Qi UtPo ® !/Ji,Nh 9 j U<Po ®!/Jj ). 

(2.15) 

Using the Schwarz inequality for all terms in the r.h.s., we 
get 

11 - (tPi,<pj)I·I(!/Ji,Nh !/Jj)I<IJN H<PolH19 i U<po® !/Jjll 

+ IINH<Poll'1I 9 j UtPo®!/Jili + IINhll·[1I 9 iU<PO®tPjll 
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+ II&jUtPo®!/Jill + lI&jU<Po®!/Jill·lI&iUtPo®tPjll 

+ IlPi U<Po ® tPi lI'I!Qj U<Po ®!/Jj II 
+ IIQiU<Po®tPill·lI&jU<Po®!/JjIlJ. (2.16) 

For the various vector norms appearing in the curly 
brackets we use the following relations, which can be easily 
obtained from (2.1), (2.2), (2.5), and (2.6): 

II &, UtPo ® tPj II = {L IltPjll12 + IItPj, 1l 2
} 1/2 <Tfj' 

IENi 

II&jU<Po®!/J,J1 = t~}<PilI12 + II<PiiI12} II2<Tfi' 

IIP,UtPo®tP,J1 = 11<p,II<I, 

IIQjU<po ® !/Jill = t~lI<pjI1l2rl2 <Tfi' 

IIQ, U<po ® tP, II = [I~}I<PI/ 112] liZ <Tf" 

(2.17a) 

(2.17b) 

(2.17c) 

(2.17d) 

(2.17e) 

(2.17f) 

Use of (2.17a)-(2.17f) in (2.16) yields immediately Eq. (2.7). 
Note that this theorem is meaningful only when Nh is 

not diagonal on the basis (tPl J. We note also that, ifin Eq. 
(2.16) we had used, instead of the simple quantities Tf i and Tfj 
which give a majorization of the norms in the l.h.s. of 
(2. 17a)-(2. 17f), the actual expressions of such norms [also 
shown in Eqs. (2. 17a)-(2. 17f)], we would have obtained a 
bound more stringent than (2.7). However this bound takes a 
rather complicated form and, for the use we intend to make 
of our theorem in the next section, the result (2.7) is suffi­
cient. 

3. LIMITATIONS ON QUANTUM MEASUREMENTS 

As already stated in the Introduction, the theorem of 
Sec. 2 has a straightforward application to the quantum the­
ory of measurement. In fact, let us suppose we want to mea­
sure an observable vi( associated to the self-adjoint operator 
M (with purely discrete nondegenerate spectrum)lO of the 
Hilbert space of the measured system. The measurement is 
obtained through an interaction of the system with another 
quantum system acting as a measuring apparatus. Suppose 
also that there exists an additive quantity which is conserved 
during the evolution induced by the system-apparatus in­
teraction. If the part of the additive quantity referring to the 
measured system is bounded and the initial state of the appa­
ratus belongs to the domain of definition of the part referring 
to the apparatus, we can then identify the states tPl of the 
theorem of Sec. 2 with the complete set of eigenstates of M, 
the quantity N = Nh ® [H + N H ® [h with the additive con­
served quantity, the operator U with the unitary evolution 
operator describing the system-apparatus interaction, and 
the state <Po with the initial state of the apparatus. 

In the case in which M does not commute with Nh , Eq. 
(2.7) shows that an ideal measurement scheme of the type 
(1.1) is impossible. One is then forced to describe the mea-
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surement process through Eq. (1.2). Since, as already dis­
cussed, the appearance of the states t/J mn and the nonortho­
gonality of the states t/Ji correspond to a malfunctioning of 
the apparatus,S to have a physically acceptable measuring 
apparatus we have to make as small as possible all the norms 
1It/Jlk II and the scalar products (t/Ji,t/Jj)' As shown by Eq. (2.7) 
this can only be obtained by monitoring the physically mean­
ingful quantity IINHt/JolI, making it larger and larger. To see 
that this is actually the case, first of all one has to note that 
the left-hand side of Eq. (2.7) cannot be zero; in fact the 
quantity (t/J;ot/Jj) must remain different from 1, since, being 
the norms of t/J; and t/Jj bounded by 1, it could attain the value 
1 only for t/J; = t/Jj. This must be excluded, otherwise the 
measuring apparatus would respond exactly in the same way 
when detecting the states 7/J; and 7/Jj associated to different 
eigenvalues of the measured quantity. Actually, as already 
stated, we need to make (t/J;,t/Jj) become infinitesimal in order 
to have a correctly functioning apparatus. Secondly, the 
quantities (7/J; ,Nh 7/Jj) cannot all be zero, since Nh cannot be 
diagonal in the representation given by the vectors 7/J1' Then 
the only way to obtain an acceptable measuring apparatus is 
to make liN Ht/Joillarger and larger. In such a case we can 
treat as infinitesimals the quantities 1]1 (of order IIIiN Ht/JolI) 
and (ifJ;,ifJj ). Then, keeping in Eq. (2.7) only the dominant 
terms, we get 

/(7/J;,Nh 7/Jj )1 .;;;( I lIifJjlII 2 + lIifJj; 112)112 
I INH ifJo II leN; 

+ C{;)'ifJilII2 + lIifJij 112) 112. (3.1) 

Using the fact that (A )1/2 + (B )1/2.;;;v'2(A + B )1/2 and taking 
the square of both sides of (3.1), we then get for the norms of 
the unwanted states the family of inequalities 

IIIifJjlli2 + IIIifJilW + lIifJj iW + IIifJijll2 
leN; leNj 

., I (7/JO Nh 7/JjW12 I1 NHifJoIl2. (3.2) 

We recall that in Eq. (3.2) i and} (i =h) are arbitrary, and that 
N; and Nj are two arbitrary subsets of the set of positive 
integers, such that their union reproduces all the positive 
integers except for the pair i,}. Formula (3.2) summarizes a 
set ofinequalities which cannot be violated when one wants, 
for physical reasons, to make as small as possible the norms 
of the states ifJmn appearing in an evolution equation like 
(1.2). 

As particular cases of (3.2), it is interesting to consider 
the following ones: 

(a) Fix the pair i,}, with i <}, and choose then N; to be 
the set of integers going from 1 to t (i.;;;t <i) exclUding i. 

Equation (3.2) then becomes 

IIIifJj l1l2 + IIIifJilll2 

I"t l>t 

(3.3) 
If h is the two-dimensional spin space of a spin-~ particle and 
the measured quantity is the z component of the spin, we 
must choose in Eq. (3.3) i = I, t = I,} = 2. Moreover, if the 
additive conserved quantity not commuting with Sz is either 
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the x or the y component of the total angular momentum J, 
Nh is correspondingly either the x or the y component of the 
spin and N H is the same component of I = J - S. Equation 
(3.3) then becomes 

(3.4) 

This is the bound expressing the total malfunctioning of the 
apparatus obtained in Refs. 7 and 5. 

In the analogous case of a particle of spin s we allow for 
convenience the indices to run from - s to s. Then choosing 
t = i arbitrarily, and} = i + 1, we get 

; . 
I lIifJ;+ 1,111

2 + I lIifJilII2 
1= -s l=i+5 

(3.5) 

which is the bound (3.13) of Ref. 9. We note that the bound 
(3.15) of Ref. 9 for the total amount of distortion £2 (defined 
in general as £2 = ~I.m,l .. m lIifJlm 112) can be obtained summing 
Eqs. (3.5) over all values of i from - s to s - 1. 

(b) Fix the pair i,} and then choose Nj to be the empty 
set. Then from Eq. (3.2) we get 

(3.6) 

The interest of inequality (3.6) lies in the fact that its left­
hand side, apart from the term lIt/JijW, is the sum of the 
square norms of all the unwanted terms in Eq. (1.2) with 
m = j. This quantity represents the probability of changing 
the state of the system when a measurement of JI is per­
formed, the system being initially in the} th eigenstate of M. 
Equation (3.6), when used for a measurement of a spin com­
ponent of a spin ~ particle, gives the result (3.4). For spin 
greater than ~ Eq. (3.6) is a relation essentially different from 
(3.5). In particular, if one uses Eq. (3.6) to derive a bound for 
the total amount of distortion il, one gets a less stringent 
bound than the one obtained by (3.5). 

With reference to the general Eq. (3.2) we observe that, 
from a physical point of view, the quantities which must be 
made as small as possible are the 1]~ = .In .. m lIifJmn W. Unfor­
tunately, from Eq. (3.2) one cannot get an inequality involv­
ing only a given 1]~. On the contrary, it is quite easy to get 
inequalities for the total amount of distortion il = .Im 1]~. 
This quantity has been considered in the literature as ex­
pressing the overall malfunctioning of the apparatus. We 
stress, however, that this parameter is not particularly sig­
nificant in the theory of measurement. In fact, in the infinite­
dimensional case it can very well happen that, even though 
all the 1]~ are made very small (and therefore the apparatus 
works in a physically acceptable way), c turns out to be 
infinite. Taking t = i and} = i + 1 in Eq. (3.3) and perform­
ing the summation over i, we get 

(3.7) 

For a bounded operator the series appearing in the r.h.s. can 
be divergent. (Incidentally, we remark that if N h , besides 
being bounded is of the Hilbert-Schmidt type, then the series 
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is convergent. Therefore in such a case apparatuses could 
exist leading to an arbitrarily small total amount of distor­
tion.) 

If, insteadofusingEq. (3.3), we sum Eq. (3.6) for a fixed i 
over allj's different from i, we get in place of (3.7) 

~>(.1Nh ):12 liN H~oIl2, (3.8) 

where (.1Nh): is the mean square deviation of Nh is the state 
tPi' Since Eq. (3.8) holds for any i, ~ turns out to be larger 
that the maximum possible value of the r.h.s. of(3.8) when tPi 
runs over the set of the eigenstates of M. Since for a bounded 
operator (.1Nh ):<IINh 11

2
, the bound (3.8) is useless when the 

sum of the series at the r.h.s. of(3.7) is larger than IINh 112. 
Concluding we have proved a theorem having a 

straightforward application in the quantum theory of mea­
surement. In the well-known situation in which there exists 
an additive quantity which is conserved during the system­
apparatus interaction and does not commute with the mea­
sured quantity, the theorem allows to prove the set of in­
equalities (3.2) which puts lower bounds to the norms of the 
unwanted terms in the nonideal measurement scheme (1.2). 

The assumptions under which (3.2) has been obtained 
are much more general than those under which bounds for 
the malfunctioning have been obtained in the literature up to 
now. In fact, in our treatment both Hilbert spaces for the 
system and for the apparatus are allowed to be infinite-di­
mensional and the apparatus part N H of the conserved quan­
tity is allowed to be unbounded. On the other hand, the sys­
tem part Nh of the conserved quantity is assumed to be 
bounded. 
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The relevance of(3.2) lies both in the fact that its deriva­
tion is rigorous under rather general assumptions and in the 
fact that through the choice ofthe pair i,j and subsequently 
of the sets N i ,Nj a fairly large set of conditions is obtained. 
All known bounds obtained in the literature are particular 
cases of (3.2). 
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IOOne can generalize in a straightforward way the results of this section to 
the case in which degeneracy is present, provided the measurement 
scheme be approximately of the state preserving type. This means, intro­
ducing the index a of degeneracy, that we assume 
U"'rna ® tPo = "'rna ® tP t:,1 + X and IIX II < 1. However, when degeneracy is 
present, it is more interesting and natural to consider as ideal a scheme 
which is eigenvalue-preserving rather than state-preserving. One then 
starts from a modification of such an ideal scheme, allowing in the evolved 
state small terms corresponding to eigenvalues different from the initial 
one and tries to derive lower bounds for their norms. How his can be done 
will be shown in a forthcoming paper. 
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By exploiting the overcompleteness of the spin-coherent states we derive expressions for spin­
kinematics path integrals (specifically for spin 1/2 and spin 1) in terms of genuine (Wiener) 
measures on continuous paths lying on the unit sphere and for certain dynamical systems which 
when projected onto the subspace spanned by the proper spin-coherent-state matrix elements 
yield the appropriate quantum-mechanical propagator. 

PACS numbers: 03.65.Bz. 02.20.Sv 

I. INTRODUCTION 

Quantum-mechanical path integrals have almost invar­
iably been expressed as formal relations in view ofthe nonex­
istence of the "measure" in such formulas. Proper defini­
tions typically involve approximating the time integrals as 
Riemann sums. integrating over the finitely many variables 
that result. and subsequently performing a limit as the mesh 
approximating the time integral is made infinitely fine.' No 
genuine measure on a path space emerges since the limit of 
the approximating measures is not countably additive. For 
imaginary-time quantum mechanics. on the other hand. the 
situation for canonical variables is quite different as one has 
the well-known Wiener measure on continuous configura­
tion paths as embodied in the Feynman-Kac formula. 2 

In some recent work3
•
4 it was shown that by exploiting 

the overcompleteness properties of the usual. canonical co­
herent states it was possible (in a certain projection sense) to 
formulate the quantum-mechanical propagator for a res­
tricted set of dynamical systems as a well-defined integral 
involving genuine Wiener measures on continuous phase­
space paths. In this paper we wish to show that an analogous 
formulation exists for other kinematical variables. in parti­
cular those associated with (half-) integer spin. Thus we shall 
construct (again in a certain projection sense to be defined 
below) a representation of the quantum-mechanical propa­
gator for a restricted class of dynamical systems involving 
spin-kinematical variables as a well-defined integral involv­
ing Wiener measure on a spherical manifold. For spin 1/2 
the operator structure is identical to that for a fermion de­
gree of freedom. and thus in that case our Wiener integral 
provides a representation ofthe dynamical evolution of fer­
mion degrees offreedom as well. We feel compelled to em­
phasize that this representation does not involve Grassmann 
variables or anticommuting c-numbers. but only ordinary. 
classical functions. the general possibility for which has been 
shown some time ago by the author.5 

In Sec. II we review basic properties of the spin-coher­
ent states with a special emphasis on consequences of their 
overcompleteness. In Sec. III we show how positive-definite 
functions involving these states lead to the basic Wiener 
measure on the sphere; more specifically we are led to a real­
ization of the Green's function of the Laplacian on the 
sphere as a Wiener integral over the space of continuous 

-) Pennanent address: Bell Laboratories, Murray Hill, New Jersey 07974, 
U.S.A. 

paths on the sphere. In so doing we need the results of a 
certain extension of the Ito differential calculus. the details 
of which are presented elsewhere.6 In Sec. IV we show how 
the basic Wiener measure can be combined with other fac­
tors to generate a representation of the quantum-mechanical 
propagator for certain dynamical systems as genuine path 
integrals over continuous paths on a spherical manifold. 

II. SPIN COHERENT STATES 

A. Aspects of the rotation group 

Let 8j .j = 1,2,3. denote an irreducible representation 
of the Lie algebra of the group SU(2). which satisfies 
[8,.82] = iS3 plus cyclic permutations.7 As an irreducible re­
presentation it follows that 

IS] = sIs + I)Is. (2.1) 

where S = 0.1/2.1.3/2, .. ·• and Is is the unit operator in the 
(2s + I)-dimensional representation space ~s' Let ISm) de­
note a normalized vector in ~s with the property that 

S3lsm) =mlsm)' (2.2) 

where m is one ofthe variables. - S ..... S - l,s. Let e, rp de­
note the usual coordinates on the unit sphere. where 0< e< 1T. 
O<rp < 21T. and define8 spin coherent states (for state sm) by 

le.rp.sm )==.U [e.rp 1lsm) 

(2.3) 

for all points on the sphere. The representations of Sand U 
will always be fixed by the vector ISm). We frequently will 
use the notation fJ for the pair e,rp. and denote the unitary 
operator by U [fJ ] and the spin coherent states by IfJ,sm ). In 
many applications only one value of sand m is needed and it 
suffices to simplify the notation to I e.rp) or I fJ ); we are not so 
fortunate. 

It follows from properties of the rotation group that in 
each space ~s the spin-coherent states admit a resolution of 
unity in the form 

( 
2s + I ) r1r r21r 

• ~ Jo Jo le.rp,sm )(e.rp,sm Ism e de drp = Is· 

Henceforth we shall set 

dfJ =sin e de drp, 

(2.4) 

(2.5) 

and we assume the integration limits are implicit. If IA,s) and 
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lx,s) denote arbitrary vectors in.\)s, then we can restate (2.4) 
as 

( 2s
4
: I ) f (A,sI8,tp,sm) (8,tp,sm lx,s) dfl 

= (A,slx,s). (2.6) 

Moreover there are group orthogonality conditions which 
state that 

f (A,s I 8,tp,sm ) (8,tp,s'", Ix,s/) dfl = 0, (2.7) 

provided Is - s/ I is a positive (nonzero) integer; note that the 
m values are equal for both vectors.9 

It follows from the foregoing that for s > 0 the spin­
coherent states satisfy infinitely many conditions of linear 
dependency of the form 

fI8,tp,sm )g(8,tp) dfl = O. (2.8) 

Another manifestation of their linear dependency is the fact 
that two spin-coherent states are generally not orthogonal. 
In particular, for the special case m = s, it follows that 

(8",tp ",ss 18 /,tp /,ss) 

[ (
8"-8/) ("- /) = cos cos tp tp 

2 2 

+ I cos sm tp tp , . (8" + 8 / ) . ( "_ / )]2S 
2 2 

(2.9) 

and these vectors are orthogonal only in the case that the two 
variables fl " and fl / label diametrically opposite points on 
the sphere. We note in passing that if m = - s then it fol­
lows that 

(8 "" 18/ / )-(8"" 18/ / )* ,tp ,s _ s ,tp,s _ s - ,tp,s s ,tp,s s . 
(2.10) 

B. Ambiguity of operator representation 

The overcompleteness of the spin-coherent states intro­
duces an ambiguity in the representation of operators. Let B 
be a linear operator on.\)s which we wish to represent in the 
form 

B =( 2s
4
: 1 )fI8 ",tp",Sm) 

X K (8 " "·8/ ')(8' m ' I dfl"dfl' B ,tp"tp 'T' ,sm . (2.11) 

In view of the resolution of unity (2.4) one acceptable integral 
kernel K B is always given by 

K (8" ".8/ /) = ( 2s + 1 ) 
B ,tp"tp 417' 

X (8 ",tp ",sm IB 18 /,tp /,sm)' (2.12) 

However in view of the linear dependencies among the spin­
coherent states there are infinitely many other linearly inde­
pendent integral kernels K B that yield the same operator B 
when inserted into (2.11). All such integral kernels form an 
equivalence class labelled by B, and it is convenient to denote 
a generic element of that class by 

((2s + 1 )/477')(8" ,tp",sm IB 18 /,tp ',sm) E.C.' (2.13) 

As a simple example consider the unit operator B = Is' 
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One acceptable integral kernel is clearly given by 

((2s + 1 )/41T) (8 ",tp ",sm 18 /,tp / ,sm)' (2.14) 

while according to (2.4) another member of the equivalence 
class of the unit operator is the 8-function distribution on the 
sphere, 

c5(fl " - fl ')=c5(cos 8" - cos 8 /)15 (tp" - tp/), (2.15) 

which has the property that 

f/(fl")c5(fl"-fl')dfl" =/(fl/), (2.16) 

for continuous functions! In fact, as a preparation for the 
introduction of dynamics one of our principal tasks will be to 
find other elements of the equivalence class of the unit opera­
tor that admit representations as Wiener integrals over con­
tinuous paths on the sphere. To this end we first construct 
the basic Wiener measure on the sphere starting from posi­
tive-definite group functions. 

III. BASIC WIENER MEASURE 

A. Positive-definite group functions 

A positive-definite group function is a continuous func­
tionF(8",tp ";8 /,tp ') that is invariant underleft group multi­
plication and satisfies the inequality 

M 

I ajak F(8j ,tpj;8k ,tpd>0, (3.1) 
j.k = I 

for any choice of complex numbers a p'",aM , and for any 
M < 00.10 Evidently (fl ", Sm Ifl I,sm) is such a function since 

(sm IUt[fl·fl"} U [a·fl '}Ism) 
= (sm IUt[fl"] Ut[fl } U [fl ] U [a ']Ism) 
= (smlUt[fl"]U[a/]lsm), (3.2) 

and 

Consequently any sum of the form 

(3.4) 
s.m 

with Ps.m >0 is a positive-definite group function, and a fun­
damental theorem II asserts that all positive-definite group 
functions can be represented in this manner. 

Now if F is a positive-definite group function then so 
too is F* [cf. (2.10)]. Since the product of positive-definite 
group functions is again one, then 

l(fl";fll)=IF(fl";fl'W, (3.5) 

and the positive sum given by 
00 

R (fl ";fl ') =Ae- a I. anr(fl ";fl ')In! 
n=O 

=Aea[J1n';Il'I-IJ, (3.6) 

are positive-definite group functions for arbitrary A > 0 and 
a > O. For our purposes we shall choose F to be the expres­
sion in (2.9) for some s > 0, and consequently 

l(fl ";fl /) = (1I22S)(1 + cosfJ)2S, (3.7) 
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where 

cos p =cos () " cos () , + sin () " sin () , cos (9''' - 9"). 
(3.8) 

It follows that 

R (11 ";11 ') =A exp{a[2 -2s(1 + COSP)2s - 1] J. (3.9) 

We now specialize further to the choice S = 112; we shall 
return later to indicate what changes occur for s> 1. 

The function 

R (11 ";11 ') = A exp[~a(cosp - 1)] (3.10) 

is a positive-definite group functional, and therefore admits 
the general representation 

R (11 ";11 ') = IPs.m (11", Sm 111', sm)' (3.11) 

where the coefficientsps.m >0. Ifwe examine the special case 
where () " = () , = 0 it follows that P = 0 and thus 

A = IPs,m (sm lei('P" -'P'IS'lsm) 

(3.12) 

However, this can hold only if ~sPs,m = 0 for all m #0, and 
since the terms are all nonnegative it means thatps.m = 0 for 
m # O. As a consequence it follows that R (11 ";11 ') has the 
special representation 

00 

R (11 ";11 ') = (417')-1 I (21 + l)r/(11 ",/0111 ''/0>' (3.13) 
'=0 

in which only integer spins contribute, and all with m = 0; 
the factor (21 + 1)/417' has been introduced for later conve­
nience. When P = 0 it now follows that 

R (11;11) = (417')-II(21 + l)r, = A. (3.14) 

We next wish to link A and a by the requirement that 

IR(11;I1')dl1 = 1. (3.15) 

Since this expression is invariant under orientation of the z­
axis it is convenient to set 11 ' = 0, i.e., () , = 9" = 0, in which 
case 

I R (11;0) dl1 = 217'A LTexp[~a(cos () - 1)]sin () d() 

= 417'A fexP( - ay) dy 

= 417'Aa- I(1 - e- a ). (3.16) 

Consequently we choose 

(3.17) 

Later when we are interested in the case where a> I it will be 
adequate to choose 

A = a/417'. (3.18) 

The function R (11 ";11 ') admits several equivalent and 
useful representations as given by 
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R(I1";I1') 
00 

= (417')-1 I (21 + l)r,(/oIU t [11 "] U [11 '] 110> 
'=0 

00 

= (417')-1 I (21 + l)r,P,(cosP) 
'=0 

= (417')-II(21 + l)r, (/olV t [11 "JIIm )(/m IV [11 '] 1/0) 
I,m 

= Ir,Ytm(I1")Y'.m(I1'), (3.19) 
'.m 

where the P, are the usual Legendre functions, and the Y"m 
are the usual spherical harmonics which fulfill the orthogon­
ality relation 

I Ytm(11 )Y".m,(I1) dl1 = DII'Dmm,· 

From (3.19) it follows that 

r, = I R (11;11 ')P/(cos P ) dl1 

= 217'A f~ lexp[~a(x - I)]P/(x) dx. 

SinceIP,(x) I <Po(x)=1 we learn that 

r,<ro=l. 

(3.20) 

(3.21) 

(3.22) 

More specifically, we shall need the evaluation of rl for large 
a, in which case it follows that 

1 II r l = - a exp[!a(x - 1)] 
2 -I 

X [1 - !i (I + 1 )(x - 1)] dx 

=1-/(/+l)/a, (3.23) 

accurate to the indicated order, 
Suppose we consider another positive-definite group 

function of similar form, 

(3.24) 

where 

(3.25) 

Then it follows that the group convolution of Rand S be­
comes 

T(11 ";11 '}-I R (/1";/1 )S (11;11 ') dl1 

= Ir,s/Ytm(11 ")Y',m(11 ') 

(3.26) 

which leads to a new positive-definite group function where 

to = roSo = I, 

tl = r/s, >0, 

(3.27) 
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Consequently functions of the sort as S form a closed class 
with the properties (3.25) under group convolution. 

Now let us consider the N-fold convolution of R with 
itself given by 

RIN ) (11 ";11 ')= f R (11 ';11 N ) ... 

XR (112 ;l1 tlR (11 1;11') dI1N···dI12 d11 1, 

(3.28) 

which evidently has the expansion 

R (11"'11')= "'r':N+lJy* (11")y (11') IN)' £.- I I.m I.m • (3.29) 

We are interested in the limit of this expression as N---+ 00, 

and we see that we can obtain a meaningful and nontrivial 
limit if we link the value of a and N according to the rule 

a = 2(N + l)lvT, (3.30) 

where v and T are two positive parameters the significance of 
which will become clear later. With this identification, and 
the elementary fact that 

lim[l- 1(1+I)VT]IN+I)=e_ 11/2)/(l+I)VT (3.31) 
N_ oo 2(N + I) , 

it follows that R IN ) converges at N--.. 00 to a positive-definite 
group function given by 

RT(11 ";11 ')= limR(N)(fl ";fl ') 
N-oo 

Furthermore it is clear that 

(3.33) 

and 

RT, + T, (fl ";fl ') = f RT,(fl ";fl )RT, (fl;11 ') dfl. (3.34) 

In addition, 

limR (11 "'11 ') = '" y* (11 ")Y (11 ') T --.Q T, £.- I,m I.m 

= 0(11 " - fl '). (3.35) 

Consequently we may regard the function Rr(11 ";11 ') as the 
integral kernel of a semigroup (in T), which is normalized for 
all Tin the manner of(3.33). Now let us interpret Tas a time 
interval; then since by constructionR, R(N) and thus RT are 
nonnegative real functions, it follows that we can regard 
R T(11 ";11 ') as a Markov transition probability density gov­
erning an underlying stochastic process. Thus we see the 
possibility of representing the positive-definite group func­
tion R T(11 ";11 ') by means of a path integral over an appro­
priate path-space measure determined by the underlying sto­
chastic process. 

Heat kernel 

It is not difficult to see that 

RT(11 ";11 ') = (eI1 !2).1vT)(11 ";11 '); (3.36) 

namely, that RT is the Green's function G for the "heat" 
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equation, where 

~ G (11,11 ',T) = ¥1G (11,11 ',T), 
vaT 

subject to the initial condition 

G (11,11 ' ,0) = o(fl - fl'), 

and where L1 is the Laplacian on the unit sphere, 

(3.37) 

(3.38) 

L1 = -1-~sinO~ + _1_~ (3.39) 
sin 0 ao ao sin2 0 aqi . 

Thus the representation of Rr by a path integral is at the 
same time a representation of the heat kernel by a path inte­
gral. 

B. Spherical Wiener measure 

If we set €= T /(N + 1), then by definition we have 

whereil '=OQ,cpQandil "=ON+ 1 ,rpN+ I' We assert that this 
expression defines the integral of a pinned Wiener measure 
on the unit sphere, 12 

(3.41) 

where it is implicit that the paths are pinned at t = 0 and 
t = Tso that 

11' = 0 ',rp '=0 (O),rp (0), 

11" = O",cP "=0 (T),rp (T). (3.42) 

Formally the expressions (3.40) and (3.41) may be stated as 

RT(11 ";11') =JVSexp { - LiT 

X [0 2 + sin2 0 q?] dt } II dl1, (3.43) 
t 

where JV is a formal normalizing factor. The form of (3.43) 
correctly suggests that, like ordinary Wiener measure, the 
measure IL ~ is concentrated on continuous (but nowhere dif­
ferentiable) paths on the unit sphere. This feature has the 
consequence that 

d0 2(t) = vdt, 

sin2 O(r) dcp 2(t) = v dt, (3.44) 

insofar as infinitesimal integration measures go; these are 
just two of the symbolic rules of the Ito differential calculus 13 

for the problem at hand. We also see that v represents the 
temporal scale factor in the Wiener process. 

The relations (3.44) may be regarded as consequences of 
the appropriate Prokhorov formula, 14 which asserts, for ex­
ample, for arbitrary smooth functionsB (e,cp ) and C (O,cp) that 
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E (exp{ ~ I B(O,lj)) dO + ~ I C(O,lj))sin 0 dlj) 

- L I [B 2(O,lj)) + C 2(O,lj))] dt}) = 1, (3.45) 

where E denotes expectation with respect to f.l:;' including 
integration over fl ", and the stochastic integrals are inter­
preted in the sense of Ito. We illustrate this formula for a 
special choice of Band C in Sec. IV. 

Other starting points 

We next wish to outline the argument that the result for 
R T did not depend on our specific assumption that s = 1/2 
in the function Fin (3.5). Let us examine the result for the 
general case that 2s = p, and therefore that 

R (fl ";fl ') =A exp[(alp)[2 -P(1 + cos/3Y' - 1]), 
(3.46) 

where we have scaled a to alp to make the comparison for 
different p values easier. In the present situation A is chosen 
so that 

1 = IR(fl;O)dfl 

= 41TA fexp[(aIP)(V' - 1)] dy, (3.47) 

which for large a we can approximate as 

1 = 41TA fexp [ - a(1 - y) - !a(p - 1)(1 - y)2] dy, 

(3.48) 

which then leads to 

A = (aI41T)[ 1 - (p - l)la] (3.49) 

correct to the indicated order. This modification of A as 
compared with (3.18) leads to an extra overall factor 

(3.50) 

compared to the previous construction of R T • However 
there is another factor that just cancels this one. 

For brevity let 

cos 13k =cos Ok + I cos Ok 

+ sin Ok+ I sin Ok COS(<Pk + I - <Pk). (3.51) 

Then the extra factor arises from the property that, to the 
necessary accuracy, the integrand has the form (apart from 
AIN+I)) 

N 

II exp[(alp)[ [I + !(COS/3k - lW - I)] 
k=O 

N 

= II exp[a(cos/3k - 1)/2 
k=O 

+a(p-l)(cos/3k - W/8]. (3.52) 

The first term leads to the Wiener measure f.l:;' on the sphere 
just as before, while the extra term becomes 

exp[ (p - 1)1(4vE)I(cos/3k - If] 
--+exp [ (p - 1)/(16v)J(d0 2 + sin2 0 dlj) 2)2/dt]. (3.53) 
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For Wiener paths such a factor does not vanish, and we have 
shown elsewhere6 in an extension of the Ito differential cal­
culus that, almost surely, 

I 

(dO 2 + sin2 0 dlj)2)2 

dt 

= -- +2sin20d02~ +sin40~ 
I[ 

d04 d 2 d 4] 
dt dt dt 

= (3 + 2 + 3)v I dt 

=8vT. (3.54) 

Consequently the extra factor that comes from the inte­
grand, namely 

ell12)IP - l)vT, (3.55) 

exactly cancels the additional term that comes from A, lead­
ing in the end to the identical expression for RT independent 
of the starting point. For convenience we shall hereafter 
adopt our original definition of R based on spin 1/2. 

IV. PATH-INTEGRAL REPRESENTATION 

A. The unit operator 

Spin 1/2 
We start our discussion of dynamics by constructing 

integral kernels that are in the equivalence class of the unit 
operator for spin s, specifically for spin s = 1/2 and 1. To this 
end consider the positive-definite group function 

where according to (3.19) 
00 

R (fl ";fl ') = (41T)-1 I (21 + l)rl(/olUt[fl"] U [fl '] 1/0 ). 

1=0 

(4.2) 

Since 

it follows from the properties of the rotation group that R 
admits an expansion given by 

R (fl ";fl ') = (41T)-1 i: (21 + 2)1'1+ 112 
1=0 

X (I + !1/21 Ut[fl"] U [fl '] II + !1/2)' 
(4.4) 

where the coefficients 1'/+ 112 are given in terms of the 
Clebsch-Gordan coefficients C (s I ,S2' j;m l,m2) by the relation 

(21 + 2)1'1+ 112=(2/ + l)rdC(/,!,l + !;O,!W 

+ (21 + 3)rl+ IIC(I + q,l + !;O,!W· 
(4.5) 

This relation reduces simply to 

1'1+ 112 = !(rl + rl+ I)· (4.6) 

We renormalize the series in (4.4) by dividing both sides by 
1'1/2' thereby introducing 

(4.7) 

John R. Klauder 1801 



                                                                                                                                    

and 

R (fJ ";fJ ')=(41T)-1 i (21 + 2)1'1+ 112 

1=0 

X (I + ~1/21 Ut[fJ"] U [fJ '] II + !ld. 
(4.8) 

The leading term in this sum is then 

(41T)-12<!1/21 Ut[fJ "] U [fJ'] 1~1/2) 

= (21T)-1 (fJ "'~1/2IfJ ',11/2)' (4.9) 

and thus it follows thatR (fJ " ,fJ ') is in the equivalence class of 
the spin-I/2 kernel (4.9) which is a member of the equiv­
alence class of the unit operator. In the notation introduced 
in Sec. II, 

R (fJ ";fJ ') = (21T)-I(fJ ",11f2IfJ "~1f2)E.C' (4.10) 

It follows that the N-fold convolution of R with itself, 

R(NI (fJ ";fJ ')= j R (fJ ";fJ N ) ... 

XR (fJ2;fJ l )R (fJl;il ') dilN···dil2 dil, 
(4.11) 

is given by the expression 

R(NI(il ";fJ ') = (41T) i (21 + 2)?)':~)i 
1=0 

X (I + !1/21 Ut[fJ"] U [fJ '] II + 11/2), 
(4.12) 

which, since 1'1/2= 1, is still in the equivalence class of the 
spin-l/2 unit operator. We are again interested in the limit 
N-oo subject to the choiceofa = 2(N + 1)/vT= 2/vE.For 
large a it follows from (3.23) and (4.6) that 

rl+ 1/2 = 1 - [1(1 + 1) + (l + 1)(1 + 2)]I2a, (4.13) 

and in particular that 

rl / 2 = 1 - lIa. (4.14) 

Consequently, we find that 

RT(fJ ";fJ ')= lim RfN)(fJ ";fJ ') 
N~ro 

ro 

= (41T)-1 L (21 + 2)e - 1121fl + 2)vT 
1=0 

X (I + 11/21 Ut[il"] U [fJ '] II + h/2), 
(4.15) 

which is still an element of the equivalence class of the spin-
1/2 unit operator. Let us now seek a path-integral represen­
tation of this expression. 

By definition 

RT(fJ";il') = limriiiN+l}j···f 
N~ro 

N 

X II (fJk + l,hdilk,h(2) 
k=O 

N 

XR(fJk+ l ;fJk)I1dfJk, (4.16) 
k=! 

where fJ "=fJN+ I and fJ '=fJo' In order to evaluate this 
limit we first observe that by themselves the R factors along 
with the dil factors lead to the Wiener measure on the 
sphere. The rest of the expression leads to some weighting of 
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this measure. Clearly the initial factor 

ri/iN + ll-evT12. (4.17) 

For the remaining factor we first note for general Sm 

(which we momentarily suppress) and for continuous Wie­
ner paths that lS 

N 

II (fJk+1IfJk ) 
k=O 

-exp [ - f (fJ (t )ldfJ (t) 

- ! f (dil (t )1(1 - lil (t) (il (t )1)ldfJ (t) ], (4.18) 

where fdil (t )=d lil (t I). When m = s it follows, for the 
problem at hand, 16 that this expression becomes 

exp{iS f cos 8 (t) dq:; (t) 

- ~ sj[d8 2(t)+sin 2 8(t)d¢(t)]}. (4.19) 

As a consequence ofIto's law (3.44) we learn that, for general 
s, this factor in the integrand becomes 

exp( - svT 12 + is f cos 8 dq:; ), (4.20) 

where the remaining integral represents a well-defined sto­
chastic integral. 

Combining the relevant factors in the case s = 1/2 we 
learn that 

RT(fJ ";fJ ') 

= eVTI4 f exp[il/2 f cos 8 (t) dq:; (t )]d,u~(8,q:;) (4.21) 

provides a path integral representation for an element in the 
equivalence class of the spin-l/2 unit operator. 

Although this formula holds for all T, the part of inter­
est to us-the element of the equivalence class of the spin-II 
2 unit operator-is independent of T. Were it not for the 
prefactor it is apparent that as T grows large the entire inte­
gral would decrease. Thus the need for an increasing prefac­
tor is apparent, and as a semigroup representation even its 
structure is fixed, only the specific factor (v/4) remaining 
undetermined. In this way we can understand the need for a 
prefactor here and in subsequent relations as well. 

Spin 1 

Let us now outline the analogous calculation for a spin-
1 case. Thus we now set 

R (fJ ";fJ ') = (fJ" ,l l ffJ ',11)R (il ";fJ ') 
ro 

= (41T) - I L (2/ + WI 
1= 1 

x(/1Iut[fJ"]U[fJ']I/I)' (4.22) 

where the sum starts at I = 1 since there is no spin-zero state 
with m = 1. The coefficients rl are again given by Clebsch­
Gordan coefficients, and it follows for I> 1 that 

rl =Hrl +(2/+ 1)-1[(/+ l)rl _ 1 +lrl+I]I. (4.23) 

We renormalize the coefficients according to 

(4.24) 
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and let 
00 

R (11 ";11 ')=(417")-1 L (21 + l)r/ 
1= I 

X (/IIU t [I1"] U [11'] III)' 

which is then in the same equivalance class as 

(417")-13(ld ut[I1"] U [11') III) 
= (3/417")(11" ,11111 ',11) 

(4.25) 

(4.26) 

appropriate to the spin-l unit operator. The N-fold convolu­
tion of this R leads to 

00 

R(N) (11 ";11') = (41r)-1 L (21 + l)l1N+ I) 

/=1 

X (III ut[I1"] U [11'] III)' (4.27) 

and again we take the limit as N...-.oo. For large a it follows 
that 

r l = 1- 21a, 

r/ = 1 + [2 -/(1 + 1)]la, 

and thus in the present case 

(4.28) 

RT(11 ";11 ')== lim R(N) (11 ";11 ') 
N_ao 

= (41T)-1 i: (21 + l}e(1I2)(J-I)(J+2)VT 
/=1 

X (/IIU t [I1"] U [11'] III)' (4.29) 

which is still a function in the desired equivalence class. 
For the path-integral representation of (4.29) we need to 

consider the result of 
N 

IT rl-
I (l1k + 1,1dl1k,I I ), 

k=O 
(4.30) 

which according to the remarks made earlier contributes in 
the limit N...-. 00 the factor 

(4.31) 

to the integrand. Consequently we find for the spin-l case 
that 

RT(11 ";11') 

= eVT/2fexP[J cos () (t) d9' (t) ]dJl~(()'9') (4.32) 

provid~ a path-integral representation for an element in the 
equivalence class of the spin-l unit operator. 

Limiting form 

We should observe that in each of the indicated cases 
the deviation of the path-integral expression from the true 
expression is at least of order e - vT. Consequently the limit 
v...-. 00 will yield just the leading term, which is the desired 
integral kernel. In particular, for spin 1/2 for example, we 
have the relation 

(217)-1 «() 11,9' "'!I/21O ',9' ',!t/2) 

1803 

= ~~eVT/4Jexp[i ~ Jcos ()(t) d({J(t)]dJl!;.((),9')' 

(4.33) 

J. Math. Phys., Vol. 23, No. 10, October 1982 

Of course it should be recalled that the Wiener measure de­
pends on vas well. The intuitive reason for the validity of this 
expression is perhaps best seen from the formal expression 
(3.43); for if we formally take the limit V...-.oo, then according 
to (3.43) it follows that 

«()" ,q;" ,!1/218 ',q; ',!I/2) 

=.A/JexP(i ~ jcos()q,dt )II, dl1l(t), (4.34) 

which is just the usual formal path-integral expression for 
the spin-1/2 propagator for vanishing dynamics, where..#" is 
a formal normalization constant.I,s We remark in addition 
that the leading correction to this expression which is sug­
gested by (4.33) has been useful in interpreting the station­
ary-phase approximation to the formally defined path-inte­
gral expression for spin-coherent states. 16 Here we obtain 
confirmation of that procedure on the basis of the general 
approach adopted in this paper. 

B. Nonvanlshlng Hamiltonians 

For the introduction of dynamics let us concentrate on 
the spin-l/2 case and initially take as a Hamiltonian 

K = K(t ) = y(t )S3' (4.35) 

where r is a suitably smooth function. In a certain sense 
there is no loss of generality (when r is constant) in assuming 
K = rS3 since in a two-dimensional space any Hermitian 
operator when diagonalized can be written as a multiple of 
S3 and the identity operator (12), At any rate, this is the sim­
plest example to treat; other examples are treated later. 

If we set 

r = iT y(t ) dt, (4.36) 

then it follows for spin 1/2 that [cf. (4.15)] 

R ~(11 ";11 ') 

= (417)-1 i: (21 + 2)e - (1/2)/(/ + 2)vT 

1=0 

X (I + !Id ut[11 "]e - iFS,U [11') II + !t/2) (4.37) 

= (417)-1 i: (21 + 2)e - (112)/(/+ 2)vT 

1=0 

X (I + !1/21 ut[ () ",9' ") U [() ',9' ' + r] II + !1/2) 

provides a function which is in the equivalence class of the 
evolution operator. To determine a path-integral representa­
tion ofthis expression we return to (4.16) and simply add 
r k E, where r k ==y(kE), to the appropriate 9' k factors (those in 
kets) in the integrand. Effectively only two changes take 
place, one in the spin-1/2 factors and one in the R factors. In 
the former we find a change in the phase factor to 

exp(i + f cos () d9' - i ~ f r cos () dt)' (4.38) 

which for s > 1/2 has an obvious generalization according to 
(4.20). 

The change introduced by the R factors is somewhat 
more complicated. To find this change observe, for large N 
and in the presence of r, that 
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r " I f f( 1 )(N + I) R (N)(/J ;/J ) = ... 21TVE 

[

IN ] N 

Xexp VE k~O(COSPk - 1) JJld/Jk' 

(4.39) 

where 

cospl =COSOk+ 1 cos Ok 

+ sin Ok + I sin Ok COS(lPk + I -lPk - rkE). 
(4.40) 

According to (3.40) we know how to describe the limit as 
N_oo when r=0, so let us concentrate on the additional r­
dependent terms. Since 

cos(lPk+ I -lPk - rk E) 

= cOS(lPk + I -lPk )cOS(rkE) + sin(lPk + I -lPk )sin(rk£)' 
(4.41) 

the difference in the exponent from the vanishing- r case is 
given by 

~ i (sin Ok+ I sin Ok {COS(lPk+ I -lPk)[ COS(rkE) - 1] 
VE k=O 

+ sin(lPk+ I -lPk)sin(rkE)}). (4.42) 

In the limit N_ 00 the only non vanishing contributions that 
survive for continuous Wiener paths on the sphere are those 
that arise from expanding cos (rkE) to second order in E, and 
from expanding sin (lPk _ I -lPk) and sin (rkE) each to first 
order. As a consequence, in the appropriate limit, (4.42) 
leads to 

~ fr(t )sin2 0 (t ) dIP (t ) - _1_ fr(t )sin2 0 (t ) dt, 
v 2v 

(4.43) 

which evidently are well-defined stochastic integrals. Thus 
the final form for the path-integral expression of a function 
in the equivalence class of the evolution operator is given by 

(21T)-I</JII'~lnlexp[ -iiTr(t)S3dt ]1/J1'~1/2)E.C. 

= eVTl4fexp[i + iT(COS 0 dIP - r cos 0 dt)] 

xexp [ ~ IT(r sin2 o dIP -!r sin20dt )Jd,u~(O,IP). 
(4.44) 

Expressed in this form it is clear that this representation 
holds for all r that are locally square integrable. To describe 
a similar expression for spin 1 it is only necessary to double 
the phase and double the exponent in the prefactor (evTI4

). 

Several remarks regarding (4.44) are in order. We have 
already commented on the need and form ofthe prefactor. 
Observe next that the phase factor is just the classical ac­
tion,'5 

1= + f[cosocP-rcOSO)dt 

for a driven spin-lI2 variable. In terms of 

P=l cos 0, 

H=~rcos 0 = rp, 

1804 J. Math. Phys., Vol. 23, No.1 0, October 1982 

(4.45) 

(4.46) 

this relation reads 

1= f [PcP - H] dt, (4.47) 

and implies the classical Hamiltonian equations of motion 

p = - ~ sin 08= - aH lalP = 0, 

aH 
IP = ap = r· (4.48) 

Finally let us examine the measure,u T,y, where 

d,uT,y(O,1P )==exp [ ~ f r sin2 0 dIP 

- L f r sin2 0 dt ]d,u~(O,IP)' (4.49) 

First, we observe that (4.39) implies that 

1 = lim fR Cv)(1l ";Il ') dll II 
N~oo 

= f d,uT.Y(O,IP) dll", (4.50) 

and thus like,u ~ we can regard,u T,y as a probability measure 
when the final integral is also included. This formula may 
also be stated as 

E(exp [ ~frsin20dlP- L frsin20dt]) = 1, 
(4.51) 

which is then seen as a special case of the general Prokhorov 
formula (3.45) when B = 0 and C = r sin O. It is important 
to appreciate that, in the above sense, the measure,u T,y only 
redistributes the weight of the Wiener paths without affecting 
the total weight, which remains unchanged. In probability 
language we may say that the stochastic variable 

exp [ ~ f r sin2 0 dIP - L f r sin
2 0 dt ] (4.52) 

is a martingale. 
It is also instructive to understand this result regarding 

,u T.y in a formal manner, and we observe, in the same sense as 
(3.43), that 

f d,u T,y(O,IP) 

=A'Jexp [ ~ frsin2odlP- 2~ frsin20dt] 

x exp [ - L f(8 2 + sin
2 Oq:l)dt JIT, dll(t) 

=fffexp { - Lf 
X [8 2 + sin2 O(cP - r)2l dt}IT dll (t). (4.53) , 

We see then, in this case, that the proper result for this part of 
the integrand is obtained by replacing 8 and cP by the relevant 
classical equations of motion , 8 andcP - r, in the presence of 
the classical Hamiltonian H = ~r cos O. Similar conclusions 
are found in the case of canonical variables.3 

Other Hamiltonians 

The particular Hamiltonian S3 is especially simple be­
cause it is an element of the Lie algebra. Equally simple ex-
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pressions should exist for the other elements of the Lie alge­
bra, e.g., SI and S2' However, since we are only working with 
two ofthe three variables ofthe rotation group, we can ex­
pect a somewhat different relation for SI and S2 than for S3' 
To discuss the general case where 

JY = JY(t) = a(t)S1 + P (t)S2 + r(t)S3 (4.54) 

we note, for a k =:=a(kE), etc., that 

- i[lIk + <1PkCOSlPk-akSinlPk))S'1 ) 
Xe ~ 

- imEjak cos lPk + 13k sin lPk)cSC Ilk 
Xe (4.55) 

valid to first order in E, which up to a phase factor is again a 
spin-coherent state. As a consequence, and based on our pre­
vious results, it is not difficult to establish the path-integral 
expression for spin 1/2 (or 1) for an element in the equiv­
alence class of this evolution operator. For convenience we 
indicate this expression formally as 

(217')-1 (0" ,II' ",!I12ITexp{ - iiT 

[a(t)S1 + P (t)S2 + y(t )S3] dt ) 10 ',11' "!I!zh.c. 

=ff fexp{i ~ f[COS O~ - (a cos II' +psin tp)sin 0 - rcos 0] dt} 

xexp( - 2~ f {[8 + a sin II' - P cos tpp + sinz 0 [~+ (a cos II' + psin tp)cot 0 - r]Z}dt )II,dl1 (t), (4.56) 

where T denotes the time-ordering operator. Moreover, ex­
actly as before, it follows that the drift terms in the Wiener 
measure are restatements of the classical equations of mo­
tion as determined here from the classical Hamiltonian 

H =(O,tp'!I1zIJYIO,tp'!I1z) 
= a sin 0 cos II' + P sin 0 sin II' + r cos O. (4.57) 

We may note as before that the limit V--+oo yields the appro­
priate matrix element, i.e., as in (4.56) but without "E.C." 

It is also natural to consider Hamiltonians that are not 
simply elements of the Lie algebra. Unfortunately, at pre­
sent, our methods are unable to generate path-integral ex­
pressions for general Hamiltonias. One could imagine inte­
grating a formula such as (4.56) over the variables a,p, and r 
with some suitable weight factor. The principal roadblock in 
instrumenting this proposal is the need for a, p, and r to be 
locally square integrable. This precludes any rigorous inte­
gration to generate a Hamiltonian formulation, i.e., a Mar­
kov dynamics. However, we may expect that we can couple 
the parameter controlling the necessary nonlocality in time 
with the parameter v in such a way that in the limit v--+ 00 not 
only does the desired matrix element emerge directly but 
also the nonlocalities of the dynamics disappear at the same 
time. The question of how best to determine genuine path­
integral expressions for general Hamiltonians is clearly a 
problem of some interest and one that deserves further atten­
tion. 
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The overcompleteness of the coherent states for the Heisenberg-Weyl group implies that many 
different integral kernels can be used to represent the same operator. Within such an equivalence 
class we construct an integral kernel to represent the quantum-mechanical evolution operator for 
certain dynamical systems in the form of a path integral that involves genuine (Wiener) measures 
on continuous phase-space paths. To achieve this goal it is necessary to employ an expression for 
the classical action different from the usual one. 

PACS numbers: 03.65.Db 

I. INTRODUCTION 

As usually formulated, quantum mechanical path inte­
grals are physically elegant but unfortunately are mathemat­
ically inelegant as well. The apparently closed form of solu­
tion path integrals provide to many problems is tempered by 
the ambiguities inherent in giving the path integral a mean­
ingful definition, and this aspect has been carefully docu­
mented. I There have been several attempts to introduce gen­
uine measures and thereby restore order in path-integral 
formulations. In the works of Albeverio and H0egh-Krohn2 
and of Combe et al.,3 for example, effort is concentrated on 
multiplicative potentials which have the property that their 
Fourier transform is a bounded measure. While this limita­
tion leads to well-defined path integrals the measures in­
volved are Poisson measures for which the paths are not 
continuous but rather entail discontinuities. In addition this 
limited class of potentials does not include the harmonic os­
cillator which, to be incorporated, must be dealt with in an 
alternative fashion. 

In this paper we present a detailed analysis of a quan­
tum mechanical path integral formulation that involves gen­
uine (Wiener) measures concentrated on continuous paths, 
which deals in a natural way with harmonic-oscillator po­
tentials; a summary of our principal results has already ap­
peared in Ref. 4. Weare able to handle directly an essentially 
arbitrary quadratic Hamiltonian of the harmonic-oscillator 
type involving quite general time-dependent coefficients, all 
with one and the same Wiener measure. Superpositions over 
the time-dependent coefficients significantly widen the class 
of systems we are able to consider. 

Our approach and analysis is based on coherent states 
and their special properties, and differs considerably from 
the viewpoint adopted in Ref. 2 or Ref. 3. Before undertak­
ing our detailed analysis we sketch the general mathematical 
setting of our approach. 

alOn leave from Dienst voor Theoretische Natuurkunde, Vrije Universiteit 
Brussels, Belgium. 

hi Scientific collaborator at the Interuniversitair Instituut voor Kemwetens­
chappen (Interuniversitary Institute for Nuclear Sciences), Belgium. 

A. Consequences of coherent-state overcompleteness 

Coherent states are conventionally defined in an ab­
stract Hilbert space JY' by 

I p.q)=e'(pQ-qp110) (I) 

for all real p and q, where Q and P are an irreducible Heisen­
berg pair, and 10) denotes the normalized solution of the 
equation (Q + ;P)IO) = 0.5 These states admit the funda­
mental resolution of unity 

1= f I p,q) (p,ql(dp dq/21T) (2) 

when integrated over all phase space. As a consequence we 
may conveniently represent the vectors of the abstract Hil­
bert space by bounded, continuous functions 

t/J(p,q)=(p,qltf;), (3) 

with an inner product given by 

(t,h Itf;) = f t,h *(p,q)tf;(p,q)(dp dq/21T). (4) 

If It,h ) = I p',q') it follows that each function tf;(p,q) satisfies 
the identity 

tf;(p',q') = f %(p',q';p,q)tf;(p,q)(dpdq/21T), (5) 

where 

%(p',q';p,q) =(p',q'lp,q) 

= expW(pq' - qp') - Ulp' - p)2 

+ (q' - qf]J (6) 

plays the role of a reproducing kernel. Thus the set of func­
tions of the form (3) with the inner product (4) comprise a 
reproducing-kernel Hilbert space CC 0.

6 The reproducing 
kernel projects out a closed subspace of the spaceL 2(R2) of all 
square-integrable functions, and there remain infinitely 
many linearly independent square-integrable functions orth­
ogonal to all elements of '{f o' This feature has important 
consequences for the representation of operators on CC 0 by 
integral kernels. 
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Consider the expression 

(f/J IB I¢) = I f/J *(p",q")KB(p",q";r',q') 

X¢(p',q')(dp"dq" 121T)(dp'dq'/21T) (7) 

for arbitrary vectors If/J ) and I¢), and an arbitrary but fixed 
bounded operator B. One integral kernel that satisfies (7) is 
always given by 

K ( " " ") (" "IB I ' ') B P ,q ; p,q = p,q p,q, (8) 

but in view of the foregoing remarks there are infinitely 
many other kernels that serve equally well to represent the 
operator B. As an example we note that all kernels of the 
form 

F;.(p",q";p',q') = ~(1 + 4A) 
xexp!!i(p'q" -q'p") -A [(p" _p')2 

+ (q" - q'f]J, (9) 

where A> - ~ serve to represent the unit operator, even in­
cluding the limiting distribution as A-+ 00 , 

FA (p" ,q"; p' ,q')-+21T8( pIt - p')8(q" - q'), (10) 

which also serves the same purpose. 
All kernels that satisfy (7) for a given B form an equiv­

alence class labeled by the operator B, and which we shall 
denote by '1ff (B). Thus the examples FA in (9) and (10) all 
belong to the equivalence class '6'(1). A generic element of 
'1ff (B) is conveniently denoted by ( pIt ,q" IB I p' ,q') E.C. (where 
E. C. represents equivalence class). Any such kernel can 
serve to represent the operator B in the context of (7), or 
stated otherwise, in the form 

B = II p",q")(p",q" IB I P',q')EC. (p',q'l 

X (dp"dq" 121T)(dp'dq'/21T). (11) 

It is by exploiting this freedom of representation that we 
shall achieve our goal of representing the quantum mechani­
cal propagator by means of a path integral involving genuine 
(Wiener) measures. 

In the next section, Sec. 2, we detail the construction of 
the path integral for a special class of dynamical systems, 
following closely but with significant differences, the usual 
method of construction. In Sec. 3 we evaluate the path inte­
grals constructed in Sec. 2, while in Sec. 4 we prove that each 
of the evaluated path integrals is indeed an element of the 
equivalence class (in the sense described above) of the evolu­
tion operator for the particular Hamiltonian in question. A 
brief conclusion follows in Sec. 5, and the Appendix contains 
some details needed for Sec. 3. 

2. CONSTRUCTION OF THE PATH INTEGRAL 

We start by recalling some more properties of the co­
herent states and the Weyl operators. 

A. Basic properties and notations 

We take JY to be a separable Hilbert space, on which we 
define the Weyl operators W(p,q) as 

W(p,q) = exp[i(pQ - qP)], (12) 

where P,Q are an irreducible Heisenberg pair on JY, chosen 
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in such a way that 

W{p',q')W(p",q") 

= exp[!i(p'q" - p"q')]W(p' + p",q' + q"). (13) 

The operators W (p,q) then act on JY in an irreducible way. 
Additional properties ofthe W(p,q) are 

W(p,q)t = W( - p, - q) (14) 

and, for any operator formally written as F (P,Q ), 

W(p,q)tF(P,Q )W(p,q) = F(P + p,Q + q). (15) 

We shall use the fact that any (bounded) operator is 
completely characterized by its diagonal matrix elements 
between coherent states 

BEgo(!JI},'t/p,q:(p,qIB I p,q) = O¢:>B =0, (16) 

where the coherent states (c.s) are defined as (see Sec. 1) 

I p,q) = W(p,q)IO). 

One can also use diagonal matrix elements between coherent 
states to evaluate traces. 

A trace-class => Tr A = I dp dq (p,q IA I p,q). (17) 
21T 

Using the product rule (13) for the Weyl operators, one 
may show that (4) can be rewritten in the following form: 

[the easiest way to verify (18) is to check that the diagonal 
matrix elements between c.s. (coherent states) of the two 
sides are the same]. 

Defining In), n = 0,1,2, ... , to be the (n + l)th norma­
lized eigenstate of !(p 2 + Q 2 - 1) (which is consistent with 
the definition of 10) in the Introduction), we have in particu­
lar 

-- W(p,q)ln)(mIW(p,q) =8mn l$" 
I 

dpdq t 

21T 
(19) 

The usual technique in the construction of a c.s. path 
integral for an evolution operator U, is to reexpress the evo­
lution operator as a product U, = (U, In In, to insert the reso­
lution ofthe identity (2) between each two factors, and to 
take the limit as n-+oo (see Ref. 1) 

(p",q" I U, I p',q') 

= lim IdPn-Idqn-1 .. ·IdP1dq l 

n-", 21T 21T 
n-I 

X n (p)+pqj+IIU'lnlp),q), 
)=0 

Pn =p",qn =q", 

Po = p', qo = q'. 

(20) 

For a time-ordered product T exp[ - is: ~ H (t ) dt ], the same 
technique is used [put € = (t" - t ')/n] 

Texp [ -if'H(t)dt] = !~~!exp[ -iH(t" -€)€] 

X exp[ - iH (t " - 2€)€]· .. exp[ - iH (t ')€] J, 
which then implies that 
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(p",q"ITexp [ -iJ,:"H(t)dt ]IP',q'> 

= lim IdP .. -ldq,,-1 ···IdPldql 
,,-cc 21T 21T 

.. -I 

X II (PH I.qj+ Ilexp[ - iH(t' + jE")E"] I Pj.qj)' 
j=o 

(21) 

P .. =p",q .. = q";po =p',qo = q'. 

Basically we shall do the same here; however, instead of (2) 
we shall insert some more complicated object, and the results 
of our manipulations will no longer be the matrix elements 
(p",q" IU,",,·I p',q'), but some other element of ~(Ut·,t·) 
I From now on, we shall use the symbol U,"" to denote the 
evolution operator T exp[ - is: ~ H (t ) dt] J. 

B. The "big" space K and the vectors Ip,q;fJ) > 
We define a "big" Hilbert space K by 

where each 71'" is isomorphic with 71' (we shall not write out 
these isomorphisms explicitly, but shall always assume them 
tacitly ~nderstood). We define canonical projections Pm 
from K to 71' as follows: 

The conjugate operators to these Pm are the canonical injec-
~ 

tions 1m; these are the maps from K to 71' defined as fol-
lows: 

00 

'rIt/JE 71': Imt/J = $ "'"' .. =0 

where all but the mth "' .. are zero: 

"'n = b"mt/J· 
The following properties of the P '" , 1m are easy to check: 

(a) P mIn = bmn I K , 

00 

(b) ImPm = $ (bm .. In) 
"=0 

(this operator is zero on all the JY' .. with n=j=m, and I on 
A 

71' m; it is the orthogonal projection operator in K with im-
age 10 J $ ... $ [0 J $ K m $ 101 $ ... ), 

'" 
(c) I,Y = $ 1" 

n=O 

(22) 
m 

(as a sum of mutually orthogonal projection operators, this 
sum is well defined in the strong topology), 

(d) 1m =P;", P;" =Im. 

For any p'e[O, 1) we define a set of normalized vectors 
A 

I p,q; /3 » in 71' by the rule 

Ip,q;/3» =(1-/3)1/2 IP"12I n(W(p,q)ln») 
n=O 

= (1 - /3)1/2 ; [/3n12W(p,q)ln)]. (23) 
n=() 
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These vectors I p,q; /3 ) ) have the following overlap function: 

« p" ,q"; /31 p',q'; /3» 

= (1 - /3)I,/3"(nIW(p",q")tW(p',q')ln) 
n 

= (1 - /3)Tr[ /3 NW(p",q")tW(p',q')], 

whereN = !(P 2 + Q2 - 1).Fortheevaluationofthisexpres­
sion we refer to the Appendix [see (A9)]; the result is 

«p",q"; /31 p',q'; /3» = exp{ ~ (p'q" - p"q') 

_ 1 + /3 [(p" _ p'12 + (q" _ qlf]}. (24) 
4(1 - /3) 

One can easily calculate the overlap function 
«p",q";Olp',q';/3» as 

«pH ,q";OI p',q";/3 »= (1 - /3)\/2(01 W(p",q")tW(p',qJ)IO) 

1= (1- /3)1/2(p",q"'p',q'). (25) 

Another property of the I p,q; /3» is the following [use (19)]: 

I 

dpdq 2;;'" I p,q; /3 ) ) ( ( p,q; /31 

= (1 - /3)I,/3("+m)/2I n 
n.m 

xI dpdqW(p,q)ln)(mIW(p,q)tPm 
21T 

= (1 - /3)$(/3"ln). 
n 

(26) 

This operator is a multiple of the identity on each of the Kn­
spaces with, however, difficult constants on different spaces. 
We shall use this "generalized effective resolution of the 
identity" to replace (2) in the construction of (20) or (21). 
Note that (26) holds for any /3e[O, 1) [for /3 = 0, it essentially 
gives (2) again], which allows us to adjust /3 when needed; 
this feature will turn out to be important in our construction 
of the path integrals below. 

C. Construction of elements of CC(B) for 8EfJJ(,w') 

Let us now see how (26) can be useful for our purposes. 
Every bounded operator B on £0 is completely charac­

terized by the sequence (B 1<1 = P k BI/ kl = o· 
Using (26) twice, we obtain 

I dP~:q" f d~:q' Ip" ,q"; /3 ) ) 

X « p",q"; /3IBI p',q'; /3» (p',q'l PI' q) 

= (1 - {J)2I /3n+mln Bnm Pm , 

n,m 

Sandwiching this between < < P2,q2jOI and I p\,%O» and us­
ing (25), we find 

f dp"dq" I dp'dq' ( I" ") 
21T ~ P2,q2 P ,q 

X « P" ,q"; /3IBI p',q'; /3» (p',q'l PI,q) 

=(1- /3)(p2,q2IBoolp\,ql)· 
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Hence 

B _1 f dp"dq" f dp'dq' 1 " ") 
00--- P ,q 

1 - {3 21T 21T 
« p",q"; {3IBI P'.q'; {3» (p',q'l (27) 

or, stated otherwise, 

1/(1 - {3)«p",q";{3I B I p',q';{3 »E~(Boo)· 

What has happened in this construction is really a projection 
such as described in the Introduction: The matrix element 
( ( pIt ,q"; {31 B I p' ,q'; {3 » is a sum of different matrix ele­
ments: 

« pIt ,q"; {3IBI p',q'; {3» 

= (1 - {3)2: {3ln + m)/2(nl W(p" ,q")tBnm W(p',q')lm). 
n,m 

By virtue of (19) an matrix elements with n #0 andlor m # 0, 

give no contribution whatever when the projection is carried 
out; 

n#O or m#O 

f 
dp"dq" f dp'dq' 

~'tJt/J,tf;EK; --
21T 21T 

X (t/J 1 W(p",q")IO)(nl W(p",q")tBnm W(p',q')lm) 

X (01 W(p',q')tl¢) = O. 

Therefore, all these terms drop out when the projection is 
performed, and the only relevant term is the Boo term. 

To apply the same argument to a product of operators 
B ... B ,• we must restrict ourselves to diagonal operators, 
A~ operator BE38 (£) is called "diagonal" if V k # I, B kl = 0 
(i.e., the operator B does not mix the different K n , 

B = Gl;: = 0 B",,). Let B" ... ,Bn be diagonal operators on K; 
then 

p[ I fdPn-,dqn-, fdP,dq'B I {3» 
o (1-{3)"-' 21T ... ~ nPn-"qn-l; 

«Pn-I.qn-I ;{3IBn - II Pn-2,qn-2;{3) )",1 PI,%{3»( (PI'% {3I B tJlo 

(28) 

(p" =p",qn = q";Po=p',qo=q'). 

Again, one can easily understand what has happened; since all the Bj are diagonal, the insertion of the generalized effective 
resolution of the identity (26) does not mix the Bj,lck with different k and, as before in the linear combination off unctions in the 
left-hand side of (27), only one term, the term corresponding to Bn.DO ... BI,DO, is not orthogonal to ! (t/J I pIt ,q") (p',q'I¢); 
¢,t/JEKj. 

D. Application to the evolution operator 

It is now easy to apply (28) to the propagator Vr',r' 
= Texp[ -iJ~~ H{t)dtJ. We have 

V"", = lim Vn(t",t') (29) 

with Vn (I ",t ') = exp[ - iH (t" - €)€] exp[ - iH (t " - 2€)€] 

xexp[ - iH(t ')€] [where€ = (t" - t ')/n]. LetH(t )beaself­
adjoint, diagonal operator on K satisfying 

Hoo(t) = H(t). 
Then (28) implies 

1 J dp" - I dqn - I ... J dp,dq, "if 
(1 - {3)" 21T 21T j=O 

X « Pj + I ,qj + I ; {31 exp [ - zH( t' + k)€ J 
xl Pj,qj;{3 »E~(Un(t ",t')) (30) 

(p" = p",qn = q";po = p',qo = q'). 

As yet we are still free to choose {3 and all the Hick for k # 0; 
(30) holds for all possible choices. We shall see that, at least 
for certain quadratic Hamiltonians H (t ), it is possible to 
choose the {3, Hick in such a way that the functions (30) con-
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verge for n---. 00, and give rise to an element of ~ (Vr ',r')' 

To show how the Wiener integral emerges, we first 
study the case H (t ) = O.ln this simple case, wetakeH(t) = 0 
[i.e., 'tJ k, Hkk (t ) = Hoo(t ) = H (t ) = 0]; the function (30) be­
comes [use (24)] 

1 fdPn-,dqn-, ... f dp,dq, 
(I - {3)" 21T 21T 

n-1 
X IT « PH I ,qH I; {31 Pj,qj; {3» 

j=O 

= 1 JdPn-Idqn-I ... JdPldQI 
(1 - {3)n 21T 21T 

XYiexP{2
i 

(Pjqj+1 -Pj+lQj) 
)=0 

-1(\~ ~) [(PHI -PY+(qHI -qY1} (31) 

(Pn =p",qn =q";Po=p',qo=q')· 

Recall7 that the joint probability density for a Wiener 
process x(t) to be at the points Xj at times tj (j = 1, ... ,m; tm 
>tm _ I > .. ·>t,>to), having started atxo at time to. is given by 
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_ rrn { 1 [1 (Xj - Xj _ I )2 ]} 
- 1/2 exp -- . 

j=1 [217(tj -tj _ I )] 2 tj-tj _ 1 

If all the time intervals are equal, Vj: tj - tj _ I = t = (tn 
- to)/n this becomes 

(32) 

In order to fit (31) with (32), we choose to = t', tn = t" and 
(1 + 11)/[2(1- 11)] = lit or 11 = (1- tl2)/(1 + tl2) 
[where t = (t" - t ')In]. With this choice for /3, it is now 
clear that the Gaussian factors in (31) are correctly chosen to 
generate independent (non-normalized) pinned Wiener mea­
sures in p and q, pinned at the starting points so that 
p(t') = p',q(t') = q', and atthefinal points so thatp(t ") = p", 
q(t") = q". We shall denote these pinned Wiener measures 
by dfL w ';_:=:~, (p) and dfL w ~:~: (q). It is also easy to see what 
the other factors in (31) become in the limit for n-+ 00, name­
ly, 

1 ( t" - t,)n 
(217tt = 217( 1 + ~t)" = 217 1 + ---

(217)n - 1(1 - /3 t 2n 

-+ f [p(t )dq(t) - q(t )dp(t )]. 

Thus (31) becomes 

217e!l" - t
V2J dfLw. ~,:=:~, (p)dfLw.~:~: (q) 

X exp { ~ f [p(t )dq(t) - q(t )dp(t)] }. (33) 

It is clear that the integrand in (33) may be given a well­
defined meaning in terms of stochastic integrals. Moreover, 
since p and q are independent stochastic variables, all pre­
scriptions for defining the stochastic integral in (33) are equi­
valent, which means that this integral is a perfectly well­
defined path integral over a genuine measure. We shall 
evaluate this integral in the next section, and show that it is 
indeed an element of 'G'(1). 

In the simple case H(t) = 0 above, we chose all thr. Hkk identical, i.e., Hkk = Hoo = O. Although this is of course the 
simplest choice, there is no a priori reason to choose all the H kk identical. Indeed, considering H (t ) =/= 0 below, we shall see that 
in general the choice ofidentical H kk does not lead to a well-defined limit of the expressions (30) as n-+ 00 • On the other hand, it 
may well be possible that two different sequences of H kk' H kk' with the same zeroth component Hoo = H ~ = H, both lead to 
well-defined but different limits of (30), both of which are elements of Crf (U"", ). 

For H linear in P,Q, 

H(t) = s(t)Q + r(t )P, 

the choice Hkdt) = Hoo(t) = H (t) is satisfactory, and the result is 

217e(I' - 1'J/2 f dfLw.p·p' (P)dfLw,q.q.(q)exp( ~ f [p(t )dq(t) - q(t )dp(t)] 

+ f [r(t Jdq(t) - sIt Jdp(t)] + f dt( - ;[s(t )q(t) + r(t )p(t)] - HS2(t) + r(t)ll). (34) 

where we assume sand r to be square integrable. Again, we shall check below that (34) is indeed an element of 'G' (T exp I - is:: 
X dt [s{t)Q + r(t )P] I)· 

For quadratic Hamiltonians, the choice of identical Hkk leads to convergence problems. We illustrate this by means of 
the simple time-independent quadratic Hamiltonian (a = constant=/=O) 

H = (a/2)(p2 + Q2 - 1). 

Let us first try the choice Hkk = Hoo = H. We get k = (t" - t ')/n] 

« PH pqj+ I; /3 Ie - JHEI Pj,qj; /3» 
= (1 - I1)Tr[ /3NW(pj+ I,qj+ I )te-iaNEW(pj,qj)] 

= (1 - 11 )(1 - l1e-iaE)-lexp{ ~ [qj+ I (- qj sin a£ + Pj cos at) - Pj+ I (qj cos a£ + Pj sin at)] 

1 + /3e - iaE . 2 • 2 } 
- . [(q+l-q.cosa£-pj.sma£) +(Pj'+1 +qj SmaE-Pj cos at) ] ; 

4(1 _ /3e- laE) j J 

see (A8) in the Appendix. 
To generate a measure in the limit n-+ 00, we have to choose 

/3= 1-bE+o(E), 

which leads to 

1810 J. Math. Phys., Vol. 23, No. 10, October 1982 I. Daubechies and J. R. Klauder 

(35) 

1810 



                                                                                                                                    

1 + pe - m£ = ~ (_2_ 0(1)). 
1_pe- ia£ E b+ia 

For PE[O,l), b is real, and the factor 2(b + ia)-I in front of E-
1 has a nonzero imaginary part as long as a=f=O, which means 

that (35) cannot generate a genuine path integral measure. At first sight, it seems that this problem can be circumvented by 
allowing P to be complex: P = e - ia£ (1 - El2)!( 1 + EI2); however, going back to (23). one sees that for fJ complex, the factor 
(1 + P - iaJ/( 1 - pe - ia£) would have to be replaced by (1 + I Pie - iaE)/( 1 - I Pie - ia£), which shows that a complex choice 
for P does not solve the convergence problems. 

All convergence problems are avoided if the H kk are chosen in the following way: 

Hkk = (aI2)(p2 + Q2 - 1) - akl = H - (H)k' 

For this choice of (nonidentical!) Hkk , we obtain [E = (t" - t ')/n] 

( ( Pj + I ,qj + I ; f3 Ie - ,H£ I Pj ,qj ; f3 ) ) 
= (1 - f3)Tr[ f3 NW(Pj+ I ,qj+ I )te-iaN£W(pj,qj)eiaN£] 

= exp{ ~ [qj+ I ( - qj sin aE + Pj cos aE) - Pj+ 1 (qj cos aE + Pj sin aE)] 

_ 1 + f3 [ (qj + I _ qj cos aE - Pj sin aE)2 + (Pj + I + qj sin aE - Pj cos aE)2] }; (36) 
4(1- p) 

see (AS) in the Appendix. 
We can now again choose f3 = (1 - EI2)/(1 + El2)[E = (t" - t ')/n]; the substitution of(36) into (30) again leads to an integral 
w.r.t. the pinned Wiener measure, and we obtain 

21Te{" - ")/2 f dll 1'._1'( p)dll I ·.~-I', (q) r-W, p _p r-w, ,q_ 

xexp{(~ +a)f[p(t)dq(t)-q(t)dP(t)] - ~(i+a)fdt[p2(t)+q2(t)]}, 
The same technique of choosing 

(37) 

Hkdt)=H(t)- (H(t)k 

works also for the time-dependent quadratic Hamiltonian 

H(t) = [a(t)/2](P 2 + Q2 - 1 + s(t)Q + r(t)P. 

For this Hamiltonian we obtain 

21Te{I' - ")/2 f df-l w:;=:"P' (p)df-l w:;·-=.;, (q) 

xexp[f{[ ~ +a(t)][p(t)dq(t)-q(t)dP(t)] - a;) U+a(t)][p(t)2+q(t)2] dt 

- [sIt) dp(t) - r(t) dq(t)] - [i + a(t)] [s(t)q(t) + r(t)p(t)] dt - HS(t)2 + r(t)2]dt}]; (3S) 

the trace to be calculated is slightly more complicated than 
for (3S); see (AID) and (All) in the Appendix. Note that to 
give a sense to (38) or (34) we have to take sand r square 
integrable in [t '.t"]. For (38) and (37) additional conditions 
on a will be introduced in Sec, 3 where needed. 

In the next section (Sec, 3) we shall evaluate the path 
integrals (33), (34), (37), and (38). In Sec, 4 we show that they 
are indeed elements of the corresponding C(j (U" ,I' ) for the 
Hamiltonians in question. 

Remark: It is not really essential in the construction of 
(2S) that the states In) are the eigenstates of the harmonic 
oscillator; the only properties used are 

l e)(mJn) = 8m ,., 

2ell p,q) = W(p,q)JO). 

We could therefore replace the vectors In) by any orthonor-
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mal set ¢J,. in 7t", as long as ¢Jo = 10); the functions p,. can 
also be replaced by a positi ve function p(A,.), where A,. are the 
eigenvalues of an operator A with eigenvectors ¢J,.: A¢Jn 
= An¢Jn with, however, the restriction that ~,.p(A,.) < 00. 

This would allow us to try the same technique 

Hu(t) = H(t) - (H(t)k 

or, even more generally, 

Hkdt) = H(t) - g(Ak,t), withg(Ao,t) = O. 

for Hamiltonians different from the harmonic oscillator; the 
problem is then to choose A,J. and g in such a way that the 
traces 

Tr[p(A )W(Pj+ I,qj+ I )te - iHII)£W(pj,qj)e i8iA.t)£] 

still have the right form to generate a genuine measure in the 
limit n-+oo, 
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In the case of v degrees of freedom (v > 1), a class of 
Hamiltonians for which the procedure above clearly works 
is given by 

H(t) = !a(t)L~ I [Aij(P;~ + Q;Qj) + 2BijP;Qj]} 

v 

+ L [Sj(t )Qj + Rj(t )Pj ], (39) 
j=l 

where A, Bare vXv matrices with A t =A, Bt = - B. The 
path integral corresponding to the Hamiltonian (39) is given 
below [expression (44)] in a more intrinsic and shorter nota­
tion system than we have used up to now (see Sec. 3A). The 
proof, given in Sec. 4, that the path integral (38) really is an 
element of the equivalence class CtJ ( Ut".t' ) for the Hamilton­
ianH(t) = !a(t)(p2 + Q2 -1) +s(t)Q + r(t)P,easilyextends 
to this multidimensional case. 

One can show that the path integral (44) also gives an 
element of CtJ ( Ut " ,t' ) for the more general quadratic Hamil­
tonian 

1 y 

H(t)=2"? [Aij(t)(P;Pj + Q;Qj)+2Bij(t)P;Qj] 
I,j= I 

y 

+ L [Sj(t)Qj +Rj(t)Pj ], 

j=l 

with Aji(t) = Aij(t), Bij(t) = - Bji(t), and A,}, Bij almost 
everywhere differentiable and piecewise continuous. The 
only change needed in (44) is the replacing of the constant 
matrices A, B by time-dependent ones. Note, however, that 
this is a generalization on the level of the path integral only, 
while for the Hamiltonian (39) (i.e., constant matrices A, B) 
the complete construction in Sec. 2 can be generalized; this is 
not true for the case where A, B are time-dependent; it would 
then be necessary to choose also the basis vectors In) time­
dependent, and the evaluation of the resulting formulas as 
traces (see above) would no longer hold. 

3. EVALUATION OF THE PATH INTEGRALS 

Since the path integrals (37), (34), and (33) can all be 
obtained from (38) [by putting, respectively, r = s = 0 for 

(37), a = o for (34), andr = s::; a = o for (33)], we shall only 
evaluate (38) here. 

A. Notations 

For reasons of convenience, and to shorten the calcula­
tions, we shall use the more condensed symplectic notation 
system, introduced in Ref. 8 and frequently used thereafter 
in, e.g., studies ofWeyl quantization9

: 

(p,q)=v, 

a(v',v") = !(p',q" _ p",q'), 

Jv = J(p,q) = (- q,p), 

s(v',v") = a(v',Jv") = ~(p'p" + q'q"). 

Some simple and useful properties of u, s, an J are 

u(v,v) = 0, 

J2 = -1, 

a(Jv',Jv") = u(v',v") = s(Jv',v") = - s(v',Jv"), 

eyJ = cos yl + sin yJ (YEe), 

a(eJYv',eyJv") = u(v',v") (YEe), 

s(eyJv',eyJv") = s(v',v") (YEe). 

(40) 

(41) 

We shall also use the following consequence of the properties 
ofJ: 

(1 - elJa)-I(a _ eiJab) 

-i a a+b 
=--coth-J(a -b) +--. 

2 2 2 

Furthermore, we introduce the notations 

Ivl2 = s(v,v) = ~(p2 + q2), 

lU(V) = exp( - ~lvI2). 

In these notations, (6) and (13), e.g., become 

(v" Iv') = eiojV',V")lU(V' - v"), 

W(v')W(v") = eiojV',v"IW(v' + v"). 

(42) 

In the symplectic notation system, we can rewrite (38) as 

xexp{f [Ii + 2a)a(v,dv) + 2u(b,dv)] + f dt [ - ali + a)s(v,v) - 2(i + a)s(b,v) - s(b,b)] }, (43) 

where we have written b (t) for (r(t), s(t)); in general, both a and b are time-dependent. 
Almost the same integral can be written for the more complicated Hamiltonian (39); while this integral would be rather 

lengthy to write in the conventional notations, in the symplectic notation system it becomes 

('"-"I/2fd '"-"() 21Te J-lw,v"_v'v 

xexp{f [u(iv + 2aCv + 2b,dv)] + f dt [ - s(v,iaCv +a2C 2v) - 2s(ib + aCb,v) - S(b,b)]}, (44) 

where now v is a 2v-dimensional pinned Wiener process, where b is the 2v-dimensional vector (R 1" .. ,Ry; SI""'Sy), and where 
Cis the 2vX2v matrix (A_B !). 

In evaluating any of these Gaussian integrals, the result will be given by the contribution ofthe extremal path, multiplied 
by a suitable constant. 
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B. Contribution of the extremal path 

To determine the extremal path, we proceed formally and extract the exp[ - !(P2 + q2)] from the Wiener measure, and 
(43) then becomes 

21Te(t" - t' l12f DV~:=~',exp{r" dt [ia( - v + aJv + 2Jb,v) - I - v + aJv + b 12]}. 

We can rewrite the integrand in the exponent as 

F(v,v,t) = - a(i + a)s(v,v) + s(v, - 2(i + alb - (i + 2a)Jv) + f(v,t) 

= - s(v,v) + s(v,2aJv + 2Jb + iJv) + g(v,t ). 

The variational equations are therefore (we assume a to be differentiable a.e.) 

or 

- 2a(i + a)v - 2(i + alb - (i + 2a)Jv - ~ - 2v + 2aJv + 2Jv + iJv) = 0 
dt 

ii - (i + 2a)Jv - a(i + a)Jv - aJv = (i + alb + Jb, 

which can be rewritten as 

[:t - (i + a)J ](:t - aJ)v = J [:t - (i + a)J lb. 

The extremal path is therefore given by 

v(t) = ea(t)J [e + eiJ(t- t'ld + JB (t)], 

where 

a(t )= rdS a(s), B (t )= rdS e - a(s)Jb (s) 

(to define a, we assume a to be locally L I), while the boundary conditions v(t') = v', v(t It) = v" impose 

e + d = v', e + eiJ(t" -t'ld = e-a(t")Jv" -JB(t "). 

We now evaluate the exponential in (45) for this extremal path. Since [from (46)] 

- v + aJv + Jb = _ iJe[a(t l + itt - t'I)Jd, 

we have [use (41)] 

ia(v + aJ + 2Jb,v) - s( - V + aJv + Jb, - v + aJv + Jb ) 

= iu( - iJeiJ(t - t 'Id + JE (t ),e + eiJ(t - t'ld + JB (t 1I + s(d,d ) 

= iu(E (t ),B (t 1I - i~s(B (t ),e + eiJ(t- t'ld) - s(eiJ(t- t'ld,c). 
dt 

Integrating this we obtain 

r"dt [ia( - v + aJv + 2Jb,v) - 1- v + aJv + b 12] 

= if"u(E (t ),B (t lIdt - is(B (t "),e + eiJ(t" - t'ld) - iu(eiJ(t" - t'ld - d,e) 

= if"dtu(E(t),B(t ll - is(B(t "),e-a(t")Jv lt ) 

- ia(e - a(t")Jv lt - JB (t") - v', [1 - eiJ(t" - t'l] -I [e -a(t")Jv" _ JB (t ") _ eiJ(t" - t'lv']). 

Using (42), this becomes 

r" dt··· = if" dtu(E (t ),B (t 1I - is(B (t "),v' + e - a(t")Jv") 

-ia(e-a(t")Jv",v')-!coth til -t'le-a(t")Jvlt -JB(t")-v'1 2• 

2 
So finally (43) is equal to 

(43) = 21Te(t" - t')/2At",t' .exP[ir" dt u(E (t),B (t 1I 

- is(B (t "),v' + e - a(t ")Jv") - ia(e - a(t ")Jv" ,v')]m [e - a(t ")Jv" _ v' _ JB (t ")] coth[(t" - t ')12), 
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where the multiplicative constant At ".t' still has to be 
determined, and where aft ), B (t ) are given by (46). 

C. Determination of the multiplicative constant 

In this and in some of the following subsections we shall 
use the shorthand dv for the measure dp dq/21T. 

With respect to this measure, we have 

f dv ii/tV) = 1. 

f dv eiPoiV',v)liJ(v)a = ~ liJ(v')P'la, (49) 

We shall also use the following property: 
Take any complex 2n X 2n matrix A (matrix elements 

A ij) satisfying 

At=A, 

A +At 
ReA = >0' 

2 ' 

let aij be the 2 X 2 matrices 

then 

(
A 2i - I ,2j _ I 

aij = 
A 2i,2j_ I 

A2i _ 1,2j ) 

A 2i,2j , 

f dvl,,·fdvn exp[ - i s(v"aijVj )] = I 1/2' (50) 
i.j~ I (detA) 

If A is real, the square root to be chosen is the positive one; if 
A is not a real matrix, the sign of (det A ) I /2 is determined as 
follows: 

~
: [0, I]_C continuous, 

(det A )1/2 = limj(.,1.), with J(O)ER+ 
A~l 2 

(A) = det(ReA + iA ImA). 

Let us now proceed to the determination of At ",t' under 
the assumption that aft ) is a continuous function (this condi­
tion will be relaxed at the end of this section). As usual, the 
constant A/ ",/' can be shown (by a variational argument) to 
be independent of the boundary conditions v',v" and of the 
linear parts of the integrand in the exponential in (45). Hence 

f t"--t' A,,,.,. = DVO---D 

X exp{f' "dt [ioi - v + aJv,v) -Iv - aJv\2]}. 

Writing this out as a limit, we obtain [as before 
6=(t"-t')ln] 

. 1 f n-I 
= hm -2- du J'"dun - I II exp [ - is(Juj+ I + a(t' + j6)Uj 6,U

j
)6 

n-oo 1T6 j=o 

where mj,j are 2 X 2 matrices defined by 

mk,k = [2 + ca(t' + k6)(i + a(t' + k6))] 1, 

mk,k+ 1= - 1 + [~ + aft' + k6)]6J, 

mk + \,k = - 1 - [~ + a(t' + k£) ]£J, 

m k,1 = 0 if \ k - 1\ > 1, 

with J [as in (40)] given by 

J - (0-1) - I 0 • 

Applying (50) to (51) we see that 
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A " , = lim _1 _____ -;-:-
t .t n-oo 21T 6(detMn)1/2 ' 

(52) 

where Mn is the 2(n - 1) X 2(n - 1) matrix constituted by 
the 2 X 2 blocks mi,j' We shall calculate the limit (52) in the 
standard way, i.e., by constructing a recursion formula for 
det Mn. In the limit for n- 00, this recursion formula will 
become a differential equation, and the solution of this dif­
ferential equation then gives an explicit expression for (52). 
Due to the particular structure of the matrix Mn , and the 
continuity of a, all a(t) dependence will cancel from the dif­
ferential equation, leading to aconstantAt ",t' independent of 
aft)! 

For n fixed we define Mn,k to be the 2k X 2k matrix 
constructed from the 2X2 blocks m"j with i,j«k in the fa­
shion 

I. Daubechies and J. R. Klauder 1814 



                                                                                                                                    

ml,1 m l ,2 

m 2,1 m 2,2 

mk,1 m k,2 

We furthermore define 

D",k = detM",k' 

D",k, I = minor in M",k of the matrix element 

(M",d2k,2k' 

and 

D",k,2 = minor in M",k ofthe matrix element 
(M",kbk- 1,2k-I' 

Developing the determinants D",k, D",k, I ,and D",k,2 into products of matrix elements with the appropriate minors (we 
develop these determinants along the last row of columns), we obtain the following two recursion relations: 

D"J = [2 + aj(i + aj)~] (D",j,1 + D",j,2) 

+ [2 + aj(i + aj)~]2D",j_1 + [1 + (~ + aj r~ rD",j-2' (53) 

Dn,j,1 +D",j,2 =2[2+aji+aj)~]D",j_1 - [1 +(~ +ajr~](D",j-I'1 +D",j_I,2)' 

where we have written a k for a(t' + kE}. The quantity of interest to us is 

I" [t' + (j - 1)€] = ~D".j' (54) 

In the limit for n-oo, this relation defines a (continuous) function I"" on [t ',t "], and we see from (52) that 

1 1 
A,-", - 21T [/00 (t ")] 1/2 ' 

(55) 

where the procedure discussed below (50) has to be applied to determine the sign of the square root. By analogy with (54), we 
define 

g" [t' + (j - 1)€] = ~(D",j,1 + D",j,2)' 

In terms of the g" ,f" the recursion equations (53) can be written as [tj = t' + (j - 1)€] 

/, (t.) = g,,(t)+ I) + 11 + ~[i/2 + a(tj+ I )]2Ig,,(tj ), 

n J 212+a(tj+.J[i+a(t)+.J]~1 

I,,(tj ) + 12 + a(tj)[i + a(tj )]€21'i(tj _.J -11 + ~[i/2 + a(tj )]21'i(tj _ 2) 
g,,(tj ) = .~ , 

2 + a(tj)[i + a(tj)] 

Substituting the expression for g" into the equation fori", and grouping the terms of order 1,~, €4,. .. together, we obtain from 
these equations the relation 

- 2/,,(t)+ I) + 6/" (tj ) - 6In(tj _ l ) + 2f,,(tj _ 2) = €2[Sjl,,(t)+ I) + (2~)+ I - 7Sj + I - 4Sj )/n(tj ) 

+(4~j+1 + 4S)+ 1 +7Sj)/,,(tj_.J+(-2~)+1 -Sj+1 -4Sj )/,,(tj - 2)] + o (€4), (56) 

where 

Sj = a(tj)(i + a(tj)]' ~j = [~ + a(tj)r 

Using the fact that ~j = Sj -1, (56) can be rewritten as 

- 2 [I" (tj+ .J - 31" (tj) + 3/,,(tj _ .J - I" (Ij _ I)] = ~I - HI" (tj ) + 2/,,(lj _ I) - 3/" (tj _ 2)] 

+ S)+ I [ - 51" (Ij) + 8/,,(lj _ I) - 3/" (Ij _ 2)] + Sj [/,,(t)+ .J - 4f,,(tj ) + 7/,,(tj _.J - 4f,,(tj _ 2)] I + 0 (€4). (57) 

Equation (57) holds for fixed n, and for}:2_n - 1, again with € = (t" - t ')/n, In the limit for n-oo, (57) will lead to a 
differential equation fori"", and as an intermediate step we obtain 

- 2/: (lj)C + o (€4) = ~[ - ~. 4f~(lj)€ + o (€2) + S)+ 1 ( - 2)/~(t))€ + o (€2) 

+ S) . 2/~(1))€ + o (€2)] + o (€4), 

hence 

I: (tj) =/~(lj) + (S)+ 1 - Sj)/~(tj) + o (€). 

It is here that the "miracle" happens: If a(t ) is a continuous function, then 

Sj+ 1 - Sj = a(t)+ .J [i + a(t)+ I)] - a(tjl[ i + a(tj)] = 0(1), 

which means that the a-dependent terms Sj drop out of the equation. In the limit n-oo, Eq. (58) becomes 
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f:,,(t) =1:" (t), 
where all the a dependence has vanished! 

To determine the initial conditions for this differential equation, we go back to the definition (54) of thein, and we easily 
obtain 

100 (t') = lim/,,(to) = lim Co} =0, 
n-oo n_oo 

I:" (t') = lim In(td-In(to) = lim E[(2+A
l
cf-I] =0, 

n-oo c n-O(} 

I:(t')=!~ In(t2)-2/~/d+/"(to) = !~{[(2+52C)(2+5IE2)_;2C-I]2_2(2+5IE2)2+ 1} =2. 

With these initial conditions, the solution of the differential equation is 

( 
t - 1')2 100 (I) = 2 [cosh(1 - t') - 1] = 4 sinh-

2
- . 

One can easily check that the procedure sketched under (50) to determine the sign of the square root of det Mn gives 

2 (t " - t '),1, I" - t ' 
lim ~det Mn = lim - sinh = 2 sinh ; 
n~oo '<~I A 2 2 

so finally [from (55)] we find 

( 
. t"-t')-I 

A,"", = 41Tsmh 2 . 

Substituting expression (59) for A,"", into (48), we have as a final result 

21Te(l" -" I12f dll w, ~:=!:exp[f [Ii + 2a)o{v,dv) + 2o{b,dv)) + f dt [ - ali + a)s(v,v) - 2(i + a)s(b,v) - s(b,b)] ] 

= 1", eXP{iII"dtII"d/2[U(b (t d,b (t2))COS( /3 (t l,t2 )) + sIb (tl),b (t2))sin( /3 (t l,t2))] 
1 - e - (t -I I I' t' 

- i r" dt [sIb (t ),v')cos( /3 (t,t ')) - alb (t ),v')sin( /3 (t,t ')) 

+ sIb (t ),v")cos( f3 (t ",t ')) + alb (t ),v" )sin( /3 (t ",t ))] - iu(v" ,v')cos( /3 (t ",t ')) - is(v" ,v')sin f3 (t ",t '))} 

{ I
' }Coth[(l" - 1')/2) 

X cu V" cos [ /3 (t ",t ')] - Jv" sin [ /3 (t ",t')] - v' - I,dt [Jb (t )cos( /3 (t,t')) + b (t )sin( /3 (t,t '))] , 

where 

Putting b (t) = [O,s(t I], a(t) = a (time independent), (60) can easily be seen to lead to expression (15) in Ref. 4. 
Remark: In what follows, we shall denote the right-hand side of (60) by F,"", (v" ,v'): 

F,",t' (v" ,v') = [1 - e - (,","1] -lexP[ir'dt alB (t ),B (t)) 

- ia(v' + e - a(I")Jv" ,JB (t")) - ia(e - a(")Jv" ,v') ]CU(V' + JB (t") - e - a('")Jv"toth [(,' -")12). 

One can easily show that these F," ,,' have an interesting property, 

ViE[t,t"]J dv F""(v,v)F,,, " (v,v") = F",," (v',v"), 

This can be proven by direct computation; it can also be considered as a consequence of the fact that 

\,.1- [ , "] fd-fd ,"-, d '_I' d 1"-" vtE t,t : v Ilw,v"_iJ Ilw, u-v' = Ilw,v'-v" 

(59) 

(60) 

This last property can be used to relax the continuity requirement on a (see above); for piecewise continuous a, we can cut the 
path integral into different pieces corresponding to time intervals on which a is continuous. For each of these pieces, our 
evaluations as carried out above hold without any problem. We can then use the "chain property" of the F, '", as stated above 
(the direct proof of which does not require a to be continuous) to show that even for piecewise continuous a the result (60) still 
holds. 
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Bringing all our conditions on a, r, and s together, we see now that 
-a has to be piecewise continuous, a.e. differentiable and locally L I 
-r and s have to be in L 2([t ',t "J). 
Now that we have calculated the integral, we shall verify in the next section that the result is indeed an element of 

Cff (U,"." ) for the corresponding Hamiltonian; we shall also discuss in what respect it differs from the matrix element 
(v"IU,".t' Iv'). 

4. THE PATH INTEGRALS YIELD ELEMENTS OF THE PROPAGATOR EQUIVALENCE CLASS 

Let us denote the function defined by (60) by F, ",,' (v" ,v'). We claim that F, -",ECff( U, ".,')' i.e., that 

fdv"fdV'IV)F,".,,(V",V')(V'1 = U,".,' = Texp [ -if"B(t)dt], 

with B (t) = !a(t )(P 2 + Q 2 - I) + r(t)P + sit )Q. To prove (61) it is sufficient to show for all v that 

f dv" f dv' (vlv" )F,"", (v" ,v')(v'lv) = (vi u, ".,' Iv). 

The equivalence of (61) and (62) follows from a standard analyticity argument: Since F,"." is uniformly bounded, 

IF, "." (v" ,v')I.;;;; [1 - e -I'" - t'I] -I (we always assume t" > t '), 

one can use [see (16)] 

to show that the function 

</> (vl,VZ) = f dv" f dv' (v2 Iv" )F,"." (v" ,v')(v'lvl) 

can be written as a product, 
2 2 2 2 

A.( )-f( ) IX\+P\+X2+P21/4 
'I' vl,vz - VI,V2 e , 

(61) 

(62) 

wherefis a complex analytic function in the variablesPI + iX I ,P2 - ixz. The matrix element (vII U, ",1' Iv2) is a function of the 
same type: 

( I U I) - ( ) - (XT + PT + x~ + P~1/4 
VI,"", V2 -gvl,v2 e 

with g complex analytic in PI + ix I' P2 - ix2• Equation (62) can be rewritten as 

Vv:f(v,v) = g(v,v). 

Because of their analyticity, this condition forcesf and g to be identical: 

VV I,V2 :f(VI>V2 ) = g(V I,V2 ) 

or 

(63) 

Now using the fact that IF,"." I is anL I function in v" - v', and the density of the linear span of the c.s. inJlt"', one sees that (63) 
implies (61). 

Note that the argument above only uses properties of the "small" space JIt"'. The "big" space K was only introduced as a 
device}o define F,"", as a path integral with respect to a genuine measure. Once F, .. 

" 
is found, we no longer concern ourselves 

with JIt'" or the I p,q; fJ», but simply prove directly that F, ".1' ECff (U,"",). 
We now proceed to prove (62). Using (vlv") (v'lv) = eio(v,v' - v"lw(v - v')w(v" - v)(see Sec. 3A and (60)), we have 

f dv" f dv' (vlv" )F,"", (v" ,v')(v'lv) = f dvn f dv'eio(v,v' - V"lw(v - v')w(v - v")[ 1 - e -I'" -1'1]-1 

X exp [ if" dt alB (t ),B (t)) - ia(v' + e - all ")Jv" ,JB (t II))] 

xexp( - ia(e -a(I"IJvl,v')]w[e-a(I"IJv" _ V' _ JB(t ")]coth[(I" - 1'112 1, (64) 
where 

a(t) = fdS a(s}, B (t ) = fdS e - a(slJb (s). 
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Introducing the change of variable utI = e - a(t")Jv", and using (41), Eq, (64) becomes 

(64) = [1 - e - (I" - I')] -lexP[i r "dt u(B (t ),B (t))]J du"J dv' exp[ - iu(u" ,JB (t ") - ra(I")Jv)) 

Xe - iqfv',JB(I") + v - u")w(v' _ v)w [u" - v' - JB (t ")]Cothf(t" - l'I/2)W [u" _ e - a(t "IJv]. 

Taking the Gaussian in v' together and completing the squares, we have 

w(v' - v)w [v' - u" + JB (t ") ]COth[((" - 1')/2) 

{ [ 
t" t' ] [ t" t']}I+ coth lll"-"'/2) 

= W v' - v + coth ~ . (u" - JB (t ")) / 1 + coth ~ 

. w [v - (u" _ JB (t "))] coth[(I" - 1')/2)/11 + coth[(t" - (')/2) I. 

Substituting this in the integral above, and making the change of variable 

u' = v' - 1 [v + coth t" - t' (u" - JB (t "))]' 
1 + coth[(t" - t ')/2] 2 

(64) becomes 

(64) = [1 - e - (I" - (')] -lexP[ir "dt u(B (t ),B (t))]J du" J du'exp[ - iu(u" ,JB (t ") - e - a(I")Jv))e - io(v,JB((") - u") 

Xe - io(u',JB(I") - u" + v)w [u" _ e - a(1 ")Jv ]W(U')I + coth[(I" - 1,)/2) • W [v _ utI + JB (t ") )Cothlll" - 1')/21/11 + coth[(I" - 1')/2 11. 

Applying (49) to the u' integral yields 

2 [ J'"' ] (64)= [l-e-(I"-I')](l + coth[(t " -t'}l2]) exp i" dtu(B(t),B(t)) 

X J du"exp[ - iu(u" ,JB (t ") - e - all ")Jv + v)]e - io(V,JBII"))w[u" - e - a(I")Jv ]w[v - u" + JB (t ")]. 

Again we group the Gaussians in u", and complete the squares 

w[u" - e -a(I")Jv]w[u" - V -JB(t ")] = w[u" - He -all")Jv + v +JB(t ")] J2w[v +JB(t ") _ e-all")Jv] 1/2. 

Substituting this into the integral, and making the change of variable 

u=u" -He-a(I")Jv+v+JB(t")], 

we obtain 

2[ (1"-1')/2 -(1"-1')/2] [J'" ]J 
(64) = [1 ~ e- II " _~)~ . 2e(l" -1')/2 exp i I' dt u(B(t),B (t)) du exp[ - iu(e-a(I")Jv,v + JB(t "))]e-io(v,JB(I")) 

Xw[v + JB(t ") - e-a(I")Jv] 1/2exp[ -- iu(u,v +JB(t ") - e- a(I")Jv))w2(u). 

Applying (49) again, this becomes 

(64) = exp[ir" dt u(B (t ),B (t)) Je - io(v,JB(1 "))exp [ - iu(e - all ")Jv,v + JB (t "))]w[v + JB (t ") - e - a(I")Jv] 

= exp[ir"dt u(B (t ),B (t))]e - iqfv,JBII"))(e - all ")Jvlv + JB (t ") 

(see Sec. 3A). 
Since (see Appendix) e - iPNlv) = le PJ v), we thus have 

J dv" J dv' (vlv" )F,",I' (v" ,v')(v'lv) = exp[i r" dt u(B (t),B (t))]e - qfv,JB(I"))(vle - iall")N Iv + JB (t ") 

= exp[i r" dt u(B (t ),B (t))] (vie - iall")NW{JB (t "))Iv). 

Our claim (61) thus reduces to 

exp[ir"dt u(B (t ),B (t))]r ia(I")NW{JB (t ")) = U,",I' = Texp [ - if" dt H(t )], 

where [see (46)] 

a(t) = j:dS a(s), B (t ) = j:dS e - a(s)Jb (s). 

We shall prove (66) by differentiation with respect to t. We have, first of all, 
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~W(JB (t)) = lim ~[W(JB (t + E)) W( - JB (t)) - I] W(JB (t)) 
dt E-o E 

= lim ~[e - ;o(B('+E),B('))W(JB (t + E) - JB(t)) - I] W(JB (t)) 
E-o E 

= - io(.8 (t),B (t))W(JB(t)) - 2is(.8(t),V}W(JB(t)) 

[the second term can be obtained by putting B = (R,s )]; then 

lim ~W(JB (t + E) - JB (t)) 
E-I) E 

= lim ~ exp( - i[ [R (t + E) - R (t)]P+ [Sit + E) - S(t)]Q J) = - i[R (t)p+ S(t)Q ]= - 2is(.8(t P11. 
E-o E 

Moreover, e - ;fJN siB, V) = s(e{JJB, V)e - ;fJN [this can be obtained from (AS) by differentiation]. 
After these preliminaries we are now ready to evaluate the time derivative of the left-hand side of (66) 

i:
t 
{exP[IJdS 0(.8 (s),B (s))]e - ;a(')NW(JB (t))} 

= [ - 0(.8 (t),B (t)) + a(t)N + 0(.8 (t ),B (t)) + 2s(ea(t)J.8 (t), V}]exp[iJ,:dS 0(.8 (s),B (s))]e - a('INW(JB (t)) 

= [a(t)N + 2s(b (t ),V}]exP[iJ,:dS 0(.8 (s),B (s))]e - ;a('INW(JB (t)). (67) 

Sincea(t)N + 2s(b (t),V) = !a(t)(p2 + Q2 - I) + r(t)p + s(t)Q = H(t), weseethatexp[if~' ds 0(.8 (s),B(s))]e-;a(,)NW(JB(t)) 
and T exp[ - iS~, H (t Jdt ] satisfy the same first-order differential equation in t. Since both operators have the same initial value 
(at t = t " they are both equal to I), they are therefore equal for all times 

eXP[iJ,:"dso(.8(S),B(S))]e-;a('"INW(JB(t")) = Texp [ - iJ,:"H(t)dt l 
This completes our proof that F,"", E~ (U,"", ). 

Remarks: Comparing F,"", (v" ,v'), 

F, ",': (v" ,v') 

= 1 _ e !('" -") eXP[iJ,:" dt 0(.8 (t ),B (t))]e - ;o(v',JB(t "))exp[ - io(e - a(' ")Jv" ,v' + JB (t "))] 

Xll)(v' + JB (t ") - e - a(, ")JV")coth[('" - '')12 1, 

with the true matrix element (v" I T exp[ - if:~ H (t Jdt] Iv') [see (65)], we immediately see that the two expressions are very 
similar; there are only two differences: an overall extra factor [1 - e - I'" - "1]-1 inF,""" and an exponent coth[(t " - t ')/2] for 
the ll)-factor in F,":" , where this exponent is 1 in the true matrix element. [These similarities were already noticed in Ref. 4 for 
the slightly simpler HamiltonianH (t ) = alP 2 + Q 2 - 1 )/2 + sit )Q]. In the limit where the time integral diverges, t " - t ' _ 00, 

both these differences disappear 

l-e-('"-t'J_l, coth t"-t' -1, 
2 

which means that as t " - t ' - 00, the function Ft" ,t' approaches the true matrix element; its component orthogonal to 
[ (p" ,q" It/J ) (,pI p',q'); t/J, f/JE $"1 vanishes! 

This is easily understood if one tries to analyze what happens for t " - t ' _ 00 to the construction we made in Sec. 2. As an 
example we take the time-independent Hamiltonian H = (a/2)(P 2 + Q 2 - I). Then 

Ft",t,(p",q";p',q') = lim 1 I [/3 k/(l- /3)kfdVk_I ... dVIYf(IIW(v. dte-ia(N-I)EW(v.Jl!) 
k~oo (1 - /3)k 1=0 j=O 1+ J 

and 

00 

= lim L /3k/(IIW(v")te -;a(N-/I(t"-t')W(v')Il). 

k~OO/=O r----------------------------------------, 
The term corresponding tol = Oissimply (v" / U,"",/v'). For 
I #0, however, we also have to take into account a factor 

In the limitt" - t '-00, these factors e - It" - t'l/~fori #0, 
which means that all the contributions to Ft" ,t' from terms 
with I #0 disappear. Only the I = 0 term is left over; since 
this I = 0 term is exactly (v" I Ut ",t' Iv'), we see that . . ( t" - t' )kl( t" _ t') - kl hm /3 kl = hm 1 - 1 + ---

k~oo k~oo 2k 2n 
Ft",t'(v",v') - (v"lUt",t,lv'). 

II< -I'-co 
= e - It" - t'l/. 
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In the limit where t " - t '......0, FI 0 _ t' (v" ,v') approaches 
{j (v" - v'), i.e., a specific member of the equivalence class of 
the unit operator (see Sec. 1). Again, this can easily be under­
stood from our construction. For the example H = (aI2) 
X(P 2 + Q2 - 1), we now have 

Flo,I' (v",v') = Ie- Ilo 
-I'll' 

I 

X (II W(v")te - iaIN-I)(I" - tIW(v')I/). 

Ast" - t '......0, weseethate - II" - l'II_1,e - iaIN-I)(I" - 1'1_1, 

and thus as a distributional limit 

FI",I'(v",v')-IUI W(v")tW(v')I/) 

50 CONCLUSION 

I 

= "Tr"(W(v")tW(v')) 

= {j(v" - v'). 

In this paper we have stressed the basic feature of over­
completeness of coherent states, and have used this fact to 
construct integral kernels to represent the evolution opera­
tor for a limited class of dynamical systems in the form of 
path integrals expressed in terms of Wiener measure. 

Equation (38) presents the path integral representation 
for the most general one-dimension dynamical system that 
we are able to treat. This equation provides a novel formula­
tion of the (equivalence-class) propagator and suggests a var­
iety of further directions for study in addition to providing 
an alternative computational scheme for such propagators. 
However, our results are less than optimal in one sense. The 
necessary restriction that sand r be square integrable prohib­
its our results from describing local-in-time potentials when 
integrated over the external fields but only leads to non local 
potentials. It is important to learn if and how this limitation 
can be overcome, and this problem may be clarified by using 
basic states other than the harmonic oscillator eigenstates. 
As observed in Ref. 4, the complex expression that plays the 
role of the classical action in the Wiener measure formula­
tion of quantum mechanical path integrals may be formally 
interpreted in a natural way: The phase of the integrand is 
such as to form a martingale in which the phase-space mo­
tion is driven by the classical equations of motion. It is inter­
esting to add that an entirely analogous type of construction 
can be given for kinematical groups other than the Heisen­
berg-Weyl group, and in particular for the kinematics of the 
SU(2) spin group. 10 

APPENDIX 

We calculate the traces needed in Sec. 2: 

Tr[ ,BNW(p",q")tW(p',q')], 

Tr[ ,BNW(p" ,q")te - iaN'W(p',q')], 

(AI) 

(A2) 

Tr[ ,BNW(p" ,q")te- iaNEW(p',q')eiaN,], (A3) 

Tr[ ,BNW(p",q,,)te-ilaN+sQ+rPI'W(p',q')eiaN,], (A4) 

where N = !(p 2 + Q 2 - 1). The last trace (A4) corresponds 
to the choice Hkdt) = H (t) - (H (t) k with H (t) 
= !a(t )(P 2 + Q 2 - 1) + s(t)Q + r(t)P (see the end of Sec. 

2); since (Q) k = (P) k = 0, the term - (H (t) k leads to 
the factor eiaN, in (A4). We start by proving two lemmas. 

with 

Lemma 1: 

(i) e-irNW(p,q) = W(p"ql)e- iIN 

PI = - q sin t + p cos t, 

qt = q cos t + p sin t. 

(ii) e - iriaN + sQ + rSI 

(AS) 

= elil2a )(s' + ?)IW( _ ~, ~ s)e - iatNW( ~, ;). (A6) 

Proof 
(i) This property can be proved by direct differentiation, 

but it can also be considered to be a consequence of the pro­
perties of homogeneous quadratic Hamiltonians in general. 
Indeed, it is well known that for a homogeneous quadratic 
Hamiltonian H, the quantum evolution of a coherent state 
I p,q) is given by the classical evolution, under the same Ha­
miltonian, of the labels p,q 

e-iIHIP.Qllp,q) = Ip"ql)' 

where p"qt are the solutions for the Hamiltonian equations 
for H (p,q), with initial conditions Po = p, qo = q. Hence 
e - itNI p,q) = I p"qt)' withp"qt as in (AS). Consequently 

e- itNW(p,q)1 p',q') 

= e - itNe(1I2 Iilpq' -p'qll p + p',q + q') 

=ell12lilpq'--P'qllpt +p't,qt +q't) 

_ (1I2Ii( pq' - p'q) - (112lil Pt q't - p't qtl W( )1" ) 
- e e p"qt P t,q t 

W( ) -itNI ' ') = p"qt e P ,q , 

Since the linear span of the c.s. is dense, (AS) follows. 
(ii) We prove (A6) by differentiation. Take any'" in the 

linear span of the c.s. Then 

__ 1_(s2 + r) [ ... j '" + eli12a )ls' + ,.'It W ( _ .!..., _ ~) !!""(P 2 + Q 2 _ l)e - iatNW (.!...,~)", 
2a a a 2 a a 

=[~(P2+Q2_1)+rp+sQ][eli/2a)lS'+?ltW( _ ~_ ;)e-iaINW(~,;)]",. 
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Since the linear span of the c.s. is a core for N, (A6) follows. 
Note: (A6) is still true for a-o; for a = ° the left-hand side is equal to W( - st, - rt), while the right-hand side gives 

w _ lim e(i12a)(s' + r'),W ( -.!...., - S) w(!.!..,!!"')e - ia,N 
a--..o a a a a 

(
r - r s -S) = w -lim e(il2a)(s' + r')I'-(lIa)sina,)w -'--,-'--

a--..o a a 

= W( -st, - rt). 

Lemma 2: For all rEI(; such that Irl < 1: ~ is trace-class, and 

Tr(~W(p,q)) = ~xp[ _ 1 + r (p2 + q2)]. 
1 - r 4(1 - r) 

(A7) 

Proof Since ~ has only a discrete spectrum, with eigenvalues 1"', it is obvious that ~ is trace-class for I rl < 1. On the 
other hand, direct calculation from (AS) yields 

hence, by analytic continuation (the c.s. are analytic vectors for N), 

(p",q" I~I p',q') = exp[(r/2)(p" + iq")(p' - iq') _ !(p,,2 + q"2 + p,2 + q,2)]. 

Using (17) we now evaluate Tr(~ W(p,q)): 

Tr(~W(p,q))= J d~~q' (p',q'I~W(p,q)lp',q') = J d~~q' eli/2)(pq'-P'q)(p',q'I~lp+p',q+q') 
= ...E....!L exp r (pq' _ qp') _ ----=-I.[(p' + p12)2 + (q' + q/2)2] _ __ r(p2 + q2) J d 'd ' {i( + 1) 1 1 + } 

21T 2 2 8 

=_I_exp[_I+r(p2+l)_ (l+r)2 (P2+q2)]=_I_exp[_ l+r (p2+ q2)]. 
1 - r 8 8( 1 - r) 1 - r 4( 1 - r) 

Using this result it is now very easy to calculate the traces (AI )~(A4). Since (AI) can be obtained from (A2) by taking the limit 
a-o, and (A3) from (A4) by putting r = s = 0, we shall only evaluate (A2) and (A4) explicitly. For (A2) we get 

Tr[ PNW(p",q")te-iaNEW(p',q')] = Tr[ PNW(p",q")tW(p~,q~)e-iaNE] 

[with p~ = p' cos aE - q' sin aE, q~ = p' sin aE + q' cos aE] 

_ li/2)(P;'q'-q;'P')T[(a- iaE)NW(' '" If)] - e r pe Pa - P ,qa - q 

= 1 e(i12)(P;'q' - q;'P')ex {_ 1 + pe - iaE [( "_ ,)2 (" _ ')2]} 
1- pe- iaE p 4(1 _ pe-iaE) p Pa + q qa . 

This is exactly what was used in (3S); in the limit for a-o, we have 

Tr[ PNW(p",q")tW(p',q')] = _1_ e(i12)(p·q· -p·q')exp{ _ 1 + P [(pIt _ p')2 + (q" _ q')2]}, 
1- P 4(1- P) 

which yields (24). The evaluation of (A4) gives 

Tr[ PNW(p",q")te - i(aN+sQ+rp)EW(p',q')eiaNE ] 

1821 

= Tr[ PNW( _ pIt, _ q")e(i/2a)(s' + r')EW( _ ~, _ ~ )e-iaNEW(~, ~ )W(P',q')iaNE] 

= exp [ ~ (S2 + r)E + ~ (p"s - q"r) + ~ (rq' -SP')]Tr[ pNW( - p" - ~, - q" - ~) 

X e - iaNE W ( p' + ~,q' + ~ )eiaNE] 

= exp[_I_' (S2 + r)E + _1_' (p"S _ q"r) + _1_' (rq' - SP')] 
2a 2a 2a 

XTr{ pNW( - pIt - ~, - q" - ~ )W([ p' + ria] cos aE - [q' + sla] sin aE, 
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[p' + ria] sin aE + [q' + sla] cos aE)} 

[ i (2 .2) i (" " ) i (' 'I] 1 =exp -s +r E+- P s-q r +-rq -sp .---
2a 2a 2a 1-{J 

Xexp((iI2)! q" + sla)[(p' + rla)cos aE - (q' + sla)sin aE]} - (p" + rla)[(p' + rla)sin aE + (q' + sla)cos aE]j 

- 1 + {J ! [{p" + ria) - (p' + rla)cos aE + (q' + sla)sin aEf 
4(1 - (J) 

+ [(q" + sla) - (p' + rla)sin aE - (q' + sla)cos aE]2}) (AW) 

[use (A5) and (A9)]. Putting r = s = 0, this leads to (35). 
Finally, we show how, under the assumption {J = (1 - E/2)!(1 + El2), and in the approximation that E is small, (AW) 

leads to (38). (AW) becomes now 

exp[-'_' (S2 + r) + _,_' (p"s _ q"r) + _,_' (rq' _ Sp,)]_l_ 
2a 2a 2a l-{J 

Xexp!(i/2)[(q" + sla)(p' + ria) - (q" + sla)(q' + sla)aE - (p" + rla)(p' + rla)aE - (p" + rla)(q' + sla)]} 

Xexp( - (l/2E)! [p" - P' + (q' + sla)aE] 2 + [(q" - q') - (p' + rla)aE]2}) 

= _1_ exp! _ (l/2E)[(p" - p')2 + (q" - q'f] + (il2 + a)[ p'(q" - q') - q'(p" - p')] 
1 - {J 

- (a2/2)(q'2 + p'2)E - (ia/2)(p"p' + q"q')E - (i/2)[s(q" + q') + r(p" + p')]E 

- a(sq' + rp')E - s( p" - p') + r(q" - q') - !(S2 + r)E j. 

Puttingpj+! = p", qj+! = q" andpj = p', qj = q', and assumingpj+! - Pj = 0(#), q}+! - qj = 0(#), we finally obtain 

T ! (J NW( )t -i[al'iIN+'1'i)P+s('iIQ]EW( ) ial'iINEj 
r Pj+! ,qj+! e Pj,qj e 

I I! 1 2 2j =( +El2)-exp --2 [(Pj+! -Pj) +(qj+! -qj)] 
E E 

+ [iI2+a(tj)][pj(qj+! -qj)-qj(Pj+! -Pj)] -!a(tj)[i+a(rj)][p]+qJ]E 

- [s(tj)(Pj+! -Pj)-r(tj)(qj+! -qj)] - [i+a(tj)][s(tj)Pj +r(tj)qj]E-Hs(tj)2+r(tj)2]E+0(C/2 ), (All) 

which can easily be seen to lead to (38). 
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Properties of solutions for N-body Yakubovskii-Faddeev equations 
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We give a revised presentation of the Yakubovskii-Faddeev formalism based on a systematic 
study of the N-body system chain structure. Completeness properties of the corresponding 
equations in differential form are considered. The expressions of physical and spurious solutions 
are given in terms of the N-body asymptotic partition Hamiltonians eigenvectors. 

PACS numbers: 03.65.Ge 

I. INTRODUCTION 

Consider a nonrelativistic system of N particles inter­
acting via short range two-body potentials. 

The method proposed by Faddeev1 and Yakubovskii2 

to calculate the. bound states and scattering states, consists in 
decomposing the wave function into components corre­
sponding to all various chains of partitions of the N-body 
system. 

Partition ap ' 1 <p<N, is a way of grouping the N parti­
cles into p disjoint subsets called clusters. If ap can be ob­
tained by fusing the clusters of another partition b, we write 
b, Cap. A chain of embedded partitions will be denoted 

A;={a,Ca'_IC ... Cap+ICap}, l<p<r<N. 

(1.1) 

Notations A ~ , A ;r, or A :r will be used to display one or 
p p 

both of the external partitions of the chain. We eventually 
simplify notation by omitting upper indices N and aN' and 
lower indices 1 and a I since the total breakup partition aN 
and the one-cluster partition a I are unique 

A '==A ~, Ap==A;', A ==A f. (1.2) 

Let Va , l<p<N - I be the internal interaction of par­
p 

tition a p' that is, the sum of all two-body potentials internal 
to the p clusters of a p' 

The Yakubovskii-Faddeev (YF) equations can be der­
ived by defining interactions (Vp)AB which realize a chain 
decomposition of Va 

p 

I(Vp)AB = VapO p p' (1.3) 
A A B ap 

where the summation runs over chainsA
ap 

contained in ap ' 

Equation (1.3) does not uniquely define (Vp)AB' The YF-for­
malism corresponds to the choice 

(1.4) 

where VON I is the pair interaction internal to the partition 
aN _ I contained in chain A. Numbers (Y ;')AB are either 0 or 1 
and correspond to a specific correlation between chains A 
and B. They are defined in Eq. (2.13) and their properties are 
studied in Appendix A, Sec. 3. 

The partition Hamiltonian Ha = Ho + Va , where Ho 
is the kinetic energy operator with ~enter-of-m;ss energy 

alLaboratoire associe au C.N.R.S. 

removed, can be decomposed using (1.3) and (1.4) as 

(1.5) 

(1.6) 

Let JY'be the Hilbert space spanned by column vectors 
I'll) with components I tP A ) in the Hilbert space JY' N of the 
N-body system, where A runs over the total set of chains. The 
scalar product and norm on JY' are defined by 

(<pI'll) = I «(j/A ItPA) = ('III<p)*, (1.7) 
A 

where «(j/A ItPA) is a scalar product on JY'N' The set (hp)AB 
defines a non-self-adjoint operator hp on JY'. 

The YF equations are usually considered in an integral 
form which results from the existence of the resolvent 
operator 

gp(z) = (z - hp)-I, (1.8) 

z being a complex number. The properties of gp (z) follow 
from the spectral properties of h p' They are studied from the 
equation on JY' 

(1.9a) 

called a YF equation in differential form. This equation has 
the structure of a system of coupled equations on JY' N 

(1.9b) 

Summing (1. 9b) over all chains A which contain ap ' one gets 
through (1.5) 

(z - HaJI IltPA) = o. (1.10) 
A up Au

p 

It follows that either l: A apl:Aap I tP A ) vanishes or it satis­
fies the eigenvalue equation of Ha . The solutions ofEq. (1.9) 
(and the corresponding spectra) ~iIl be called "spurious" in 
the former case and "physical" in the latter case. Obviously, 
the physical spectrum is real. Evans and Hoffman3,4 consid­
er the properties of the solution of (1.9) in the three-body 
case. They show that the spurious spectrum is real and prove 
the completeness property of the physical and spurious solu­
tions on the chain-space JY'. In the present paper we extend 
the results of Evans and Hoffman to the N-body case. The 
spectral properties of hp depend on the nature of the two­
body interactions and a rigorous proof of these properties is 
difficult. Our study relies on the assumption of completeness 
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of all partition Hamiltonians Ha and of existence, for 
1m z#O, of the resolvent operat~r 

Ga (z) = (z - Ha )-'. (1.11) 
p p 

The present paper is organized as follows: We first re­
view the YF formalism. A systematic study of the N-body 
system chain structure, of the operators Y: introduced in 
Eq. (1.4) and related correlation operators clarifies the pre­
sentation. This part, which contains no dynamical aspects 
and is relevant to any N-body system, is discussed in Sec. II 
and Appendices A and B. In Sec. III we define Hilbert chain 

spaces JY':: and chain Hamiltonians hp • We make explicit 
the structure of the matrix elements [gp(Z)]AB of the resol­
vent operator defined by Eq. (1.8) in terms of the operators 

rA.!Z) = Go(z)VaN_,GaN ,(z)V::- ;--.Gaq+,(z)V::+ 'Ga)z), 
(1.12a) 

(1.12b) 

This result is of interest to understand the structure of the 
YF equations in integral form and to study the asymptotic 
properties of their solutions. 

In Sec. IV spectral properties of chain Hamiltonians 
hp ,l<.p<.N, are studied. We present in Sec. IV B some prop­
erties of the solutions of the Schr6dinger equation 

(E-Ha )11/1) =0, 
p 

(1.13) 

which follow from the initial assumption of asymptotic com­
pleteness on the Hilbert space JY' N' Consequently we prove 
there exists a one-to-one correspondence between the solu­
tions of (1.13) and a choice of physical eigenvectors of the 
restriction of hp to the Hilbert space JY'a

p
' The explicit rela­

tion between the chain components of a physical eigenvector 
and the corresponding eigenvector of Ha is given. In Sec. IV 
C we construct spurious eigenvectors of hp from physical 
eigenvectors of the subsystem chain Hamiltonian 
hq,p + 2<.q<.N. Thus we are in position to prove that the set 
of physical and spurious eigenvectors of hp forms a complete 
basis in the chain space JY' and that the corresponding eigen­
values are real. Chain Hamiltonian hp being not self-adjoint, 
this basis is not orthogonal. We show how to construct a 
biorthogonal basis and its relation to the eigenvectors of ad­
joint chain Hamiltonianhp . 

II. CHAIN SPACE C:' 
p 

A. Definitions 

Let ap and b, be two partitions of the N-particle system. 
We use the symbol 

c5~: = 1 if b, is contained in or is identical to ap ' 

= 0 otherwise. (2.1) 

When r = p, c5~' is identical to the Kronecker symbol c5a b • 
p p p 

The symbol 

(2.2) 

will also be used. 
The chain of partitions A ; is defined in Eq. (1.1). Let 

(2.3) 
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then c5 A;;n; = 1 means chains A ; and B; are identical and 

c5 A;;n; = ° means they differ by at least one partition. Let 

~:' = {A:' ,B:, ... }bethesetofn:' chains A ; which contain 
a, ~nd are ~ont~ined in ap ' classifi~d in a specific order. (For­
mulas related to the counting of chains are given in Appen-

dix AI.) Let C:' be the set of the applications of ~:' on the 
p p 

complex number field. A vector IF) ofC:' is a sequence ofn:' 
p p 

complex numbers FA a"FBa,,..· which can be written as a col-
Up Up 

umn matrix. The space C:' is a complex vectorial space of 
p 

dimension n:'. In particular the dimension of C=C:N is the 
total number" n of chains. ' 

The norm and scalar product on C:' are defined by 
p 

(2.4) 

B. Operators on C:' 
p 

Operators 0 on C:' are represented by n:' X n:' matri­
ces of complex number~ 0 A a, B a,' The adjoint ~perator 6 is 

defined by a

p 

a

p 

(2.5) 

1. (;) operators 

Given 1 <.p < r<.N, (;) operators are defined on the chain 
space C by matrix elements in the form 

(O;LB =OA,B.(O;)A;;n;c5APBP ' (2.6) 

It results from this definition that one can consider the re­
striction of 0;, denoted by the same symbol, to any subspace 

C:' with q<.p < r<.s, 
q 

(0;) a'Ba, =c5Aa'Ba,(O;)A'R'OAPBP' 
A u

q 
u

q 
r r ~ P u q Uq 

(2.7) 

In particular, 

(O;)A"'B"' =c5a,b,(O;)A'B,oab' 
Up Up P P P P 

(2.8) 

Eventually the upper index will be suppressed in the nota­
tion of ( ;) operators if r = N. 

The (;) operators satisfy the commutation relations 

O;O~ =O~O; if p<q<.r<s or r<s<:'p<q. 
(2.9) 

2. Chain correlation operators 

In order to introduce in Sec. III the YF chain decompo­
sition of the interactions of the N-particle system, we study 
in Appendix A correlation operators 0 on C, the elements 
o AB of which are equal to 0 or 1. The value 0 AB = 1 implies 
the realization of a definite correlation between chains A and 
B. In the present section we summarize the main results of 
interest for the analysis of the solutions of the YF equation in 
differential form. 

Summation operators S; are defined for I <p < r<.Nby 

(2.10) 
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They are self-adjoint 

s; =S;. (2.11) 

In particular, 

(S~+I)AB =OAB' (S:)AB =OAPBP> (S~)AB =oA~,.(2.12) 

We define for l<;p <q<;NYakubovskii operators Y; 
through recurrence relations 

yp+I=1 yp+2=SP+2 Y'=l+(Y' -l)y,-I. 
p 'P P' P r- 2 p 

(2.13) 

One deduces the factorization property 

Y; - Y; = (Y;_I - Y;)Y;, p <q<r<;N. (2.14) 

Given a chain B and any partition a,_ I with 
0:' '= Ob, = I, there exists one and only one chain A con­

taining a:~ I' in such a way that (Y; )AB = 1. This funda­
mental property of Y; is expressed by the relation 

S '- Iy' = S' 
P P p' 

(2.15) 

III. HILBERT CHAIN SPACE ~' 
p 

A. Definition 
Let JY'QQ, be the vectorial space spanned by the set ofthe 

p 

applications 1'1') of 1&':' = [A:' ,B:' , ... j on the Hilbert space 
p P P 

JY' N of the N-body system. Vector 1'1') is a column of n:' 
components It,b .'),It,b .. ,),'" which are vectors of JY'N' P 

A up Ba
p 

Space JY':' can be considered as the tensor product 
P 

The norm and scalar product on JY':' are defined by 
P 

('1'1'1') = L(91A:,It,bA:,) = ('1'1'1')·, (3.2) 
A Or P p 

.p 

where (91 A.' I t,b A a,) is a scalar product on JY' N' 
Up ap 

If JY' N is separable, JY:: is a separable Hilbert space. 

Operators on ~r are represented by n:r X n:r matrices of 
P P P 

operators on JY' N' Definition (2.6) of (;) operators can be 

extended to the full Hilbert chain space K=JY':'N and to 
cypQs . h 

en a ,Wit q<;p < r<;s. 
q 

B. Chain Hamiltonians 
Let us define up operators on JY'for 1 <;p<;Nby 

UN = 0, (UN_I )AB = VQN_,OAB' Up = UN_I Y:. (3.3) 

Operator up is a (:) operator on JY', non-Hermitian if 
p<;N - 2. Elements (Up)AB are 0 or VaN _, according to the 
correlation property of Y:. 

We define chain Hamiltonians hp for 1 <;p<;N by 

(hN )AB = HrPAB' hp = hN + up' (3.4) 

Using Eqs. (2.10) and (2.15) one gets 

(S:up )AB 

= LOAPcp VCN _ 1 (Y:)CB =OAPBPLVCN_I (Y:)CB 
C C 

=OAPBP L VCN_I0:~_1 
CN_I 

=0 V APBP Qp (3.5) 
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Similarly, 

(S :hp )AB = 0 A PBPHQp (3.6) 

Operators up and hp realize the YF chain decomposition of 
the internal interactions and of the partition Hamiltonians of 
the p-c1uster partitions. 

Using Eq. (3.3) and (2.14) with r = N, one obtains 

up -uq =(uq_ 1 -uq)Y;, p<q<;N, (3.7) 

and from (3.4) 

hp =hq +(uq_ 1 -uq)Y;, p<q<;N. (3.8) 

C. Green's operators 

Let z be a complex number belonging to the resolvent of 
every Hamiltonian hp' I <;p<;N. Then there exists a resolvent 
operator 

gp(z)=(Z-hp)-I. (3.9) 

Left multiplying (3.9) by S:(z - hpj one gets from Eq. (3.6) 

[S:(z - hp)gP(Z)]AB = (z - HQ.l [S:gp(Z)]AB 

= (S:)AB = 0APBP' 

Left multiplying by Ga (z) = (z - Ha )-1 one obtains 
P p 

[S:gp(Z)]AB = Ga (z)o P p' (3. lOa) 
P A B 

which is equivalent to 

(3. lOb) 

Thus, gp(z) can be interpreted as a chain decomposition of 
the p-c1uster partition Green functions. It satisfies the resol­
vent identities 

gp =gq +gq(up -uq)gp, 

=gq +gp(up -uq)gq' 

(3.lla) 

(3. lIb) 

where z has been omitted for notational convenience. First 
we shall use (3. 10) and (3.11b) to obtain relations between the 
partition Green's functions which may be of use. 

Upon iterative use of(3.11b) forq = r,r - 1, .. ·,p + 1, 
one obtains 

gp = i t;·ql, (3.12) 
q=p 

with t;·ql recursively defined by 

t;·'1 = g" t;,ql = gq(up - uq + I Ji;,q + II, (3.13) 

Using (3.7) and the commutation relations (2.9) one gets 

t;·ql = yl;IZ;ql, (3.14) 

where Z ;ql is a correlation operator studied in Appendix 
A3e 

z"ql = yq+ Iyq+2 ... y,-ly' 
p P P P p' 

and yl;1 is recursively defined by 

yl;l=g" yl;l=gq(uq -Uq+l)yl;~I' 
Using (3.5) and (3.10) one obtains 

P. Benoist-Gueutal and M. L'Huillier 
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From (3.14), using formulas (A39) and (3.17) one obtains 

I,[gpl,.ql]AB = II(y;I)AC<Z~ql)CB 
A A C 

(3.19) 

and from (3.12) and (3. lOb) 

, b -

Gb)z) = I IDb: IrB~(Z), 
q ~ p bq B b, 

hq 

(3.20) 

The Green's operator Gb (z) satisfies 
p 

Gb (z) = Gb (z*). 
p p 

(3.21) 

From (3.18) and (3.20) one deduces 

Gb)z) = i ID:: IrB;(z), (3.22) 
q = p bq B ~~ 

rB;(Z) = Gb,(z)V:: I Gb, I (z) ... Gbq t I (z)V:: t IGb)Z). (3.23) 

Relations (3.20) and (3.22) are algebraical indentities. For a 
given Gb (z) they can be satisfied for any partition b, con­
tained i; bp and involve the resolvents corresponding to the 
partitions of the various chains. Of particular use are the 
relations (3.20) and (3.23) with the choice b, = bN , which 
read 

N b-
GbJz) = I IDb:Gb)Z), (3.24) 

q ~p bq 

(3.25) 

and correspond to the decomposition of Gb (z) into a sum of 
p 

operators of definite connectivity. 
Relation (3.12) will now be used with r = N to obtain 

the expression of the matrix elements (gp )AB in terms of 
partition Green's operators. To simplify the notation index 
N will be omitted in the following. 

N 

gp = Ig~ql. (3.26) 
q~p 

Using Eqs. (3.13) and (3.11) we find 

ttl =gp(vp - vp+ I )gp+ I (vp - vp+ 2)gP+2 .. ·gN~ IVpgN, 

=gp+I(Vp -vp+ l )gp+2(Vp -vp+2)gp+3· .. gNVpgp' 

Using Eqs. (3.7), (2.9), and (A36) one obtains 

ttl=gP+I(Vp -vp+ l )gp+2(Vp+ I -vP+2)gp+3 

.. ·gNVN~ IS:gp' (3.27) 

From (3.7) and (A18) we deduce 

(v p +, - v p + , + I ) = (v p +r + I - V p + , + 2 )1: ! ~ + 2 (3.28) 

Substituting in (3.27) and using Eqs. (2.9), (3.16), (A22~ 
(A30), and (3.3) one obtains 

..(pi - (- _ - )S N 15p -YP+I vp Vp+1 pgp' 

which implies, from (3. lOa) and (3.5), 

On the other hand, from (3.14) and (A38) 

(ttl)AB = I(yp )AcDAPBP> 
C 
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(3.29) 

(3.30) 

(3.31) 

which gives with (3.30) 

I(yp )AC = I(yp+ I )AC V::' IGap ' 

C C 

It is then straightforward by recursion to obtain 

(3.32) 

where r A is given by (3.23). 
Sinc; matrix element (Z ~ql )CB does not depend on 

Cq + lone obtains from (3.14) and (3.32) 

(g~ql)AB = I(Yq)AC(Z~ql)CB = (Z~ql)ABI(Yq)AC' 
C C 

= (Z~qILBrAq' (3.33) 

which gives with Eqs. (3.26) and (3.23) the explicit expression 
of (gp(Z))AB in terms of the Green's operators Ga)z) corre­
sponding to the partitions aq contained in ap ' We remark 
from (3.32) that (gp(z) )AB depends on B through purely geo­
metrical factors (Z~ql)AB' 

Definition (3.23) displays the fact that rA)Z) is an aq -
connected operator. Then the decomposition (3.26) of gp(z) 
corresponds to the decomposition of the matrix elements 
(gp(Z))AB into a sum of operators of definite connectivity. 
From (3.17), (A39), and (3.25) one gets 

(3.34) 

The self-adjoint partition Hamiltonian Ha has a real spec­
trum and Ga (z) = (z - Ha )-1 is defined f~r any Z with 
Imz::;60. Equ"ations (3.26), (3.33), and (3.23) imply thatgp(z) is 
defined for any nonreal z number. The spectrum of operators 
hp is then real. This result will be derived in Sec. IV from an 
explicit construction of the eigenvectors of hp • 

IV. YAKUBOVSKII-FADDEEV EQUATIONS IN 
DIFFERENTIAL FORM 
A. Introduction 

Consider the restriction to the Hilbert chain space 
jy'a = jy' N ® Ca of the Hamiltonian hp defined in (3.4) and 

p p 

the equation 

(4.1) 

which is a Yakubovskii-Faddeev (YF) equation in differen­
tial form. 

Spectral properties of hp derive from the study of this 
equation and depend on the nature of the two-body interac­
tions. A rigorous proof of these properties is difficult. In the 
present paper we start from the assumption of asymptotic 
completeness for any partition Hamiltonian Ha which is 

p 

believed to hold for reasonably short-range interactions. The 
main consequences of this assumption relevant to the prop­
erties of the solutions of(4.1) are presented in Sec. IV Bl and 
in the present section we show they are enough to derive the 
spectral properties of any chain Hamiltonian. Left multiply­
ing (4.1) by S: and with the help of (3.6) one gets 

(z - Ha
p
)S:I'I1a) = O. (4.2) 

From definition (2.10), S:I'I1ap> is a vector which has its nap 
components equal to the sum of I'" A > components. As a ". 
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result the YF equation may have two kinds of solutions. 
(1) A solution,,, a

p
) such that S:,,, a,) i= 0 will be called 

a "physical eigenvector." From (4.2) the sum of its compo­
nents has to be an eigenvector of Ha . Then the correspond-

p 

ing "physical eigenvalue" z is real. 

(2) A solution '''a) such that S:'''a) = 0 will be 
called a "spurious eigenvector." It may be arbitrarily closely 
approximated in the norm by a vector of the null space (Ja, of 

S: on JY'a,' 

lia=JY'N®Oa' C/ p • 
(4.3) 

where 0 a , the null space of S: on Ca is studied in Appendix 
B, Sec. 1.' • 

In the particular cases p = Nand p = N - 1, vectors 
I"a) and l"aN~') have only one component and Eq. (4.1) 
reads, respectively, 

(z - Ho)lI/Ja) = 0, 

(z-H )1'/' )=0. a"'_1 'raN I 

(4.4) 

(4.5) 

Then for h Nand h N _ 1 the eigen val ues are real and there is 
no spurious solution. Thanks to the assumption of asymptot­
ic completeness for Ho and HaN~ "hN and hN _ 1 have com­
plete sets of eigenvectors on JY'. 

Under spectral properties of the partition Hamiltonian 
H we prove in Sec. C the existence of a physical solution 
IW: ) of(4.1) in correspondence with any eigenvector ofHa • 

Ob~iously, eventual spurious solutions of (4.1) for the sam"e 
eigenvalue may be added to I"a ) to give another physical 
solution corresponding to the s;me eigenstate of Hap' Let 
9 a be a subspace of JY'a spanned by some choice of phys­
ica{ solutions of (4.1) in o~e-to-one correspondence with the 
complete set of eigenvectors of Ha . Let IX)EJY'a not con­
tained in t"a . The sum l:A IXA ) ~fits compone~ts may be 

approximat;d in the norn:'by a"iinear combination of eigen­
vectors of Ha . Let Ix) e9 a be the corresponding linear 
combination ~f eigenvector; of h p' Since 
l:A IXA ) = l:A liA ) one has .,., .,., 

Ix) - Ix) = I")e&., . 
p 

(4.6) 

Then, if the set of spurious solutions of (4.1) is a complete 
basis on tla , any vector IX)EJY'a can be uniquely approxi­
mated in th~ norm by a linear com"bination of eigenvectors of 
hp (cf. Refs. 3 and 4). To sum up, if the YF equation (4.1) 
admits a complete set of spurious solutions on tfa , and if 
there exists a set of physical solutions in one-to-o~e corre­
spondence with the eigenvectors of Ha , which span 9 a ,hp 
admits a complete set of solutions on Jzca and p 

p 

JY'a = 9 a + ~ a . 
p p , 

(4.7) 

In Sec. IV D we prove that the set of spurious solutions 
of Eq. (4.1) is a complete basis on tJ. if chain Hamiltonians 

hq,p + 2<..q<..N have a complete se;'of solutions on JY'a, 
spaces. Since it is true for q = Nand q = N - 1 this ends 
recursively the proof that the YF equation (4.1) admits a 
complete set of solutions on JY'a , therefore on JY', and the 
spectrum of any chain Hamilto~ian is real. 
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B. Physical solutions of YF equation 

We now prove by an explicit construction the existence 
of solution of YF equation (4.1) in correspondence to every 
eigenstate of Hap 

1. Eigenstates of H. and asymptotic completeness 
p 

assumption 

With a suitable system of Jacobi coordinates, partition 
Hamiltonian Ha can be written as a sum of p + I commut-

p 

ing operators 

Ha = .(-. iii + Ta , (4.8) , 2.. , 
;=1 

where il; is the internal Hamiltonian of the ith fragment of 
partition ap and Tap is associated with the center-of-mass 
kinetic energies of the p clusters. 

Consider solutions of the Schrodinger equation 

(E - Ha )11f,; (E) = 0, 
r P 

(4.9) 

written as a product of the internal eigenstates of the p clus­
ters and of their free relative-motion state. As usual in phy­
sics, "eigenstate" of Ha means any solution of Eq. (4.9) 

p 

which is of finite norm or normalizable in the delta function. 
In I If,; (E) the index a stands for the remaining set of quan­
tum n"umbers (possibly continuous) which, besides energy, 
specify the solution. 

Any solution ofEq. (4.9) satisfies for any Ei=O 
iEGa (z)II/J~ (E) = IIf,; (E), 

p p P 
(4.10) 

where z = E + iE. 
The eigenstates of Ha are of two kinds: 

p 

(1) States IlP~ (E) corresponding to bound states of the 
p clusters are call;d "bound eigenstates" of Ha , though they 
correspond, if p > 1, to a continuous part of the spectrum of 
Ha and are not square integrable. We assume they satisfy , 
the normalization relation 

(4.11) 

where the Dirac distribution 8 (E - E') is replaced by the 
Kronecker symbol 8 EE' if P = 1. 

(2) States corresponding to at least one cluster in a scat­
tering state are referred as "scattering eigenstates" of Ha . 

p 

We assume they evolve asymptotically from a bound state 
IlP ~R (E) of another partition Hamiltonian H a" where par­
tition a, is contained in ap • There are two such linearly inde­
pendent solutions ItPa' .a(E +) and II/J~' .a(E -), defined by 

p p 

ItPa; .a(E ±) = lim ItPa; .a(z), 
<-.0 ± 

(4.12a) 

ItPa"a(z) = iEGa (z)llP~ (E). 
P P' 

(4. 12b) 

This definition is meaningful only when the forces are suffi­
ciently short-range. We assume the eigenstates of Ha form a 
complete set in JY' N' which corresponds to the clos~re rela-
tion 

1 = Iioo 

IlP~p(E')(lP~p(E')1 dE' 
a E(ap.a) 

+ I8~: I i oo 

I tPa; .a(E' ±) (I/J~:.a(E' ±) I dE', 
a, a E(a, .a) (4.13) 
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written in a condensed notation, 

1 = 2: Loo IVI.:,(E')<VI.:.!E'li dE'. 
a E(a) 

(4.14) 

2. Bound physical solutions of the YF equation 

Let IlP ~ (E) be a bound eigenstate of Ha at energy E 
, p 

and Ix~ (E) be an na component vector with a single non-, , 
zero component IXB.) = IlP ~)E ). 

IX~ • .IE) = I5A •• B • .I~~p(E), (4.15) 

where Ba. is an arbitrary chain contained in ap • 

Using the restriction to Jlt"a. of gp(z) = (z - hp)-I, we 
define an na -component vector 

• 
(4.16) 

From Eqs. (3.26) and (3.33) the components of Icp~ (z) are , 
IlP ~.p (z) = iE(gp(z)k.B • .IlP ~.!E) 

= iErA (z)llP ~ (E) 
p , 

N 

+ 2: (Z~)A •• B./ErA.(z)llP~)E). (4.17) 
q=p+1 

Let us consider 

where any partition as of chain Aq is contained in ap • The 
partition Hamiltonian Ha can be decomposed into two com­
muting parts, Ha = iia +- Ta , where Ta is defined in (4.8). 

if S p p 

Any factor in r A (z) commutes with Ta . Since IlP ~ (E) is an 
eigenstate of Ta ~orresponding to the ~igenvalue Ea ,opera-

, p 

tor Ta can be replaced by Ea in any resolvent Ga (z). Since 
p p .~ 

IlP ~ (E) is a bound eigenstate of Ha , the energy E - Ea is 
less'than the least eigenvalue of ila . .'Then Ga.(z) and con"se­
quently r A (z) is not singular when E goes to zero. This . 
proves the existence of 

(4.18) 

if 15:' = 1, Ou = O. 
p ~. 

Then 

lim iErA (zlilP ~ (E» = 0 
E-..() ff P 

(4.19) 

if 0:' = 1, oan = O. 
p ~. 

Using now (4.10), one obtains from (4.17) 

~~llP~.y» =rAp+I(E)V::+IIq;~p(E). (4.20) 

This proves the existence of 

From (4.9) it is a solution of the YF equation in differen­
tial form 

(E - hpllcp~.IE) = O. (4.21) 

From (4.17), (3.10), and (4.10) 

Llq;~.p(z)} = IlP:.IE )} = LIq;~.,(E). (4.22) 
A~ A~ 
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Therefore I cp~ (E) is a physical solution of (4.1) correspond-, 
ing to the bound eigenstate IlP ~ (E) of Ha . Let us remark 

, p 

from (4.20) that Icp~ (E) does not depend on the arbitrary , 
chainBa in (4.15\. , 

3. Scattering physical solutions 

Let ItP:~tI(E) be a scattering eigenstate of Ha 
p p 

(4.23) 

Let I X:~tI(E ) be an na -component vector with a single non-
p p 

zero component 

\X~:'(E) = IlP~JE), 

Ix ~(E) = OA.pB.,llP~JE I), (4.24) 

where Ba, is an arbitrary chain contained in ap ' which con­
tains br' 

We define an na, -component vector 

1\(I:;P(z) = iEgp(z) Ix:;P), (4.25) 

with components 
N 

ItP~::(z) = L (Z~q)A.,B.piErA.lZ)Iq;~,(E). (4.26) 
q=p 

From (4.25) 

LI¢~::(z) = jEGa,(z)I~~JE) = IrP~;P(z). (4.27) 
A •• 

Then 

(4.28) 

If one admits that the vector 1\(I~~P(z) has a limit when E goes 

to 0+, then this limit I\(I:~P(E +) is a physical solution of the 
YF equation (4.1) corresponding to the scattering eigenstate 

ItP:~(E» of Ha . It remains to prove that this limit exists. 

P We remark that instead of the vector \X~~(3) defined by 
(4.24) one might have chosen any chain deco~position of 
IlP ~,(E). Indeed spurious solutions at energy E may be add­

ed to I'II~~P(E +) to give another physical solution. 
p 

C. Spurious solutions of YF equation 

With the help of (3.8), Eq. (4.1) can be written 

(z-hq)I'IIa) =(vq_ 1 -vq)YZI\(Ia)' p+2<q<N-1. 
(4.29) 

Consider the subspace of Jlt"a defined by the tensor product 
p 

JY'a. ® Q::, where Q:: defined by (B7) is a subspace of the 

null space of YZ on C::. 
We have shown in Sec. IV A that h Nand h N _ I admit a 

complete set of eigenvectors on JIt" Nand JIt" N _ I' respective­
ly corresponding to real eigenvalues. Let us assume any hq 
withp + 2<q<N has the same properties on Jlt"a •. Thenone 

can build a complete basis in the subspace Jlt"a ® Q:" of vec­
torsICl»ap(aq) with components I<PBap(aq) cor~espo~ding to 

chains Ba
p 

containing aq which satisfy 

(E - hq)ICI»a.laq) = 0, (4.30) 
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(4.31) 

Using (4.29) one verifies that vectors l~aJaq) are solutions 
of (4.1). They are spurious solutions since from (A35) and 
(4.31) 

SNI~ (a ) = yNyN-I ... yq+lyP+lyp+2 .. ·yql~ (a ) p a, q p p p p p p a
p 

q 
=0. 

Then hp admits on JYa• ® Q:;,p + 2<q<N, a complete set of 
spurious solutions corresponding to real engenvalues. 

From Eq. (B21) with ar = an one obtains the decompo­
sition of the null space tJa = JY N ® Oa of SpN on JYa . p p p 

(4.32) 

Then hp admits a complete set of spurious solutions corre­
sponding to real eigenvalues on tla . Coming back to the 
discussion at the end of Sec. IV A ;e have then proved that 
YF equation (4.1) admits a complete set of eigenvectors on 
JYa corresponding to real eigenvalues. , 

We shall now exhibit the structure of the spurious solu­
tions of(4.1) in a somewhat different matter using Eqs. (B20) 
and (4.3) which gives 

where K:' is the null space of y~ on C:· and IRa is the eigen­
space of Y: defined in Eq. (B6). In (4.33) JYN ~lRa can be 
replaced by any subspace 9 a of JYa spanned by ~ set of 
physical solutions of hq in on~ to one 'correspondence with 
the eigenvectors of Ha . Since JY N=9 a' Eq. (4.33) reads . " 

(4.34) 

One can build a complete basis of vectors in 9 a ® K:' from 
the physical solutions of hq and JYa• and the n~ll eig~nvec­
tors of y~ on C:;. These vectors satisfy Eqs. (4.30)-(4.31). 
Therefore they are spurious solutions of (4.1) corresponding 
to the eigenvalues which belong to the spectrum of H . For­
mula (4.34) displays the fact that the complete set of s;~rious 
solutions of hp on JYap can be constructed from the physical 
solutions of hq and the null space of y~ with p + 2<.q<N. 

In particular case of the three-body problem andp = I, 
Eq. (4.34) reduces to 

(4.35) 

K:: is a two dimensional space. To each solution of 
(E - Ho)ltP~(E) = 0 correspond two independent spurious 
solutions of h I 

l'IIf·2(E) = -I~(E) ,1'IIf·3(E) = 0 . 
( 

I~(E) ) ( ItP~(E) ) 

o - ItP~(E) 
(4.36) 

Observe that spurious solutions exist only for eigenvalues E 
above the three particles breakup threshold. There is no 
spurious solutions when one is looking for bound states of 
the three-body system or scattering states at energies below 
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the three particle breakup threshold. These properties ofYF 
equation in differential form are given in Ref. 3 for N = 3. In 
the general N-body case the equation (E - hl)I'III) = 0 ad­
mits no spurious solution if E is less than the three cluster 
breakup threshold. 

D. Dual solutions 

Let us construct a complete basis on JYa of physical 
and spurious eigenvectors of the restriction of hp to JYap 

along the decomposition of JYa p 

(4.37) 

given by Eqs. (4.7) and (4.34). 
Let I'II~'T(E) be any member of this complete set. Index 

p 

l' runs from 1 to na , the value l' = 1 corresponding to phys-
p 

ical solutions. Each l' > 1 value specifies both a partition aq 

and a basis vector in K:q. To each eigenvector I'II~'T(E) cor-
p p 

responds an eigenvector ItP~ (E) of Ha , . . 
(E - Ha )ltP~ (E) = 0, . . 
<tP~'(E')I~ (E) = Daa,D(E - E'). (4.38) . . 

Index a stands for the remaining set of quantum numbers 
possibly continuous which besides energy E specify the solu­
tion. Ifp > 1, for each 1'value, energy Ebelongs to the contin­
uum K~ET' where ET is the least eigenvalue of the corre­
sponding partition Hamiltonian Ha . . 

The complete set of eigenvectors I'II~,T(E) is not or-
thogonal since hp is not self-adjoint and ';e proceed in the 
following to the construction of the associated biorthogonal 
basis. Assume that the N-body Hilbert space JY N is separa­
ble. Let lui)eJY' N be a member of a complete orthonorma­
lized basis 

(4.39) 

Let p be an index running from 1 to na , which specifies a 
particular chain Aa denoted A ~). Let !Xi,p )eJY'a with 

p p p 

components 

IXi'PAa ) =DA AiPllu;). 
P (Jp Up 

(4.40) 

It results 

<xi,plx;,p) = DijDpp" (4.41) 

and the closure relation on JYa p 

(4.42) 

Since eigenvectors I'II~,T(E) form a complete basis on JY 
any vector IXi.p) can be expressed in a unique way as a, 

(4.43) 

which defines functions a't,pT of E. Let (\ii~;T(E) I be the distri­
bution on JYa defined by 

p 

(\ii~;T(E) IXi,p) = af.;,T(E), (4.44) 

which is equivalent to 

(4.45) 

P. Benoist-Gueutal and M. L'Huillier 1829 



                                                                                                                                    

Substituting (4.45) into (4.43) gives 

IXi.p) = 2:L roo IlJI~;T(E) (W~;T(E )IXi.P ) dE. 
T a JET 

(4.46) 

The relation being true for any I Xi.p) implies the closure 
relation 

(4.47) 

The sequence of pairs [IW~'T(E ),(w~,r(E )11 defines a com­
plete biorthogonal basis onJroo • Fro~ Eq. (4.47) one obtains 

" 
hp = L2: 100 

E IlJI~;T(E) (W~;T(E) I dE 
T a E, 

= L2: 100 

IlJI~JE) (W~JE II hp dE. 
T a E, 

After substraction of these two relations, one obtains from 
the linear independence of the vectors IlJI~'T(E) 

" 
<\ii~;T(E) Ihp = E (W~;T(E) I, (4.48) 

which implies that IW~,T(E) is an eigenvector of the adjoint 
chain Hamiltonian fir>'P 

The explicit construction of the 1\ii~,I(E) eigenvector 
of fip corresponding to the physical eigen~ector IlJI~;I(E) of 
hp is very easy. Let us add up the nap components of the 
vectorial relation (4.43). On the left-hand side from (4.40) one 
obtains I U; ). On the right-hand side, spurious solutions r > 1 
are eliminated. One obtains 

(4.49) 

and from (4.38) 

a7,;,I(E) = <tPaJE )Iu;) (4.50) 

does not depend onp. From (4.45) and (4.40) one verifies that 
the no components of IW~,I(E) 

p " 

IW~~~(E) = L<UilrP~JE)L8AQpA~~lu;) = IrP~JE) (4.51) 
I p 

are equal. 

V. CONCLUDING REMARKS 

The Yakubovskii-Faddeev method solves the many 
body problem in a natural way by decomposing the Hamil­
tonian according to all chains of partitions corresponding to 
all possible paths which can be followed to fuse the particles 
together. Our presentation outlines a structural analogy 
between the YF formalism and the channel-coupling array 
theory4.5 which follows from the introduction in both theor­
ies of decomposed interactions, chain decomposition in the 
first case [Eq. (1.3)] and partition decomposition in the sec­
ond case. This analogy involves similar properties such as, 
for instance, the existence of spurious solutions for the equa­
tions in differential form (Sec. IV C) and the fact that the 
physical duals of both theories have similar equal compo­
nent nature [Eq. (4.51)]. However there is a main difference. 
In channel-coupling array theories spurious solutions can 
occur for complex energies. We have shown, on the con­
trary, that the spectrum of any YF chain Hamiltonian hp is 
real and that the set of its eigenvectors (physical and spur-
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ious) is complete. 
The resolvent operator gp (z) = (z - gp) - 1 exists for any 

complex number z = E + iE. The resolvent identity 

(5.1) 

can be considered as an integral equation to calculate gp (z) 
and correspondingly any many-body wave function 

IlJI!-fJ(z) in the chain space cW'a . The matrix notation per­
mit~ us to stress the formal analogy between Eq. (5.1) and a 
Lippmann-Schwinger equation in the space of partitions 

GaJz) = Ga.(z) + Ga.(z)(Va
p 

- Va)Ga)z). (5.2) 

Both equations have a unique solution for z complex, but 
there is an essential difference. 

Equation (5.2) is not well behaved because its kernel 
cannot be connected after a finite number of iterations. On 
the contrary, Eq. (5.1) considered in the particular case 
q =p + 1, 

gp(z) = gp + dz) + gP+ 1 (z)(Vp - Vp + 1 )gp(Z), (5.3) 

has its N - p - 1 iterated kernel [gp+ 1 (z)(Vp - Vp+ 1 )]N- P 
with the connectivity of a p-cluster partition. Indeed, the 
matrix element of the coupling potential 

(vp - Vp+ 1 )A"Bp = Va, ,CY: - Y:+ 1 )A"Bp (5.4) 

connects two clusters of partition bp + 2 to form a new parti­
tion ap + l' where ap + 1 -:Jbp + 2 but ap + 1 =l=bp + l' This string 
of restrictions on the coupling of chains ensures an increas­
ing connectivity with each iteration. 

Thus the N-body prOblem can be solved in a systematic 
manner by induction through the hierarchy of connected­
kernel YF equations (5.3) starting fromp = N - 1 up to 
p=l. 

Consider, for instance, the YF integral equation 

IlJIb,.fJ(z) = Iq:{(E) + R'?(z)(v 1 - v2)llJIb,.fJ(z) , (5.5) 

where I cpf;, (E ) is the physical eigenstate of h2 corresponding 
to a two-cluster initial bound state I~, (E ). It can be for­
mally solved by 

I lJIb,,{J (z) = iEg 1 (z) I cpf;, (E ), 

which proves the uniqueness of the solution. 
Adding up all chain components one gets 

LlrPb"fJA (z) = iEG (z)LIq{,A (E i), 
A A 

= iEG(z)I<p~,(E) = IrPb"fJ(z), (5.6) 

that is the N-body wave function. 
In Sec. IV C, we found that the YF equation in differen­

tial form 
(E-hdllJl(E) =0 (5.7) 

may have "spurious" solutions (i.e, ~ A I rP A (E) = 0). These 
solutions can be obtained from the YF integral equation (5.5) 
when one substitutes for the inhomogeneous term a spurious 
state. 

In Sec. III C we have analyzed the connectivity struc­
ture of the Green's operator 

P. Benoist-Gueutal and M. L'Huiliier 

(S.7a) 

(S.7b) 

1830 



                                                                                                                                    

r = G V G VaN-I· .. G Vao+IG. (S7c) 
...4" 0 Q N - 1 G N _ 1 QN-l a,+l Q q a" • 

Dynamics enters into the matrix elements of t q
, only 

through the factor rA (z), the other factor (Z~q')AB being 
purely algebraic. Te~ r A (z) is the most connected part of 
{gq (ZllAB' Then if one assu~es gq is known for q>2, the un­
known part of g I is only its most connected piece 
(i/')AB = rA· From (3.11) and (3.16), it satisfies an integral 
equation with the same kernel as the YF equation, and a 
connected homogeneous term 

i/' = g2(V I - v2lti' + g2(V I - V2ltll,. (S.S) 

Relations (5.7) are of interest to analyze the asymptotic 
structure ofthe YF chain components of the wave function. 

Actually one cannot hope for an exact solution of the 
hierarchic system (5.3) for N> 4. An approximation scheme 
may consist in a truncation of the hierarchy at some level p 
with a given model for gp + I (z). Such a model may be derived 
from the analysis of(S.7) or from the spectral expansion of 
gp + I (z) which follows from the closure relation (4.47) in 
terms of the biorthogonal basis. 
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APPENDIX A: CHAIN PROPERTIES 
1. Counting numbers 

Given any pair or partitions ap and a, restricted to 

8:' = I, r>p + 1, 
p 

(AI) 

let v:' be defined by 
p 

(A2) 

where the symbol~' is defined in Eq. (2.1). The number v:', 
p p 

r>p + 2, counts the partitions a, _ 1 which are contained in 
ap and which contain a,. Note that v:P

+ I reduces to ~P+ I. 
P P 

Let n:' denote the number of chains A :' which are con­
tained in a; and which contain a,. Then P 

(A3) 

and 12:' can be computed from either of the recurrence 
P 

relations 

(A4) 

(AS) 

which gives in particular 

(A6) 

From (A2) and (AS) one deduces 

It will prove useful to introduce counting numbers m:' de-
P 
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fined by 

map
+ 1 = 0, ap 

From (A6) one derives, in particular, 

Using (A4) and (A9) one obtains 

and through (A2), 

From (A9) and (All) one gets 

Note also the relation 

(AS) 

(A9) 

(AlO) 

(All) 

(AI2) 

(Al3) 

which can be proved by identifying the iterative solutions of 
(AI2) and (Al3). 

In Appendix B we show that m:' is tlte dimension of the 
p 

null space in C:' of the correlation operator Y; defined in 
p 

Eq. (2.13) 

2. Fundamental property of chains 

The main properties of the chain correlation operators 
defined in Sec. II B derive from the following property: given 
three partitions b"a,_ l' and bq with q<.r - 1 such that 
8b

, = 8:' = 1 - 8:'- I = I, there exists one and only one 

p:rtttion a
q

q _ 1 such ~hat ~:~ ~ = 8::_ I = 1. 
Indeed, let us denote by" 1", "2""" "r," the r clusters in 

b, labeled in such a way that "1" and "2" are fused to obtain 

a, _ 1 • Since 8:' - I = 0, "1" and "2" belong to different clus­
ters in b q' The~ by fusing these two clusters of b q one obtains 
the unique aq _ 1 partition which contains both bq and a, _ 1 • 

As a consequence a partition bq _ l' which contains bq 

and is different from aq _ 1 , does not contain a, _ 1 • 

3. Chain correlation operators 

We define various operators on the chain space C hav­
ing all their matrix elements equal to 0 or 1. 

(a) Summation operators S ~. They are defined for 
1 <.p < q <.N through their matrix elements 

(S~ )AB = 8A.s.8APBP' 

Operator S ~ is self-adjoint 

sq =sq 
p p' 

and behaves like a projector 

(AI4) 

(AIS) 

(S~ )~B = 12:; (S~ )AB' (A16) 

where n:q is defined in Appendix A, Sec. 1. Its main interest 
p 
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results from the summation property 

(AI7) 

(b ) Operators I ~ + 2. They are defined for I <p<N - 2 by 

]p+2 =SP+2 _ I (AI8) p p , 

which corresponds to matrix elements 

( ]P+2) -8 ~ 8 
p AB - A~+~p+l a,,+,bp + I APBP· 

Operator ]~.+ 2 is self-adjoint 

] p+2 = ]-P+2 
p p' 

(A19) 

(A20) 

(e) Operators D;. They are defined for I <p < r<N by 
resursion relations 

Dp+I=1 Dr=]r Dr-I if p"'r-2. (A21) p 'p r- 2 p .... 

In particular D~ + 2 =]~ + 2. 

By iterating (A21) one obtains 

Dr =] r ] r - I ••• ] P + 3] P + 2 = Dr] p + 2 
P r-2 r-3 p+1 p p+1 p , 

and for the adjoint operator 

jjr =]p+2]p+3 ••• ]r-l]r =]p+2jjr 
p p p+1 r-3 r-2 p p+I' 

From (AI9) and (A22) matrix elements have the form 

(A22) 

(A23) 

(D~)AB =8A.B,( Ii ~a/J.) ( It 8::+')8APB P> (A24) 
q=p+1 q=p+1 

which proves that (D; )AB equals 0 or 1. 

Property of D; operators: Given a chain B and a parti­
tion a r _ I which satisfies 

(A2S) 

there is a unique chain A containing a r _ I such that 
(D; ) AB = 1. This property is derived from the property of 
chains described in Appendix A, Sec. 2 in the following way: 
We first remark from Eq. (A24) that (D;) AB = I implies 
as = bs for s<p and s>r which is consistent with conditions 
(A2S) 8b, = 8 a

,-, = 1. Condition (A2S) 8 a
,-, = 0 implies 

Q'_I bp bp +
' 8::-' = 0 for p + 2<q<.r - 1. Relation (D;) AB = I implies 

8:' -, = 8~· = 1. Then from the property of chains, parti­
ti~~ ~q _ I ~iists and is unique. This property is expressed by 
any of the relations 

if p<q<r-l, 

(Spr Dpr )AB = 8 A " (v:' - v:' )5APBP' 
~,. p p+ 1 

(A26) 

(A27) 

(A28) 

where v:' is defined by Eq. (A2). 
(d) Yakubovskii operators Y;. They are defined for 

I<.p <r<.Nby 

YP'+I = 1 yr = 1 +]r yr-I p 'p r-2 p . (A29) 

They satisfy the relations 
r-I 

y; = ID; =D; + y;+I' (A30) 
q=p 
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and the factorization property 

y; - y; = (Y;-I - Y;)Y;, (A31) 

ifp<q<r<.N. 

From (A30), (A26), and (A27) one obtains 

I (Y; )AB = (S;-Iy; )AB = 8A.B,8APBP' (A32) 
A;+1 

Since from its definition (Y; )AB is a non-negative integer, 
Eq. (A32) proves that (Y; )AB equals 0 or 1. It proves also 
that given a chain B and a partition a r _ I such that 

(A33) 

there exists an unique chain A containing ar _ I for which 
(Y; )AB = 1. From (AI4) we can write (A32) as 

S r-Iyr =sr 
p p p' (A34) 

From (AIS) one obtains 

Y-rsr-I = sr 
p p p' (A3S) 

By iteration one gets 

sr = yp+2yp+3 ••• yr = YrYr-I ... YP+3Yp+2 
p p p p pp p p' (A36) 

(e) Operators Z ;q). They are defined for I <.p<.q < r<.N 
by 

Zr(q) = yq+ lyq+2 ... yr-lyr 
p p p p p' (A37) 

Note that 

Z r(p) = Zr(p+ I) = sr 
p p p' (A38) 

From (A36) and (A37) one gets 

S q Z r(q) = S r = Z r(q)S q 
p p p p p' (A39) 

We now prove that (Z ;9)AB does not depend on chain 
A;~ \, which can be expressed by 

(S;Z;9)AB = n:: (Z;q)AB' (A40) 

Let us first prove (A40) is true for z;r- 2) = y;- I y;. From 
(A29) and (A23) one derives 

Z r(r - 2) = (1 +] r ) y r - I + ] r - I ] r y r - 2 Y r - I 
P r-2 p r-3 r-2 p p 

= sr yr-I + jjr zr- I(r- 3). (A41) r-2 p r-3 p 

From (A26) one gets 

(jj~_ 3S~= ~ )AB = 8 A.B,(1 - 8::- ;)8A , 

which proves that (jj~_ 3S~= ~ )AB does not depend on 
a r _ I' Let us assume that (Z;- I(r- J)AB does not depend on 
ar _ 2 . Then (jj~_3Z;-I(r-3)AB doesnotdependona r _ l . 

By (A41) it follows that (Z ;r- 2)AB does not depend on 
ar _ I • Since it is true for (Z ~ + 2(P)AB = 8 A p + 'BP + ,8 A.Bp' it is 
true for any r. From (A37) one gets 

Z r(q) = Z q + 2(q)Z r(q + 2) (A42) p p p , 

which proves that (Z ;9) )AB does not depend on aq+ I • Using 
the commutation relation (2.9) one obtains 
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Let us assume that (A40) holds for z;q + I). Then 

(S 'Zrjq)) ~ a, (Zrjq)) 
q p AB = ,k. naq+ 1 p AB' 

Since (Z ;q) ) AB does not depend on a q + I , one obtains (A 40) 
from (A5). 

APPENDIX B: CONSTRUCTION OF A COMPLETE BASIS 
IN CB

, 
Bp 

Our purpose is to construct, in the chain space C~: de­
fined in Sec. II, a basis which is adapted, in the particular 
case r = N, to the solution of the YF equation (4.1). The 
useful results are expressed by Eqs. (BI9), (B20), and (B21). 

1. Definition of various subspaces of C:' 
p 

We define in this section subspaces 
Ra , Oa, Q-a, Oa, Ra , Qa, d Ka, 

ap ' ap ' ap ' ap ' ap ' ap ' an a, 
Let us first consider the summation operator S; de-

fined by Eq. (AI4) which is represented on C:' by a square 
p 

matrix with its n:' elements equal to 1. Its eigenvalues are n:' 
p p 

and 0 with degeneracy equal to 1 and n:' - 1, respectively. 
p 

Let R:' be the one-dimensional subspace corresponding to 
p 

the eigenvalue n:'.1t is the set of vector ofC:' which have all 
p p 

their components equal. 

Let 0:: be the null space of S;. Since S; is self-adjoint 

0:' is orthogonal to R:' and its dimension is n:' - 1. 
p p p 

(Bl) 

Consider now the set of vectors IE) of C:' with components 
EA.' = Ea , 1 depending only on partition" a, _ I contained in ., 
chain A :'. They span a subspace of C:' of dimension v:' , 

p p p 

where v:' is defined by Eq. (A2). This subspace can be de-
p 

composed into the direct sum, R:' EB Q:' of two orthogonal 
p p 

subspaces 

(B2) 

Any vector IE)ER:' EB Q:' is orthogonal to the null space 
p p oa, of S'- I on Ca

,. 
Q p P Up 

Considering Y; defined by Eq. (A29), one obtains 

(Y;IE»)A"' = L(Y;)A"'B",Eb'_1 
0p B:; Q p Up 

Using (A35) one gets 

(Y;IE»)A"' = LEb, I' 
Up b,._ 1 

Y;IE) = v:: IE) if IE)ER::. 

Y; IE) = 0 if IE )EQ::-

(B3) 

(B4) 

(B5) 

If IE) is an eigenvector of Y; corresponding to eigen value 11., 
then from properties of finite dimensional square matrices it 
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follows that Y' admits an eigenvector IE) corresponding to 
p -

the same eigenvalue 11., which is not orthogonal to IE ). Thus 

IE) does not belong to 0:', i.e., S; - liE) ¥O. To sum up, 
from the existence of thes; two eigenspaces of Y;, orthogo­

nal to 0:' follows the existence of two corresponding eigen-
p 

spaces of Yp' ,R:', and Q:' of dimension 1 and v:' - 1, 
p p p 

respectively, 

Y;IE)=v::IE), S;-IIEh~O if IE)ER::. (B6) 

Y; IE) = O,S;-IIE) ¥O if IE) EQ~: . (B7) 

Finally, let K:' be the null space of Y;. Then 
p 

2. Eigenspaces of Y; 
For p = r - 2 one has Y; _ 2 = S ~ _ 2' Then 

K:: 2 =0:: 2 and the dimension of 

Ka, = va, _ 1 = rna, , 
Q r 2 Or 2 Or 2 

(BS) 

(B9) 

where the counting numbers m:' are defined by Eqs. (AS) 
p 

and (A9). 

Let us assume that the dimension of K:' is m:' if 
p + 2<.q<.r - 2. We shall then prove recursiv~ly tha"t dimen­
sion of 

(BlO) 

Given any partition aq with o~q = o~' = l,p + 2<.q<.r - 2, 
p , 

consider the tensor product K~' ® Q~' . From Eq. (B7) one 
has q p 

Y~IF) = Y~IF> =0, S~-IIF)¥O if IF)EK::®Q:;. 
(Bl1) 

From the factorization property (A31) and from Eqs. 
(A34) and (A35) it follows that 

Y;IF)=O,S;IF)=O,q<.s<.r if IF)EK::®Q::- (BI2) 

Let K:' be defined by 
p 

(B13) 

From (B 11) and (B 12) the subs paces which are added in (B 13) 
to give K~' are linearly independent. The dimension ofQ~q is 

p p v::' - 1, we assumed that the dimension ofK~' is m~' if 
p +- 2<.q<.r - 2. Then from (AI3) q q 

(BI4) 

Since, from (B 12), K~' is a subspace of K:', one has 
p p 

dimension of K~: ;;;.m~: . (BI5) 

We obtain from (BI5) that dimension ofR:' ® K:';;;'m:' and 
from (B6) and (A31) • p p 

Y;IF) = v:: IF) if IF)ER:: ®K:;. (BI6) 

Using (A9) one obtains that the number of linearly indepen­
dent eigenvectors of Y; corresponding to a nonzero eigen­

value is at least equal to 1 + 1:q': pi + 21:a m:' = n:' - m:'. 
,p p p 
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Then 
dimension of Ka, <rna, . ap ap (B17) 

From (B1S) and (B17) one obtains (B10) and, by the way, we 
have proved that the set of eigenvectors of Y; is complete on 
Ca , 

ap 
We obtain from (B13) and (B14) 

(B18) 

3. Decomposition of C:' 
p 

Since the set of eigenvectors of Y; is complete, C:: can 
be decomposed into the sum of the eigenspaces of Y;, which 
reads, using (B6) and (B16), 

(B19) 
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(B20) 

Substituting (B 18) into (B20) and using (B 19) one obtains 
another decomposition of the null space of S; 

(B21) 
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Perturbative technique as an alternative to the WKB method applied to the 
double-well potential 

H. M. M. Mansour 8) and H. J. W. MOiler-Kirsten 
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We give an explicit and complete perturbation theoretical analysis of the solutions and 
eigenvalues of the Schrodinger equation for the double-well potential. In particular we 
demonstrate the matching of various branches of the solutions over the entire range of the 
independent variable, and we calculate the splitting of eigenvalues due to the finite height of the 
central hump of the potential. 

PACS numbers: 03.65.Ge 

1. INTRODUCTION 

It has been recognized recently that the physical vacu­
um of a nonabelian gauge theory is degenerate, and that the 
true vacuum will therefore have to be taken as a superposi­
tion of these degenerate vacua. I An understanding of the 
physical consequences of this phenomenon requires an un­
derstanding of the tunneling of a particle through a barrier 
from one vacuum to another. Coleman2 has discussed the 
stability of the false vacuum which is related to the eigenval­
ue gap. He also compared instanton and WKB analyses of 
the splitting for one dimensional anharmonic oscillators. A 
rigorous WKB analysis of the gap for the one dimensional 
case was made by Harrell. 3 The double-well potential has 
also been treated by Froman et al.4 by means of certain 
phase-integral approximations. To first order their phase­
integral approximation is identical with the first order WKB 
approximation. However, as explained in Ref. 5, higher or­
der phase-integral approximations differ from the corre­
sponding higher order WKB approximations. In other ap­
proaches, Isaacson6 discussed singular perturbations 
resulting in asymptotic eigenvalue degeneracy for the ordi­
nary differential operator 

H I [ d
2 

4 2 1] 
v = - - - + vq - q + -

2 dq2 4v 

when v-o, and Brezin et al. 7 showed how the large order 
behavior of perturbation theory is affected by the presence of 
pseudoparticle-antipseudoparticle contributions to the rel­
evant path integral. Brezin et al. 7 confirmed the result ob­
tained previously8 that in the case of degenerate minima the 
perturbation series is not Borel-summable. The relation of 
tunneling solutions to Borel summabiiity has also been stud­
ied using the simple quantum-mechanical model of the dou­
ble-well potential. 9 For such a system the solution corre­
sponding to an instanton is known analytically. Other 
attempts have been made to study the analytic structure and 
Borel summability of the perturbation series for the double­
well potential. 10.11 In particular, Caswell 12 showed that 
there exists a summable perturbation series in terms of an 
effective coupling. 

An investigation of the tunneling phenomena may be 
subdivided into two stages, the first stage consisting in the 

"On leave from the Department of Physics, University of Cairo, Cairo, 
Egypt. 

study of analogous potential models which exhibit most of 
the essential physical aspects of the problem, and the second 
in extending or applying the methods used for investigating 
these simple models to the case of real nonabelian field theor­
ies. In the present investigation we are concerned with the 
first stage. In fact, since the WKB method has been used as 
the most important tool for investigating tunneling phenom­
ena 13-15 in potential as well as field theoretic models, our 
main objective here is to demonstrate the usefulness of an 
alternative procedure which we believe has definite advan­
tages over the WKB method and in particular makes the 
problem of the matching of various branches of the overall 
solution particularly transparent. This alternative proce­
dure has been applied previously to a large number of exam­
ples such as the Mathieu l6 and other equations, 17,18 Schro­
dinger equations with Yukawa, 19 Gauss,20 logarithmic21 and 
quark-confining power potentials,22 and multidimensional 
and multichanneJ23 equations. 

In the following we consider first the nonsymmetric 
double-well potential. Our main objective is to calculate-in 
the form of asymptotic expansions-the eigenvalues of the 
wave equation and in particular to investigate the amplitude 
which describes the tunneling from one well to the other. 
This investigation is neither simple nor trivial. A secondary 
objective is to demonstrate the usefulness of our technique. 

In Sec. 2 we present the solutions together with their 
respective eigenvalues derived in the neighborhood of the 
minima of the potential (regions I and II of Fig. I). In Sec. 3 
we calculate the solutions around the instability point at 
x = 0 (region III). Sections 4 and 5 deal with the solutions in 
the remaining or intermediate domains (regions IV, V, VI, 
and VII). Section 6 is devoted to a discussion of the matching 
of these solutions to one another in their regions of common 
validity. Finally, in Sec. 7, we discuss the symmetric double 
well, and we compute the resulting splitting of the energy 
eigenvalues. This last aspect has also been considered by 
Damburg and Propin. 24 However, our method is different 
from theirs and, we believe, more straightforward. 

2. EIGENSOLUTIONS AROUND THE MINIMA OF THE 
POTENTIAL 

We derive first the solutions in domains I and II of Fig. 
1. In Fig. I the potential has the following form: 
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V(x) 

FIG. I. The double-well potential. 

V(x) = - ax2(b - X)(c + x), 

where a,b,c > O. The first derivative is 

V(l)(x) = ax(x - x+)(x - x_), 

and 

x ± (b,c) = AI 3(b - c) ± [9(b - C)2 + 32bc]1/2J 

(observe that x + > 0 and x _ < 0). 

x 

(I) 

(2) 

It is readily seen that V(2)(0) < 0 and V(2)(X ± ) > O. Also we 
observe that for b = c, x ± = ± clv1. 

Our problem now is to calculate the eigensolutions in 
the neighborhood of the minima of the potential together 
with their respective eigenvalues. We use the S-wave equa­
tion in the form 

(3) 

where A = 2f..LE lie in the customary notation. We observe 
that Eq. (3) is invariant under the combined interchanges 
x~ - x,b~, i.e., x ± -x ± = - X =F ' where 
x ± (b,c) = x ± (c,b). Expanding V(x) around the minima at 
x ± we have 

00 (x - X ± r (i) 
V(x) = V(x ± ) + L ., V (x ± ). (4) 

i=2 I. 

Inserting (4) into (3) we obtain 

~~~ + [A - V(x ± ) - !(x - x ± )2VI2
)(X ± )]¢ 

= f (x -x± )i VIi)(X+ )1/1. 
i = 3 11 -

(5) 

We now set 

h ± (x ± ) = 12 V(21(X ± ) J 1/4 , (6) 

where V(2i(x ± ) is positive, and change the independent vari­
able to 

w ± (x) = h ± (x ± )(x - X ± ) . (7) 

The equation then becomes 
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d 21/1 [A - V (x ± ) w
2
± ] 

dw2 + h 2 - -4- 1/1 
± ± 

00 Vlil(x ± ) u/± 

= i~3 2 V (2)(X ±) 11h i; 2 1/1. (8) 

For large values of h ± the right-hand side ofEq. (8) can-to 
a first approximation-be neglected. The corresponding be­
havior of the "eigenvalues" [A - V (x ± )]1 h 2± can then be 
determined by comparing the equation with the equation of 
parabolic cylinder functions. The solutions are normalizable 
only if 

,.1,- V(x±) 
- Iq h 2 - 2 ±' 

± 

where q ± is approximately an odd integer, i.e., 
2n + I,n = 0,1,2, .... The wave functions are correspond­
ingly the parabolic cylinder functions D(1/2)(Q, _ II (w ± ). For 
the complete solutions we set -

I L1 ± 'h"2 (A - V(x ± )) = !q ± + -h -, (9) 
± ± 

where L1 ± remains to be determined. We proceed in the 
standard way. 17 

By substituting Eq. (9) into (8) we obtain 

2L1 ± 00 VU)(x ±) u/± 

Dq1/l = -----,;;-1/1 - i~3 V(2)(x ±) 11h i; 2 1/1, (10) 

where 

Equation (10) can be solved by the perturbation method ex­
plained in Refs. 17-22. The first approximation 1/1 = 1/1101 is 
the parabolic cylinder function D(q _ 11/2 (w), i.e., 

1/1101 = 1/Iq = D(q _ 1)12 (w) with Dq 1/Iq = 0 . 

For simplicity the subscripts ± have been dropped. 
The function 1/Iq obeys the recurrence formula25 

w1/lq =(q,q+2)1/Iq+2 + (q,q-2)1/Iq_2 , (11) 

where 

(q,q + 2) = I, (q,q - 2) = ~(q - 1). 

For higher powers we have 
- 2; 

wi 1/lq = L Si(q,j)1/Iq + j ( 12) 
j = 2i,2i - 4, ... 

and a recurrence relation can be written down for the coeffi­
cients Si' 22 The first approximation 1/1 = 1/1(01 leaves uncom­
pensated terms amounting to 

R (01 = 2L1 _ 00 x ± ~ w) 
[ 

VUI()' ] 
q h i~3 Vi2l(x ±) i!h i- 2 1/Iq( 

where 
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Hence, the expression for R ~) may be written in the form 

00 1 ·-2i 

R ~O) = i~3 h i- 2 j~2i [q,q + jLtPq+j(iu) , (14) 

where 

[q,qb = 2.J - S3(q,0) , 

and forj#-O 

[q,q + j]3 = - S3(q,j) , 

and for i> 3, - 2i<.j<.2i, 

[q,q + jL = - Si(qj) . 

Since D q + j = D q - j and D q tP q+ j = jtP q + j' a term 
Jl tP q + j in R ~O) can be removed if we add to tP(O) a term 
lJ-t/j)tPq + j except whenj = O. Hence, the next order contri­
bution of tP becomes 

tP(I)= I _1_ Ii 
i~3h'-2._ .. 

[q,q + jL .1. .() 
. 'l-'q+J w , 

J - 2,.2,- 4 •... ] 
j#O 

which in tum leaves uncompensated a term 

R(l)= ~ _1_ ~i [q,q+jL 
q ~ h i - 2 ~ • 

i ~ 3 j~ 2i.... ] 

j#O 
This yields the next contribution of tP: 

tP(2) = I +, Ii [q,q ~ j]i 
i~ 3 h j~ 2i.... ] 

j#O 

00 1 
L hi'-2 
i'~3 

-u 
X L [q + j,q + j + f]'· .1. . •• 

j + f 'l-'q+J+J 
/~u 

j+/#O 
Proceeding in this way we obtain the expansion 

tP = tP(O) + tP( II + ",,(2) + ... , 

(15) 

(16) 

(17) 

(18) 

which is an asymptotic expansion in descending powers of h, 
valid for23 

x-x =0--( 1) 
± h2~3' 

i.e., around x = x ± . Another solution in the same domain, 
i.e., in the region around x = x ± ' is obtained by changing 
throughout the signs of q and h 2. However, the sum 
tP(O) + tP(ll + tP(2) + '" is a solution only if the sum of the 
terms in tPq in R ~),R ~l), ••• (left unaccounted for so far) is set 
equal to zero. Hence, 

or 

0= ~ _1_ [ ]. ~ _1_ ~i [q,q+jL 
~ i-2 q,q, + ~ i-2 ~ • 
i=3 h i=3 h j=2i ] 

j#0 

00 1 
X L ~ [q+j,q],. + ... 

i'=3h 
(19) 

0- 1 [] 1 {[] ~6 [q,q + jb .} - h q,q 3+"""'h2 q,q 4+j=t.... j [q+J,qb 

j#O 

(20) 

From this equation we obtain L1 and hence the eigenvalues. 
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Thus, 

2h ± L1 ± 

[
q2± + 1 V(4)(X ± ) 

24 V(2)(x ± ) 

where 

and 

V(4)(X± ) 

V(2)(X± ) 

V(3)(x ± ) 

V(2)(x ± ) 

12 

- 3bx ± + 3ex ± - be + 6x2± 

- 3b + 3e + 12x ± 

- 3bx ± + 3ex ± - be + 6x2± 

Knowing L1 we can obtain A, i.e., 

A ± = V (x ± ) + ~q ± h 2± + h ± L1 ± ' 

corresponding to the two minima, where 

V (x ± ) = - ax2± (b - x ± )(e + x ± ), 

and 

(21) 

(22) 

h ~ = - 24ax2± + 12abx ± - 12aex ± + 4abe. 

We observe that these expressions possess the symmetry dis­
cussed earlier, i.e., the" ± " versions become the reflected 
" ± " versions and vice versa under the combined inter­
changes x ± ~x ± = - x Of ' b~. The expansion for A pro­
vided by (22) is valid for large values of h ± and small q. 

For convenience we write the solutions just derived for 
the domains 

x-x± =0(l/h2~3), 

tPB(q± ,h± ;w± (x,x±)). 

It follows from the symmetry of our original Eq. (3) that 
knowing these solutions an associated solution tPB is ob­
tained by the combined replacements x- - x and 
x ± -x ± ' i.e., 

~B = tPB(q ± ,h ± ;w ± ( - x,x ± )) • 

These solutions are valid in the domain 

-x-x± =oC!/3)' h=h(x±), 

which is in general the mirror reflection of the domain of the 
solutions tPB' 

Now, from the symmetry ofEq. (10) it can be seen that a 
further pair of solutions is obtained by the combined 
interchanges 

w __ iw, q __ - q, h--ih, 

or 

w __ - iw, q __ - q, h-- - ih . 

The ensuing solutions require a careful specification. We use 
formulas given in Ref. 25. Using formula 19.4.6 of Ref. 25, 
one can show that 
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Re( - i) -11I2)(q + liD ( - iw) 
-11I2)1q+ II 

r [ - ~(q - 1)] I 
(21T)1!2 D1' !2)(q_ 1)( - w) 

- sin(!q1T)DI1I21Iq _ I) (w II ' 
(23) 

where Re means "real part of." We now set 

¢q(w) = Re r [!(q + 1)]( - i) -11(2)(q + liD _ (1/2)(q + II ( - iw) . 
(24) 

Then (see Ref. 25, line following formula 19.6.4) ¢q(w) again 
satisfies the recurrence relation (11). Moreover (see Ref. 25, 
formula 19.4.2), it is that solution which together with 
D(1/21(q_ I)(w) forms a linearly independent pair [here nor­
malized so that their Wronskian is 1, not (2/1T) I 12 as in Ref. 
25]. We write these solutions, valid for 
x-x± =O(lIh 2/3 ), 

¢c(q ± ,h ± ;w ± (x,x ± )). 

Another set of solutions t/J c' valid in the domains 
- x - X ± = 0 (lIh 2/3), is obtained by the replacements 

x __ - x, x ± --x ± . The general solution in the first domain 
around a minimum is then given by the linear combination 

(25) 

where a and /3 are constants. 
For later convenience we note here the following par­

ticular expressions [see Eq. (24) and Ref. 25, formulas 19.3.5 
and 19.3.6]: 

1T1/22(1/4I1q - II 

t/Jq(O) = r [ - l(q - 3)] , (26a) 

(d) 1T1/2211/4I1q+ II 
- t/Jq(w) = - , 
dw ° r [ - !(q - 1)] 

(26b) 

¢ (0) = 1T1/2 sin!(1T/4)(q + 3)}r [!(q + 1)] , 
q 2(114)1q+ Ilr [!(q + 3)] 

(26c) 

(~ ¢ (W)) = 1T1/2 sin! (1T/4)(q + Inr [!(q + 1)] . 
dw q ° 2111411q-l)r [l(q + 1)] 

4 (26d) 

The asymptotic behavior of t/Jq ,¢q is given by (Ref. 25, for­
mulas 19.8.1, 19.8.2) 

t/Jq(w)~e-11I41"" W(II2)(q-11 [1 + 0 (~2)]' (27a) 

¢q(w)~r [!(q + 1)]e+(1I4Iw'w-I'/2)(q+ I) [1 + 0 (~2)] . 
(27b) 

These expressions will be needed below. 

3. WKB-LlKE SOLUTIONS NEAR THE MINIMA OF THE 
POTENTIAL 

We now derive the solutions in regions V and VI of Fig. 
1 as reached from the minima. The actual matching will be 
considered later. Substituting (9) into (3) we have 

d 2~ + [!q ± h 2± + L1 ± h ± -!h ~ v(x)]t/J = 0 , (28) 
dx 

where 
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v(x) = h~ [V(x)- V(x± )]~(x-x± )2+ .... (29) 
± 

Since V(I)(x ± ) = 0 it is readily seen that vIOl = 0 and 
v'(O) = 0 and V1il(0) for t~2 follows from Eq. (32) below. Next 
we set 

t/J(x) = xIx) exp [ ±!h 2± r VI/2(X)dX] . (30) 

The function xIx) satisfies the following equation: 

d
2
X ±h2 Vl/2 dX ±lh2 v' 

dx2 ± dx 4 ± vl/2 X 

(31) 

where 

v(x) = (x - x ± )2(1 + al(x ± )(x - x ± ) + a 2(x ± )(x - x ± )2) 

= 
~ (X-X±)i 
L --=-- v1il(O) , (32) 
i~ 2 11 

al=al(x ± ) = V12~ ± ) (4x ± - b + c), 

and 

Hence we make the important observation that under the 
combined interchanges b++(:, x ± __ - x ± ' 

al(x ± )-- - al(x=t=) and a 2(x ± )-- + a 2(x=t=). 

Thus [see Eq. (31)], replacing VI/2(X) by - VI/2(X) is equiv­
alent to the replacements x __ - x, b++(:, and x ± __ - x ± . 

In the following we consider the solutions of Eq. (31) 
with the upper signs. For lower signs the solution in the same 
domain is obtained by changing the signs of q and h 2 

throughout or by replacing vl/2 by - vl12
• 

Equation (31) can then be written in the form 

_ 2 (d 2X ) DqX - -2 --2 + L1hX , 
h dx 

(33) 

where 

1/2 d 1 v' Dq = -2v -----q. (34) 
dx 2 vl/2 

We observe that L1h is at most of 0 (0) in h 2 when h 2 __ 00 • 

Thus, to a first approximation we can neglect the terms on 
the right-hand side and the solution to that order is 

iOI=xq , 

where Xq is a solution of Dq Xq = 0, i.e., 

and 

C 
Xq(x) = ~exp[K(q,x)], 

v 

K( )-_.!LfJC~ 
q,x - 2 VI/2(X) 

(35a) 

= - q(! In(x -x±) + itl ri(X -x±)} (35b) 

and the ri'S are coefficients which can easily be calculated, 
e.g., rl = - a ,/4, etc. Thus 
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d 2X (5 V'2 q v' 
-2

q 
+..::1hXq = ..::1h+ --2 +--3/2 

dx 16 v 2 v 

+ q2 _ ~\"q. 
4v 4vr 

(36) 

Proceeding as in Ref. 17 we now express the right-hand side 
ofEq. (36) as a sum over various X q + j (since the perturbation 
procedure then becomes particularly simple); we then have 
the following expansion: 

d 2X 
~ +..::1hXq = . L (q,q + 2J)Xq+2j' (37) 

X }=2.1.0 

where for i=f.O 

. q q2 
(q,q + 21) = -&72i + ~2i + ~2i -lE2i ' 

2 4 

and the coefficients 7, K, 8, and E are obtained in a similar 
way as in Ref. 23, and for i = 0 

q q2 
(q,q) =..::1h + -&70 + ~o + ~o -lEo 

2 4 

=..::1h + ft,(16Y2 + SalYI - 3ai - 24a2) 

solutions, respectively, tPA (q,h;v I/2) and ¢A (q,h,v I/2), where 
tPA = xIx) exp[ + ~h 2SV l/2dx] and 

¢A(q,h,vI/2) = tPA(q,h; - v1/2) 

= tPA(q-+ - q,h 2-+ - h 2;v I/2). 

4. SOLUTIONS AROUND THE INSTABILITY POINT 

Our next step is to derive the solutions in region III of 
Fig. 1. Clearly, if we reverse the sign of V(x) the potential will 
have a minimum at this point, and we can calculate the ei­
genvalues by the method of Sec. 2. This time, however, we 
expand the potential around x = 0, i.e., instead ofEq. (5) we 
have 

d2tP 
-2 + [A. + abcx2]tP = (ax4 - alb - C)x3)tP. (43) 
dx 

Again, we observe the invariance of the equation under the 
combined interchanges x ..... - x, b++C. Now we set 

h = ! - 4abcJ 1/4 , (44) 

2 and change the independent variable to 
+ ~SY2 + a2 - aai) + ~4Y2 - 2y la l + ai - a2) 

2 4 w=hx. (45) 

(3S) 

The first approximation X (0) = X q leaves uncompensated on 
the right-hand side ofEq. (2S) a sum of terms amounting to 

R (0) _ 2 ~oo ( 2 .) 
q - h2. £.. q,q + :JXq+2j . 

} = 2.1.0 

(39) 

Following Ref. 17 the next order contribution to X is 

X
(l) = ~ ~ (q,q + 2j) X .. 

h 2 . £.. 2' q+2} 
}=2.1.... :J 

(40) 

j",O 

The coefficient of X q in R ~) set equal to zero, i.e., 

(q,q) =0 

yields an expression for ..::1 which is identical to that obtained 
in the previous section to the same order of iteration (this is 
an important aspect of our procedure). 

The complete solution is obtained in the standard fash­
ion, leading to the sum 

X = x<0) + x< I) + X(2) + ... 
in descending powers of h 2. The corresponding equation for 
..::1 is 

0= (q,q) + h22 . I (q,q t 2j) (q + 2j,q) + .... (41) 
}=2.1.... :J 

NO 
Successive contributions X (0) ,X (1), ••• of X form a rapidly de­
creasing sequence, provided that 

Xq +2j ['fX dx ] Ih 2 --=exp -J --- <2 
Xq VI/2(x) ' 

(42) 

which clearly excludes the region around x = x ± . As men­
tioned previously, a second solution valid in the same do­
main is obtained by changing the signs of q and h 2 through­
out or by replacing vl/2 by - V

l/2 throughout. We write the 
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The equation then becomes 

d 2tP + [~_ ~] tP 
dw 2 h 2 4 

1 { w
3 

w
4 

} =- (b-c)-- - tP. 
4abc h h 2 

(46) 

F orlarge val ues of I hi, i. e., a, the right-hand side of the above 
equation can-to a first approximation-be neglected. The 
remaining equation has the solution tP(O) = D( 1/2)(q ~ I) (w), 
where q is given by 

A./h 2=~q . (47) 

It should be observed that since the instability point does not 
support bound states, q is not an integer here (as in Sec. 2); 
instead it is an auxilliary parameter determined by this equa­
tion. For the complete solution we set 

(4S) 

where..::1 remains to be determined by iteration. 
The procedure of solution is now similar to that of Sec. 

2. Thus, proceeding as above, we find 

2M = [ - ~P(q2 + 1) - ~ (15q2 + 7)] + 0 (_1_) 
23 24.32 h 2 ' 

with 

and 

p= 6/bc, 

and the complete solution ofEq. (37) is 

¢B = ¢(O) + ¢(I) + ¢(2) + 
with 
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and 

./.(1) = ~ _1_ ~i [q,q + jL ./. .() 
'f/ £.- i-2 £.- . 'f/q+J{j) , 

i~3 h j~2i 1 
j#O 

and so on, where 

[q,qb = ~ -S3(q,0) , 

- vi,)(O) 1 . 
Si(q,11 = V(2)(0) i! Si(q,j) , 

(51) 

(52) 

and the coefficients Si are defined as in Ref. 17. Also for j 1= ° 
[q,q + jb = - S3(q,j) (53) 

and for i> 3, - 2i<.j<.2i, 

[q,q + jL = - Si(q,j) . (54) 

The solution "'B is valid for 

x = 0 (h !/3)' j{j)(x)j<h 1/3. 

The associated solution obtained by replacing in "'B x by 
- x and b,c by c,b, respectively, is seen to be identical with 

"'B in view ofEq. (50) and the fact that q, i.e., Eq. (48), is 
invariant under the interchange b-c. 

Proceeding as in Sec. 2, a further solution iic is obtained 
by effectively replacing hand (j) by ± ih and ± i{j) and q by 
- q, this solution being valid for 

j{j)(x)j<h 1/3 . 

The solutions "'B,iic form a linearly independent pair in the 
domain of the point of instability. 

5. WKB·LIKE SOLUTIONS NEAR THE INSTABILITY 
POINT 

To derive the solutions in regions V and VI of Fig. 1 as 
reached from the instability point we proceed as in Sec. 3. 

Thus, we insert (48) into (46) and obtain 

d 2", [ h 4 ] 
-2 + ~qh 2 +.Jh + - v(x) '" = ° , 
dx 4bc 

(55) 

where 

v(x) = x2(x - b )(x - c) , (56) 

and 

h = I - 4abcJ 1/4. 

The method of solution ofEq. (55) now parallels the method 
of solution of (28). 

Hence, following the same procedure as in Sec. 3, we 
put 

tP(x) = xix) exp[ ± ~ :/2 r VI/2
(x) dX] , (57) 

where,t = - be and the function X (x) satisfies the following 
equation: 

d 2X h 2 1/2 dx h 2 v'(x) 
dx2 ± ,t 1/2 V (x) dx ± 4,t 1/2 VI/2(X) X 

+ (~qh 2 +.Jh )X = ° . (58) 
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We consider the solutions of the above equation with the 
upper signs only since for the lower signs the solution ofthe 
equation can be obtained by changing the signs of q and h 2 or 
by the combined interchanges x--+ - x, b-c. Equation (45) 
may be written 

_ 2 (d 2X ) DqX - -2 --2 + .JhX , 
h dx 

(59) 

where 

D = _ _ 2_vI/2 ...!!.....- __ 1_~ _q (60) 
q ,t 1/2 dx U 1/2 vl/2 . 

Thus, to a first approximation we can neglect the terms on 
the right-hand side and the solution is 

x'0) = Xq , 

where Xq is a solution of DqXq = 0, i.e., 

c' 
Xq(x) = ---v4 exp[ -K(q,x)] , 

v 
where c' is a normalization constant and 

q,t 1/2 fX dx 
K(q,x) = -2- VI/2(X) 

= q (~lnx + ito r;xi
) 

and the ri'S are given by 

r; = : (~ - !), etc. 

Proceeding as in Sec. 3, we obtain 

d 2Xq (5 V,2 ,t1/2 v' 
--2-+.JhXq = .Jh + --2 +q--372 
dx 16 v 2 v 

q2,t 1 V") 
+ 2-; - 4v Xq , 

which can be written in the form 

d 2Xq 
dx2 + .JhXq = j~ ~ •... (q,q + 211Xq + 2j , 

where for i = ° 

(61) 

(62) 

(63) 

(64) 

(65) 

The complete solution "'A (q,h,v I/2) is now obtained in the 
standard fashion leading to the sum 17 

"'A =X=x'°)+X(I)+x'2)+ •.. , 

where 
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(I) 2 ~'" (q,q + 2j) X 
X - h2 ~ 2' q+2)' 

)=2.1, .. 'J 
(67) 

j#O 

and so on. Successive contributions X (0) ,X (I), ' •• of X form a 
rapidly decreasing sequence provided that 

exp [ - A 1/2 r VI~~X)) <!h 2, (68) 

which excludes the region around x = O. A second solution 
¢A (q,h,v l12 ) in the same domain is obtained by changing the 
signs of q and h 2 or by the replacement x~ - x, b++c in the 
above solution, i.e., 

¢A(q,h 2;v I/2 ) = tPA( - q, - h 2;V Il2 ). 

6. MATCHING OF SOLUTIONS IN REGIONS OF 
COMMON VALIDITY 

Knowing the solutions in every region of the indepen­
dent variable we can now consider their continuation in ad­
joining domains. Since the functions to be joined are asymp­
totic expansions, we do not call this continuation analytic. In 
the preceding sections we derived the following solutions: 

in Sec. 2, 

tPB(q± ,h± ;m±), 

and 

¢c!q ± ,h ± ;m ± ) ex: tPB( - q ± ,ih ± ;iw ± ) , 

which are valid in the domains around the minima, i.e., 

x - x ± <0 (h !~3 ) , 
and ¢B,tPe, which are valid in the corresponding mirror 
imaged domains 

- x - x ± <0 (h !~3 ) ; 
in Sec. 3, 

tPA(q ± ,h ± ;VIl2(X)) , 

and 

¢A (q ± ,h ± ;VI/2(X)) = tPA (q ± ,h ± ; - VI/2(X)) , 

which are valid in the domains away from the minima, i.e., 

x - x ± > 0 (h !/3) ; 
this condition excludes the points x = x ± ; 

in Sec. 4, 

tPB(q,h;m) , 

and 

ifc!q,h;m) ex: tPB( - q,ih;im) , 

which are valid around the instability point, i.e., 

Ixl<O (h !/3); 
in Sec. 5, 

tPA (q,h;v I/2 ) 

and 
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- 1/2 tP A (q,h;v ), 

which are valid for 

x> 0 (h !/3)' 
thus excluding the point x = O. 

We dub all solutions tPB and tPe which involve Hermite 
or parabolic cylinder functions "oscillatorlike" and the solu­
tions tPA and ¢A "WKB-like." These solutions can now be 
matched to each other in the following way (see Fig. 2). 

First of all we note that the general solution in the do­
mains of tP A and ¢ A can be written 

tP = atPA + f3¢A , (69) 

where a and f3 are constants. The matching of the solutions 
.1, .7. to the oscillatorlike solutions around a minimum can 'f'A''f'A 

be easily obtained by going to a common region of validity of 
- - 23 

tPA,tPe and tPA,tPB' 
Considering the dominant contribution of tP A for x ap­
proaching x ± ' we have (with q = q ± ,h = h ± ) 

tP ~ c exp[!h 2 fX V1/2dX] 
A v1/4(X _ x ± )q12 

_ (1/4)h 'x'+ 
Ce- e ph 2(X x )2] 

~ (x -x± )(112)(q+ I) xp 4 - ± . 

On the other hand, 

- - r [2!q + 1)]e(1/4)h'(X-X±)' 
tPe ~tPq (m)~ [h (x _ x ± ) ] (1/2)(q + I) 

Hence, in their common region of validity 

tPA=r¢e, 

where 

A - V (x) 

I\I B ~c 
.' 

FIG. 2. The domains of various solutions. 
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Ch (1/2)(q + lie -(1I4Ih 'x
2
± 

r= 

Similarly, we obtain 

¢A = YtPB , 

where 

y= Ce(1/4
I
h'X'+ [1 +O(-h1 )] 

h(1/2)(q-11 

(71) 

(72) 

(73) 

(C being an overall constant which, like the eigenvalue, re­
mains unchanged under the replacements q_ - q, h_ih ). 

I t is not too difficult to calculate the first few terms23 of the 
expansions on the right-hand side of these equations. This 
establishes the continuation of the oscillatorlike solutions at 
the minima to the WKB-like solutions of Sec. 3. Hence 
tP = ar¢c + /3YtPB is the continuation of tP of Eq. (69) into 
the region of a minimum. Similarly, we can obtain the rela­
tionship between the solutions tPB and tPc at the instability 
point and the WKB-like solutions tPA and ¢A of Sec. 5. 
Hence, the problem which remains is the matching of the 
WKB-like exponential type of solutions across the Stokes 
singularities corresponding to classical turning points. 

We proceed as follows. Equation (3) can be written 

(74) 

with 

XIx) = V(x) -,1 

= V(x) - [V(x ± ) +!q ± h 2± + L1 ± h ± ] 

h~ 2 
= v(x) -4- - ~q ± h ± - L1 ± h ± 

on using (9) and (29) with (6). The solutions to this equation 
above the minimum but just below the turning point at 
which,1 = V(x) are 

tPWKB(X,q,h) = X ~/4 [exp (f X I12dX)] Y(x,q,h) , (75) 

and 

Above the turning point (i.e., on the oscillatory side) each of 
the solutions tPWKB on the right-hand side of the above rela­
tions is to be continued to tP A and ¢ A • In this case one has 

(_X)I/2= ~(V'(XW/2{1- _q_+O(_I_)} (81) 
2 h 2u'(x) h 3 

and 

(_X)I/4= 2712 (V'(X))112{1+0(~)}, (82) 

where v'(x) is related to v(x) of Sec. 5 by 
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and 

¢WKB(X,q,h) = X~/4 [exp( - f X II2dX)] Y(x,q,h), (76) 

where Y satisfies an equation which has been solved by Din­
gle. 26 We have 

X 1/4 = ~ [v(x)] 1/4{1 + 0 (_1_)} 
2112 h 2 ' 

+ 

(77) 

and 

h 2 { X I / 2 = _+ [v(x)] 1/2 1- q + o (_1_)}, 
2 h 2+ v(x) h 3+ 

(78) 

where v(x) is given by Eq. (29). Comparison with (30) and (35) 
shows that the WKB solutions join smoothly to the solutions 
tPA and ¢A of Sec. 3. Thus, in their common domain [choos­
ing the overall constant C in (35a) equal to 1] 

tPA = ;1~2 tPWKB [1 + 0 C !+ )] , (79) 

and 

(80) 

Similarly, we can obtain the relationship between the corre­
sponding solutions tP A' If A and the WKB solutions above the 
turning point, i.e., far below the maximum of V(x). In fact, 
each of the solutions tP A and ¢ A shifts the turning point at 
,1 = V(x) to an extremum, thereby hiding it in the WKB-like 
solutions of Secs. 3 and 5. 

Now the matching of the WKB-like solutions below 
and above the turning point can be achieved by matching the 
WKB solutions in the usual way and then matching these to 
our WKB-like solutions. The connection formulas read26 to 
leading order 

tPWKB(X,q,h) - !(tPWKB(X,q,h) + i¢WKB(X,q,h)) , 

and 

tPWKB(X,q,h) - (itPWKB(X,q,h) + IfWKB(X,q,h)) , 

i.e., 

v'(x) = - v(x)/bc. (83) 

Hence, the relations between the WKB-like solutions tP A ,¢ A 

and the WKB solutions above the turning point are 

tPA = 2712 tPWKB [1 + 0 (h\) l' (84) 

and 

(85) 
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From the above results we observe that the solutions around 
the instability point are trigonometric functions in order to 
match the WKB-like solutions above the turning point. We 
indicate here schematically how the matching is actually 
done,27 starting from the region around x + : 

Also 

'" B (x + )-iii A (x + )-iiiWKB -- (i"'WKB + iiiWKB) 

--ti'" A (0) + iii A (o))-(iriiidO) + 9"'B(0)) . 

iiic(x + )-'" A (x + )-¢WKB -- ~("'WKB + iiiiwKB) 

-~(¢A(O) + iiiiA(O))-~(riiidO) + W"'B(O)). 

The matching to the left-hand side of the instability point 
can be done in the same manner as explained previously. 

7. THE SYMMETRIC DOUBLE-WELL POTENTIAL 

The special case of a symmetric double well has some 
particularly interesting features, as we will discuss below. 

First of all we note that the general potential given by 
Eq. (1) may be cast into a symmetric form either by putting 
b = e or by the transformation 

b+e e-b 
X= --y- --. (86) 

2d 2 

In this case the potential becomes symmetric with two mini­
ma at ± d and a maximum at the point d (e - b )/(e + b ), i.e., 

ax2(b - x)(e + x) = a( b ~ e r 
X {y _ d (e - b) }2( Y + d)( y _ d) . 

e+b 

(87) 

The symmetric potential has two nearly harmonic wells as 
we can see from the solutions obtained previously, i.e., the 
parameter 

q:::::odd integer = 2n + 1 . 

A rough explanation for the asymptotic degeneracy is that 
the two wells asymptotically decouple into independent os­
cillators and the effect of a second well on the energy (eigen­
value) is inversey proportional to the time a quantum me­
chanical particle would take to tunnel through the barrier, 
by the uncertainty principle.28 Hence, the tunneling prob­
ability :::::exp[ - 2S:;(V(x) - E)I/2 dx], where tl and t2 are 
the classical turning points. This in turn is proportional to 
the energy gap. The energy splitting has been calculated pre­
viously29 and has been treated rigorously by Harrell. 30 The 
wave functions for a symmetric double oscillator using a 
phase-integral approximation have been discussed in Refs. 4 
and 31 and their normalization is considered in Ref. 32. In 
Ref. 31 the quantization condition was applied to calculate 
soine energy eigenvalues for a special double-well potential 
for which the energy eigenvalues have been calculated nu­
merically by Chan and Stelman.33 

For the symmetric double-well potential we also ob­
serve that all the solutions are the same as those obtained 
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previously if we put b = e. The only difference is that the 
domains of validity ofthe solutions "'B,iiic collapse to one 
domain, i.e., x - Xo = 0 (1/ h ~/3), where in this case 
x+ = -x_ =x+ = -x_ =xo(say)andh+ =h_ =ho' 

Now, the actual eigenstates must be even or odd about 
the axis passing through the central maximum ofthe poten­
tial. The degeneracy is then split By the perturbation (i.e., 
finite height and thus finite cross sectional area of the central 
hump of the potential) which couples the otherwise indepen­
dent oscillators, so that the symmetric state lies slightly be­
low the antisymmetric one. 

We now proceed to calculate the deviation of q from an 
exact odd integer qo and thence the splitting of the asymp­
totically degenerate energy levels. For this purpose it is nec­
essary to construct wave functions ¢ ± which are, respec­
tively, even or odd under the interchange x- - x. Here we 
make the important observation that this symmetry of the 
wave functions which is related to the symmetry of the po­
tential is retained only as long as we do not expand around a 
particular point such as one of the minima of the potential. 
As soon as we select a minimum and expand the potential or 
wave function in its neighborhood, this symmetry is violat­
ed. It is therefore essential for the construction of the even 
and odd wave functions to consider solutions which are pure 
functions of x. Solutions of this type are the WKB-like solu­
tions (30), which we now write ¢( ± I. Thus 

'" ± = t/f + I(x) ± t/f -I(x) (88) 

apart from an overall constant, with 

t/f + I(X) = "'A (q,h;U I
/

2
) , 

t/f -I(x) = ¢( + I( - x) . 

We have, therefore, on using (70) and (72), 

'" ± = riiidq,h,w(x)) ± 9"'B(q,h,w(x)) 

(89) 

(90) 

in the neighborhood of the minimum of the potential at Xo 

(specified by appropriate indices attached to q, h, etc.). In the 
neighborhood of the other minimum these solutions involve 
¢c and iiiB (see Fig. 2). 

Figure 3 shows the typical shape of the wave functions 
¢ ± along with the potential V(x). The wave functions", ± 

)( 

FIG. 3. Typical shape of the even and odd solutions. 
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characterized by integers qo are defined by30 

(aJ/!-) = _ 1. 
ax ±Xo 

(91) 

These conditions are such that the Wronskian of J/! -,J/! + is 1 
[the constant C in (71) and (73) is chosen to be 1]. 

Consider J/!- at x = XO' Then li)(xo) = 0 and (J/!-)xo = 0 
yields, to leading order in h, 

(92) 

which [on using (26), (70), and (72)] leads to 

{ 
1T } (h 2 )q12 e-(1I2Ih'~ 

tan ~q + 1) = 1T 2" r U(q + 1)]r l!(q + 3)] 

( )

112 - (112lh'~ 
=!!... h q e . 

2 r[!(q+ 1)] 

Performing the corresponding calculation for 
(aJ/!+lax)x. = 0, we obtain to leading order 

.f a¢q(li))) + ;;of aJ/!q(li))) ~O, 
Y\ ali) Xu Y\ ali) Xo 

which leads to 

cot ~q+ 1) ~!!... h q _
e ___ _ 

{ } ( )

112 -(1I2Ih'X5 

4 2 r [!(q + 1)] 

(93) 

(94) 

(95) 

Applying the same procedure to (J/!+)x
o 

= + 1, we obtain 

tan{!!...(q + 1)}~ _ (!!...)1I2h q _e_-_11_/2_lh_'X_5_ + 1T1/2 (h 2 )11I4)(q_II ___ ---.:.e_-_I_II_4Ih_'_X5 ___ _ 

4 2 r f!(q + 1)] 2 cos! (1T14)(q + l)jr l!(q + 1)] 
(96) 

Similarly, (aJ/!_laxlx., = - 1 yields 

1T1/2h (1I2)(q - 31e -11I41h 'X5 

{ 
1T } (1T )112 e -11/21h 'x5 

cot -7(q+ 1) ~- - h q
----

4 2 r [!(q + 1)] (97) 2( 1I411q+ II sin! (1T14)(q + I)Jr f!(q + 3)] 

We now expand tan! (1T14)(q + 1) J around 
q = qo = 3,7,11, ... so that 

tan{flq + 1)}~(q - qo) : + 0 [(q - qo)2] . 

Then, from (93) and (96) 

(
2)112 e -1112lh 'x5 

q - qo~ ± 2 -; h qo r [!(qo + 1)] , 

where qo = 3,7,11, ... and the signs +, - apply to 

(98) 

(99) 

J/! _, '" +' respectively. In writing down (99) for J/! + we have 
neglected the second term in (96), which is oflower order in h 
than the first term. 

Expanding cot!(1T14)(q + 1)j around qo = 1,5,9, ... , 
we obtain 

cot{: (q + 1)}~ - (q - qo) : + 0 [(q - qO)2], (100) 

so that 

(
2)112 -11I21h 'X6 

q - qo~ + 2 -; h q" /[!(qo + 1)] , (101) 

whereqo= 1,5,9, ... andthesigns -,+ applytoJ/!+,J/!_, 
respectively. 

We have seen previously that the eigenvalue A is ob­
tained as a function of q [see, e.g., (21) and (22)]. Thus, ex­
panding A around qo we have 

A (q)~ A (qo) + (~A) (q - qo). (102) 
q qo 

From (22) we see that (aA I aq)q" is positive. It follows that the 
even states for which q - qo is negative lie below the odd 
states for which q - qo is positive. Our formulas thus permit 
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j 
the explicit calculation of this splitting of the asymptotically 
degenerate energy levels. They also demonstrate the enor­
mous usefulness of the parameter q. 
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A Demianski-like metric is obtained by means of a complex coordinate transformation in the 
Brans-Dicke theory. 

PACS numbers: 04.20.Cv 

Newman and Janis I (NJ) have given a derivation of the 
Kerr metric by performing a complex coordinate transfor­
mation on the Schwarzschild metric. Newman et a[.2 also 
applied a similar technique to obtain the charged Kerr met­
ric (Kerr-Newman solution). Later Demianski, following 
the same technique, developed a general metric which con­
tains both Kerr and NUT metrics as special cases. In this 
paper, we have followed a similar technique and obtained a 
Demianski-like metric in Brans-Dicke (BD) theory,4 show­
ing that NJ I technique may also be applied to BD theory in a 
wider context. 

There is a BD version of the NUT metric obtained by 
Sneddon and McIntosh5 by a method developed by them. 
They could not obtain a BD version ofthe Kerr metric by the 
same method. McIntosh6 employed a different method to 
achieve this end. But his Kerr-like family of solutions does 
not have the spherical symmetry when the rotation is zero 
and the scalar field is not constant. The metric derived in this 
paper does not only pass over to NUT-like and Kerr-like 
ones in BD theory, as special cases, but also formally goes 
over to BD, NUT, and Kerr solutions and is free from the 
shortcoming appearing in the solution of McIntosh.6 The 
Brans-Dicke line element in isotropic form4 may be written 
as 

ds2 = e2ao[ 1 - B Ir ] 21/dt 2 _ e2/30(1 + B Ir)4[ 1 - B Ir ]2/; 
I+Bh I+Bh 

X [dr + r(dO 2 + sin20 dl,b 2)], (1) 

where 1/ = 1IA. and S = (A. - c - 1)1A.. 
The line element (1) may be written in the form 

ds2 = (1 - 2ro/,,1/du2 - 2(1 - 2ro/"udu dr 

- r 2(1 - 2ro/"QdO 2 + sin20 dl,b 2], 

where 

ro = 2Be/3", 
du = dt + (1 - 2ro/,,/;- u- Idr, 

a = (1/ + S - 1)/2. 

(2) 

The contravariant components of the metric coefficients of 
(2) may be written in the form 

with 

(4) 

[I' = 8:, nl' = (1 - 2ro/,,-ubb - !(1 - 2ro/"I-/;8:, 
ml' = (112 1/2,,(1 - 2ro/" - 0/2 [8; + (ilsin 0)8 ~], (5) 

where ml' is the complex conjugate of ml' (the bars on rare 
dropped). 

The coordinate r is now allowed to take complex values 
and the tetrad is rewritten in the form (r' indicates complex 
value of r) 

[I' = 8:, 

ml' = _1 [1 _ {ro(..!.. +..!..) + ~(..!.. _ ..!..)}] -0
/2 

21/2r r' r I r' r 
X [8; - (i/sin 0)8~], 

where b is an arbitrary constant defined in (8). 
We now formally perform the complex coordinate 

transformation 

r' = r + iF(O,l,b), 0' = 0, 

u' = u + iG (O,l,b), l,b' = l,b, (7) 

on the tetrad vectors, where F (O,l,b ) and G (O,l,b ) are real func­
tions of 0 and l,b and are given as 

F = a cos 0 + c cos Oln tan 012 + c + b, 

G = - a cos 0 - 2b In sin 0 - c cos Oln tan 012, (8) 

where a, b, and c are constants. Ifwe now restrict r' and u' to 
be real, we obtain the following tetrad 

[I" = 8:', 

nl" = [1 _ 2ror' + 2bF] - u c5J;!' _ ..!..[ 1 _ 2ror' + 2bF] 1- 0&:" 
r,2 + F2 0 2 r,2 + F2 I 

1" 1 [1 2ror'+2bF]-012['H £I£U' m = - I esc 17(To 

21/2(r' + iF) r,2 + F2 
- i(H + 2b cos 0 )csc 08 t' + 8 i' + (ilsin 0)8~'], 

(9) 

where 

H = a sin2 0 - 2b cos 0 + c sin2 Oln tan 0/2 - c cos O. 
(10) 

The metric coefficient gl'v now takes the form 

gI"v' = [1"nV' + 1 v'nl" _ ml"mv' _ mV'ml", (11) 
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where mJl.' is the complex conjugate on ml". Using (9), (10), 
and (11), the metric coefficient of the Demianski-like metric 
in BD theory may easily be obtained. 

A further simplification is now made by another coordi­
nate transformation 7 so as to bring the required line elemerit 
as close as possible to the standard form. 

The desired line element may finally be written as 
(dropping the primes on r) 

dr[l- 2ror +2bF]"'(dt_Hdt/J)2 
r+F2 

_ [1 _ 2ror + 2bF]S (r + F 2)(dr + d(J 2 + sin2 (J dt/J 2) 
r + F2 .:i 

+2[1- 2~:~~Fr(H+2bCOS(J)(dt-Hdt/J)dt/J, (12) 

where 

.:i = (r + F2 - 2ror + 2bF) + (H csc (J + 2b cot (J f 
The expression for (/I (scalar field) is 

(/I = (/10 [ 1 - (2ror + 2bF)/(r + F2)]u, (13) 
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A check has been made on the Brans-Dicke field equa­
tions and it has been found that (12) and (13) satisfy them. 

If b = c = 0, the metric ( 12) and the scalar field ( 13) pass 
over to a Kerr-like metric in BD theory, and in addition if 
11 = A. = 1 and S = 0, the Kerr metric is recovered. 

Ifa = c = 0, the metric (12) and the scalar field (13) pass 
over to a NUT-like metric in BD theory, and further, when 
11 = A. = 1, S = 0, the NUT metric is readily obtained. 

Finally, with a = b = c = 0, the metric (12) and the sca­
lar field (13) go over to the BD solution. 
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On the invertibility of Moller morphisms 
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Local perturbations of the dynamics of infinite quantum systems are considered. It is known that, 
if the M1611er morphisms associated to the dynamics and its perturbation are invertible, the 
perturbed evolution is isomorphic to the unperturbed one, and thereby shares its ergodic 
properties. It was claimed by V. Ya. Golodets [Theor. Math. Phys. 23,525 (1975)] that the above 
condition holds whenever the observable algebra is asymptotically abelian for the unperturbed 
evolution, and the perturbed evolution has a KMS state. The present paper contains a 
counterexample to this statement, and a construction of a spatial representation of the M1611er 
morphisms. 

PACS numbers: 05.30.Ch, 05.70.Ln 

I. INTRODUCTION 

Let us consider a quantum mechanical system that can 
be described by a C *-algebra d and a group! at J IER of 
*-automorphisms of d. We interpret d as the set of (bound­
ed) observables of the system, and! at J as its dynamics. For 
Aed, t--+£lt(A ) is the time evolution of the observableA. In 
Refs. 1 and 2 it is assumed that t--+£lt(A ) is continuous. This 
seemingly innocent assumption excludes many important 
cases from the discussion as, for instance, the free Bose gas. 
It is, however, not vital for the conclusions to be drawn here, 
so let us also make the assumption, for the sake of simplicity. 
Being strongly continuous, the group! at J has an infinitesi­
mal generator, {; say, 

at = exp(t{;). (1) 

Now, let Vbe any self-adjoint element of d, and define 

at = exp[t({; + [iV,' ))). (2) 

! at J IER is another strongly continuous group of *-automor­
phisms of d, which we shall call "the perturbed dynamics". 
Now suppose that! at J has some nice ergodic property. It 
may be that! at J is ergodic: 

!AedIVt:at(A) =A J = CI, (3) 

i.e., ! at J has no nontrivial fixed points ("constants of the 
motion"). Or it may be that! d ,a J is asymptotically abelian, 
i.e., 

VA.BEd:II[A,at(B)]11 - O. 
Itl~oo 

(4) 

In these cases, it is interesting to know whether or not! at J 
shares the ergodic property. In order to answer these, and 
related questions, it was proposed by Robinson I to study the 
limits 

(5) 
t_± 00 

in the norm topology of d. Suppose these limits exist for all 
Aed. (A sufficient condition for this was given in Ref. 1). 
Then r ± are isometric *-morphisms of d, intertwining a 
and a: 

r ± Oat = at or ± . (6) 

Clearly, if r + or r _ is invertible, ! at J is similar to ! at 'J ' and 

inherits its ergodic properties. 
The maps r ± are called the "M1611er morphisms", by 

analogy with the M1611er operators in scattering theory. 
Now, in scattering theory, the nonunitary of the M1611er op­
erators is generally thought of as due to to the existence of 
bound states for the perturbed Hamiltonian. It turns out 
that, analogously, we may consider the noninvertibility of 
r ± as roughly equivalent to the existence of nontrivial fixed 
points of! at J, i.e., constants of the motion for the perturbed 
evolution. In fact, if ! at J has a fixed point that is not a fixed 
point of ! at J, then r + are not invertible. 

It follows from a result of Araki3 that, whenever there 
exists an ! a,/3 J -KMS state UJ on d for some f3 > 0 (i.e., a 
state, satisfying the Kubo-Martin-Schwinger condition4 at 
inverse temperature f3 w.r.t. ! at J), there also is an ! a,/3 J­
KMS state, and it is quasiequivalent to UJ. This holds regard­
less of the existence of fixed points for I at J . 

In view of the above remarks, Theorem 3 of Ref. 2 is 
surprising. Indeed, we shall see that it is not valid. 

II. A COUNTEREXAMPLE 

Let us assume that 
(I) ! d,a J is asymptotically abelian [i.e., (4) holds], 
(II) the limits r ± (A ) in (5) exists for all Aed, 
(III) for some f3 > 0 there is an ! a,/3 J -KMS state ~ on d. 
Let 1i be the representation of d determined by ~ according 
to the Gel'fand-Naimark-Segal (GNS) construction. It is 
the content of Theorem 3 of Ref. 2 that, under these assump­
tions, there exist *-automorphisms r ± of 1i(d)", such that 
for allAed 

r ± o1i(A ) = 1ior ± (A ). (7) 

The following example shows that this cannot be true. 
Let H be the self-adjoint operator - a 2/ ax2 on L 2(R). 

For geL 2(R), let Pg denote the orthogonal projection ong. If 
geL lnI., 2(R) is such that fgdx =1= 0, the operator if: = H - Pg 

has an eigenvector h =1=0. 
Let !% be the C *-algebra, embodying the canonical an­

ticommutation relations (CAR) over L 2(R), and let d be its 
even subalgebra. Then the groups! at J and! at J of automor­
ph isms of !% , defined by 

at (aU)) = a(eitHf) and at(aU)) = a(eitHf), (8) 
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are related by (1) and (2), with V = - a(g)*a(g)/llgI12. I a, J 
and I a, J both leave d invariant, and V is in d. 

The system I d ,a J is asymptotically abelian because 
exp(itH) tends to zero weakly as It 1-00. Furthermore, by 
Kato's theoremS on perturbations of rank one, the strong 
limits 

W ± = lim e-ilHeitH (9) 
t_± 00 

exist, and W ± are iso!?-etries onto the absolutely contin~ous 
spectral subspace of H. Because h is an eigenvector of H, it 
follows that 

hi Range (W ±). (10) 

Now, define the *-morphisms r ± :!J(J-!J(J by 

r ± (a(/)) = a(W ±/)· 

Then r ± (A ) are indeed the norm limits of a _ ,Oa I (A ) as 
t- ± 00 because of(8) and (9) and the continuity of a(/) in! 
Moreover, for any /3 > ° there is an I a,/3 J -KMS state on d; 
namely the gauge invariant quasifree state (J with two-point 
function: 

(J(a(/I)*a(/2)) = (/2,F(H)/I)' 

where 

F(x) = (1 + ePX)-I. 

Now, because hi Range( W ± ), a(h )*a(h ) commutes with any 
element of the range of r ± ' a fact that contradicts (7). In­
deed, let 1f be the representation determined by (J, and as­
sume that automorphisms r ± satisfying (7) exist. Then 
1f(r ± (d))" = 1f(d)", and this would lead to the conclusion 
that 1f(a(h )*a(h )) commutes with 1f(d)", a contradiction. 

Remark: The above example describes a noninteracting 
one-dimensional Fermi gas in a rank one "potential" Pg • The 
perturbed one-particle evolution has a bound state h, and 
consequently there is a constant of the motion for the per­
turbed evolution of the gas, namely, theobservablea(h )*a(h), 
counting the particles in the bound state. As the unperturbed 
evolution is ergodic (i.e., has no constants of the motion), the 
two evolutions are not isomorphic, and r ± cannot be inver­
tible. If the claim to be disproved had been that r ± are auto­
morphisms of d, our argument could stop here. However, 
only the existence and invertibility of r ± is actually assert­
ed, and it could be that r ± -I, mapping 1f( d)" into itself, did 
not leave 1f( d) invariant. Therefore we need a slightly differ­
ent argument, the one presented above, based on the fact that 
any fixed point of a commutes with r ± (d) if d is asymp­
totically abelian for a. 

III. A PRELIMINARY RESULT 

In what follows, we will have a closer look at the action 
of 1f( r ± (d)) on the Hilbert space H. The following result, 
taken from Ref. 2, will enable us to do this: 

Lemma 1: Suppose conditions (I), (II), and (III) hold. 
Let IH,1f,tJ be the GNS-triple associated to I d,{Jj. Then 
there is tElf, cyclic and separating for 1f(d)", such that the 
state cu, defined by 

cu(A ) = (t,1f(A)t), (11) 

is an I a,/3j-KMS state, and 
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cu = {J0r ±. (12) 

The vector t can be chosen to lie in the positive cone3 9 ~ of 

t· 
Remark: The reverse is also true: If there is an I a,/3 J-

KMS state cu on d, then there is a t in the GNS-space of 
I d,cu J that implements an I a,/3 J-KMS state (J, satisfying 
(12). In fact, this reversed statement is the more useful one. 
In examples where a is "simple", the existence of cu is easier 
to establish than that of (J. I choose to state the less useful 
version in order to agree with Ref. 2. Let me emphasize on 
the other hand that it would certainly not be advisable to 
entirely interchange a and a, and to replace condition (II) of 
the existence of r ± by a condition (fI), the existence of 

y±(A)= lim a_,oa,(A). 
l_± 00 

In examples where a is "simple", (ii) is much harder to test 
than (II). 

Proof Let ff be the center of 1f(d)", i.e., 
ff = 1f(d)"n1f(d)'. By the perturbation theory ofKMS 
states,3 there exists 1/E9~, cyclic and separating for 1f(d)", 
such thatA-(1/,1f(A )1/) is t~,/3 J-KMS. Now consider the 
states Z-(1/,Z1/) and Z-(t,zt). They are both faithful 

normal states on ff. It follows that there is a vector tE ff + 1/ 
such that 

(13) 

This vector t is also in the cone 9 ~, and is cyclic and separ­
ating for ff. Let cu be given by t as in (11). It is not hard to 

show that, because tE ff 1/, cu is I a,/3 J-KMS. And then t 
must be cyclic and separating for the whole of 1f( d)" . 

Let us now prove that 

V AE.if: lim {J0a, (A ) = cu(A ). (14) 
I-±", 

Suppose the contrary. Then there are AEd, E> 0, and a se­
quence It" J of times, such that It" 1-00 and 

l{Joa, (A) - cu(A )I>E, (15) 
n 

Now, the sequence l1f(a, (A)) J must have a w*-converg-
n neN 

ing subnet, because it remains inside the w*-compact set 
IXE1f(dl"lIIX II <IIA II J. So let I n(a) J beanetin N, such that 
lim"n(a) = 00 and w* -lim,,1f (a'n(tT)(A )) = ZE1f(d)". 
Then for all BEd 

[1f(B ),Z 1 = ¥'* - li~ [ 1f(B ), 1f(a In(tT} (A )) ] 

= w* -lim 1f( [ B,a, I .,(A )]) = 0, 
0' nfu, 

because I d ,a J is asymptotically abelian. So ZEff, and we 
can apply (13). But then 

lim {J(a, I .1 (A )) 
u nrtT, 

= lim(t,1f(a, ( .,(A))t) = (t,zt) = (t,Zt) 
u n tT, 

= lim (t,1f(a, I .,(A))t) = lim cu(a, I .• (A)) = cu(A), 
u nrCT, u ftrU, 

because cu is a-invariant. This contradicts (15) and we con­
clude that (14) holds. Finally, note that for allAEd, 
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(Joy ± (A) = lim (Joa _ I oal (A ) 
t __ ± 00 

= lim (Joa l (A ) = liJ(A ) .• 
c_±oo 

IV.INVERTIBILITY OF Y AND EXISTENCE OFy 

For ease of notation, let us from now on identify AEsf 
with the operator 1i(A ) on H = li, so that sf becomes a C *­
algebra of bounded operators on a Hilbert space. Moreover, 
let us focus our attention on only one of the M0ller mor­
phisms: y +, and call it y. 

In Ref. 2 a counterpart 8 to the map y: sf _sf is intro­
duced. 8 acts on the commutant sf', which is a von Neu­
mann algebra, unlike sf itself. I shall give a direct construc­
tion of 8 below. 

Lemma 2: Suppose conditions (I), (II), and (III) hold. 
Then there is an isometry n: H_H, such that for all AEsf, 

y(A)n =nA. 

Proof Define no: sf s-y(sf)t by 

noAs = y(A )t· 
Thel!. for all AE~, IInoA] 112 = IlrjA )t 112 
= (s,y(A )*y(A)s) = (s,y(A *A )5) 
= (Joy(A *A ) = liJ(A *A) = <s,A *As) = liAs 112. As 

sf 5 = H, no extends continuously to an isometry 
n:H-H with range, y(sf)t. Now for all A,BEsf, 

y(A )nBs = y(A )y(B )t = y(AB )t = nABs, 

and the statement follows from the cyclicity of 5 for sf .• 

Lemma 3: Suppose (I), (II), and (III) hold. Let 5 be given 
by Lemma 1 and n by Lemma 2. LetJbe the modular conju­
gation H-H, associated with! sf" ,s}. Then 

In=nJ. 

Proof Let.J and.3 be the modular operators associated 
with {sf" ,51 and! sf" ,t } according to the Tomita-Take­
saki theory6 and J and I the corresponding modular conju­
gations. 

LetAEsf be analytic for {a l }. Then by the intertwining 
property (6) of y, y(A ) is analytic for {al } and 

Inai/3n!A)s =1y(a i/3dA ))t 
- - -- 1/2 -= Jai/3/2 (y(A ))5 = J.J y(A )5 

= y(A )*t = y(A *)t = nA *5 
= nJ.J I/ZAS = nJa;/3!2(A )5' 

Now, the linear space! a i/3/2 (A )slAEsf analytic for a} is 
dense in H. Therefore In = nJ. And because 5 and t are in 
the same positive cone,3 J and I coincide, and the statement 
follows .• 

Lemma 4: Suppose (I), (II), and (III) hold. Let J, n be as 
defined before, and let 

8:sf'_.!L'(H):A_n *An, 

j:sf" _sf':A_JAJ. 

Then 

80joy = j ~ sf. 

Moreover, 

8 (sf')C sf'. 
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Proof First we show that 8 (sf') C sf'. LetBEsf' ,AEsf. 
Then, by Lemma 2, 

[8(B),A] = [n *Bn,A] = n *BnA -An *Bn 

= n *Br(A )n - n *y(A )Bn 

= n *[B,r(A )]n = o. 
So 8 (B )Esf' for all BE sf '. Furthermore, it follows from Lem­
mas 2 and 3 that, if AE.#, 

8ojoy(A) = n * Jy(A ).In = n * Jy(A )nJ 

= n *JnAJ = n *nJAJ = JAJ = j(A ). • 

Lemma 5: Again suppose that (I), (II), (III) hold. Then 
8, defined in Lemma 4, is the unique map sf' -sf' satisfying 

'V AE.<f 'V BE.,f· : (t,By(A )t) = (5,8 (B lAS). (16) 

Moreover, 8 is linear, *-preserving, w*-continuous, and sur­
jective. 

P!:..oof LetAEsf, BEsf'. Then, by Lemma 2, and be­
causes = ns, 

(t,Br(A )t) = (ns,By(A )ns ) 

= (s,n * BnAs) = (5,8 (B lAs ). 
Uniqueness of 8 follows from the cyclicity of 5 for sf. Clear­
ly, 8 is linear, *-preserving, and w*-continuous. It remains to 
provesurjectivity. SoletBEsf'; liB II = 1, say. We look for an 
XEsf' such that B = 8 (X). Now, becausej is a bijection 
sf" -sf',r I(B) is a well-defined element of sf"; 
1\j-I(B ) II = 1. By Kaplanski's density theorem the unit 
sphere in sf is dense in the unit sphere in sf". So there is a 
net! B,,} in sf with liB" II.;;; 1 and w*-lim B" = r I(B). Now 
consider the net {jOr(B"ll. Being included in the w*-com­
pact unit ball of sf', it must have a w*-converging subnet 
{Bojr) J, 

w*-limjOr(BojT)) = XEsf'. 
T 

But then it follows from Lemma 4 that 

8(X) = w*-lim 80j or(Bojr)) 
T 

= w*-limj(Bojr)) = j(r I(B)) = B, 
T 

because both 8 andj are w*-continuous .• 
Remark: In Ref. 2, (16) is the defining property of 8. The 

w*-continuity and surjectivity of 8 are also proved there. 
But, in addition, it is claimed that 8 has the morphism prop­
erty 

'V A,BEN' :8 (AB ) = 8 (A )8 (B ), (17) 

which is now easily seen not to hold if n is not unitary, i.e., if 
y(sf)t is not dense in H. And, indeed, a close look at the 
proof of (17) in Ref. 2 reveals that the w*-density of y( sf) in 
sf" is implicitly assumed there. Once accepting (17), Golo­
dets can prove that r exists as an automorphism of sf" by 
turning the argument around that has proved the existence 
of 8 as an automorphism of sf'. Actually, the existence of 
the automorphism rand (17) are equivalent: 

Theorem 6: Suppose that the conditions (I), (II), (III) 
hold, and let n be given by Lemma 2, and 8 be as defined in 
Lemma 4. Then the following statements are equivalent: 

Hans Maassen 1850 



                                                                                                                                    

(i) There is a *-automorphism r of d", such that 
r ~ d=y, 

(ii) y(d)'Cd', 
(iii) nH = H, 
(iv) For all A,Bed':O (AB) = 0 (A )0 (B). 
Proof (i)=:>(ii): Suppose (i) holds. Then r is w*-contin­

uous, and therefore y(d)" ::JY(d") = d". It follows that 
y(d)' = y(d)' = (Y(d)")'C(d")' = d'. 

(ii)=:>(iii): Suppose (ii) holds. Let P = nn *. Pis the orth­
ogonal projection on y(d)f, so Pey(d)', and therefore 
Ped' by (ii). Now Pt = t, so (P - I)t = 0, and because t is 
separating for d', P = 1. It follows that nH = H. 

(iii)=:>(i): Suppose n is unitary; define Y(A ) = nAn * for 
all Aed". Then for Aed we have Y(A ) = nAn * 
= y(A )nn * = y(A ), so r ~ d = y. r is clearly a *-mor­

phism, and we have to show that it is onto. LetAed" and let 
B = n * An. As J commutes with n, 
B =In *JAJnJ =T1oOoj(A );soBed" by Lemma 4. More­
over, Y(B) = nBn * = nn *Ann * = A. We conclude that 
any Aed" is of the form y(B), Bed". 

(iii)=:>(iv): Ifn is unitary then, forallA,Bed', 0 (A )0 (B) 
= n * Ann * Bn = n * ABn = 0 (AB ). 

(iv)=:>(iii): Suppose (iv) holds. Then for all Aed' 

1851 J. Math. Phys., Vol. 23, No.1 0, October 1982 

lin *At 112 = (t.A *nn *At > = (s,n *A *nn *Ans > 
= (s,O (A *)0 (A )s > = (s,O (A * A )s > = (s,n * A * Ans > 
= (t.A *At> = IIAt 11

2
, and because t is cyclic for d', 

n * is an isometry. Hence n is unitary, and nH = H .• 
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Two integrals which appear in the study of the relativistic Bose gas are analyzed. The complete 
low-temperature and high-temperature expansions are computed. 

PACS numbers: 05.30.Jp, 03.30. + p, 05.70. - q, 02.30. + g 

1. INTRODUCTION 

There have been many attempts in the past to study the 
properties of a relativistic ideal Bose gas. 1-8 It is fairly easy to 
derive integral expressions for the various thermodynamic 
quantities. Unfortunately, the integrals obtained cannot be 
evaluated exactly and various approximation schemes must 
be employed. In the past, a number of authors attempt-
ed 1.2.4.7 to obtain high-temperature expansions for the ther­
modynamic variables. The leading term of the high-tem­
perature expansions were easily obtained, but their methods 
failed, in general, to determine further terms in the expan­
sion. In Ref. 8, we pointed out that the expressions used by 
past authors failed to include the possibility of particle-anti­
particle pair production. When this feature was included in 
the analysis, we were able to derive the relevant high-tem­
perature expansions. Here we will provide a detailed analysis 
on how to obtain the full high-temperature expansions. 

The plan of the paper is as follows. In Sec. 2, we intro­
duce the integrals to be studied. Sections 3 and 4 discuss the 
high temperature expansions of those integrals. Our tech­
nique is to reduce the integral expressions to contour inte­
grals in the complex plane, which may then be computed by 
summing over residues of single and double poles. This we 
do in Sec. 3. In Sec. 4, we briefly describe the computations 
which lead to the desired expansions. For completeness, we 
also discuss the full low-temperature expansion in Sec. 5 and 
indicate its use in obtaining the first relativistic corrections 
to the standard nonrelativistic thermodynamic results. We 
have included some relevant mathematical information in 
Appendices A-C and have collected the results of the high 
temperature expansion in Appendix D. 

2. THE INTEGRALS 

We consider the following general problem: Calculate 
all thermodynamic quantities for a relativistic ideal Bose gas 
in n space dimensions. To do this, we introduce two 
functions: 

1 loo [ 1 ] g"(y,r) = -- x" - ldx , 
r(n) 0 exp[(x2 + y2)112 - r y] - 1 

1 
h (yr)-­" , - r(n) 

( 1) 

X 100 

LxP[(x2 + y2)~/2 - r y] - 1] . 

(2) 
These functions are related to the thermodynamic potential 
fl (T, V,fl) in n space dimensions 

x"-ldx 

(x2 + y2)1/2 

n 2Tn+ I (00 
v:= (417y/2r(n/2) Jo x"-ldx 

X pn[ 1 - exp[ - (x2 + y2)112 + r y] J + (r--+ - r)1 

= - 21T- [(n+ l)I21r [(n + 3)/2] T" + 1 

X Ihn+2(y,r) + hn + 2(y, - rll , (3) 

where y_m/T and r==p/m (fl is the chemical potential). 
The two terms in (3) correspond to the contribution of part i­
cles and antiparticles, respectively. [Those authors who ig­
nored the antiparticles did not include the second terms in 
brackets in (3)]. Given n, one may calculate all other ther­
modynamic quantities by computing certain derivatives. 9 It 
is therefore useful to obtain the following relations satisfied 
by gn and h": 

a -y r~ a y gn + 1 = -n-gn 1 + rnhn + I + --;; hn - l' (4) 

a y3 
ar gn + 1 =ynhn+ 1 +-;;hn_ 1 , (5) 

a -y r 
-hn+ 1= --hn_ 1 + -gn-I , (6) ay n n 

a y 
-a hn+ I =-gn-I (7) 

r n 

Note that the recursion relations above connect gn and hn 
with even n among themselves and also connect gn and hn 
with odd n among themselves. This suggests that we will 
have to analyze separately the cases of even and odd n. Fur­
thermore, it is sufficient to compute the expansions for 
hn (y,r); then the expansions for gn (y,r) may be obtained by 
using (7). We therefore turn to the computation of the high­
temperature expansion of hn (y,r). 

3. THE HIGH TEMPERATURE EXPANSION: PART I 

We now analyze (2) in the limit of y-o at fixed r. Recall 
that y=mlT and ~fl/ m so that this limit corresponds to 
the high-temperature limit. For convenience, we will always 
take y;?O. Consider then hn as a complex function of r. It is 
easy to see that it has branch points at r = 1 and is analytic in 
the complex r plane cut from r = 1 to r = 00. [It follows that 
n given by (3) is analytic in the complex r plane cut from 
r = 1 to 00 and r = - 1 to - 00. In particular, n is real 
valued only for real r satisfying - 1 <;r<; 1. This condition 
corresponds to the physical requirement that the occupation 
numbers nk of particles and antiparticles be positive for all 
momenta k. 8

] 

The first step in the computation involves expanding 
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_ ~ ryp _p(x'+y')'f2 
----~----~-------- - ~ e e . 
exp[(x2 + y2)1/2 - r y] - I p= I 

Inserting (8) into (2), we may integrate term by term (see 
Appendix A) and obtain 

I (y )In - 1)/2 

hn(y,r) = r [(n + 1)/2] 2 

(8) 

X ! erYPp(l- n)/2K(n _ 1)/2 (yp) , (9) 
p=l 

where K is a modified Bessel function. To insure conver­
gence, 1 rl < I and n > 2. In fact, we will be able to relax these 
requirements later by the method of analytic continuation. 

We are interested in obtaining an analytic expression 
for the high-temperature (smally) expansion of hn • As it 
stands, (9) is inconvenient for this purpose. For example, if 
r> 0, one easily sees that as y is made smaller, more terms in 
the sum must be kept. Our goal is to obtain an expansion for 
hn , where fewer terms need be kept asy-o. To accomplish 

2FI(S,.!:.;S _.!:. + I; r + I) = 11"1/2( 1- r)s r(s _.!:. + I) 
2 2 r-I 2 2 

this goal, we begin by making use of the Mellin summation 
formula 10 to evaluate the sum over pin (9). Using (A2) for the 
Mellin transform of the summand, we obtain 

n-I 
h (y r) - ---:-:-..:..y---­
n , - i211"1/2r [(n + 1)12] 

xiC

+
iOO 

ds r(s)r(s - n + I)t(s) 
c-ioo [y(l-r)]Sr(s-!n+l) 

X 2FI(S .!:..s _.!:. + I. r + I) 
'2' 2 'r-I' 

(10) 

where Re c> n - I. To evaluate the contour integral, we 
may close the path to the left (see Fig. I). The value of the 
contour integral around the large arc is zero in the limit of 
infinite radius. Hence by the residue theorem, the value of 
the integral (10) is given by the sum of the residues of the 
poles of the integrand. (Note that all the poles are enclosed 
by the contour of Fig. 1.) We now apply some hypergeome­
tric function identities to (10) to separate terms even or odd 
in r: 

{ 

2FI(+'S-~+ I;!;r) 2FI(~,S_~+2;~;r)} 
X rC~I)r(S-~+2) +2r r(~)re-~+I) . 

(11) 

This is valid for 1 arg (I ± r) 1 < 11" (which is equivalent to 1 rl < I if r is real). Note, however, that the left-hand side of (II) is 
analytic in the r plane cut from r = I to r = 00. Thus, later on we should be able to analytically continue our results to the 
region on the real axis where - 00 < r < - 1. For now, we will assume that r is real such that Irl < 1. 

Using (II) in (10) allows us to break up hn into pieces even and odd in r. Therefore, we define 

h ~(y,r) = Hhn(y,r) + hn(y, - r)] , (12) 

h ~(y,r) = Hhn(y,r) - hn(y, - r)] . (13) 

We then find 

I (y)n-I (y)-S (S) (S-n+l) (S s-n+1 r) h~(y,r) = 4r [(n + 1)/2] 2 ~ 2 r 2 r 2 t(S)~1 2' 2 * ' (14) 

hOt r)= r (l...)n-I~(l...)-Sr(S+I)r(s-n+2),.(S) ",(S+I s-n+2.1.r ). 
n y, 2r [(n + 1)/2] 2 t:. 2 2 2 ~:z.< I 2' 2 '2' 

(15) 

The evaluation of (14) and (15) requires us to sum over the 
residues (Res) of the poles of the functions specified. In gen­
eral, there are both single and double poles although this, in 
part, depends on whether n is even or odd. We will therefore 
evaluate the two cases of n even and odd spearately. Equa­
tions (14) and (15) are the basic equations which will provide 
the high-temperature (y<l) expansion; we now tum to the 
calculation. 

4. THE HIGH TEMPERATURE EXPANSION: PART II 

In this section we will summarize the details of the cal­
culation of h ;1+ I (y,r) (i.e., n = 21 + 1 is odd). We empha­
size that this function when I = 2 is relevant for the calcula­
tion of the ideal Bose gas in three space dimensions [see (3)]. 
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We will then make some brief comments on the calculation 
of the other functions of interest. For the reader's conve­
nience, we have displayed the final results for the high-tem­
perature (smally) expansions of the hn in Appendix D. 

To compute the residues of the poles of h ~I+ I (y,r) we 
need to study the singularities in S of 

( 
y ) - s ( s) (S - 21\ (S s - 21 ) /(s)= 2 r 2 r -2--l(shFI 2'-2-*r .(16) 

We are assuming (for now) that 1 rl < 1; hence the only singu­
larities of/Is) are due to the gamma and the Riemann zeta 
function. Specifically,f(s) has single poles ats = 1,2,4, ... ,21 
and double poles at s = 0, - 2, - 4, .... The residues at the 
single poles are easy to calculate; we find that 
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FIG. I. The contour specified in integral (101 may be closed in the left half­
plane since the integrand vanishes asymptotically on the arc at infinity. The 
residues of the poles (either single or doublel at integer s must be evaluated. 

Res[f(s)] = 21T( - 1)/22/F(1 + 1) (1 _ r)/-I12, (17) 
s= I yr(21 + 1) 

Res [f(s)] = (2.)2k 2r (k)( _1)/-k t(2khFI(k,k-I;!;r), 
s=2k y r(l-k+l) 

(18) 

where k = 1,2, .. . ,1. In obtaining (17) we have used a number 
of properties of the gamma function to simplify the expres­
sion. II Note in particular that the hypergeometric function 
in (18) is simply a polynomial in r because k - I is either zero 
or a negative integer. 

The computation of the residues at the double poles is 
somewhat more complicated. First, at s = 0 we find 

Res [ f(s)] = 2( - 1 )1 {!r - !tP(1 + 1) + In(L) 
s=o I! 41T 

- [.!!.-. 2FI(~'~ -I;!;r)] } . (19) 
ds 2 2 s=O 

where r is Euler's constant. The derivative of the hypergeo­
metric function can be computed by using the series defini­
tion of ~I' At the end of the computation, the resulting 
series can be resummed and we find 

- Ir~2(1,1,1 -I;p;r). 

(20) 

Finally, consider the residues as s = - 2k, k = 1,2, .... The 
calculation is easy because t ( - 2k ) = O. The result then is 

Res [f(s)] = 4( - 1)1 (L)2k 2F I( _ k, - k - /;!;r) 
s = - 2k k !(k + I)! 2 

xt'( - 2k), (21) 

where the prime refers to differentiation and k is a positive 
integer. Using the reflection formula for the zeta function, 11 
we may show that 

t'( - 2k) =!( - 1)k(21T) - 2kr(2k + l)t(2k + 1). (22) 

Using (14), we add the results obtained in (17H22). The end 
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result is the expression for h ~/+ 1 (y,r) given by (01) of Ap­
pendix O. 

At first glance, (01) is quite a formidable looking ex­
pression [especially when compared with (9)]. However, we 
emphasize the advantages of our result. First, it is indeed the 
high-temperature (smally) expansion we were seeking; in the 
limit ofsmally, (01) reduces to a very manageable result. 
Second, the analytic structure in y and r is easily analyzed. 
Note that all the hypergeometric functions which appear in 
(01) are polynomials in r (we assume I is a positive integer). 
Actually, one must recall that (01) was derived under the 
assumption that Irl < 1 (andy;;;'012). However, one may ex­
tend the results to the remainder of the complex plane by 
analytic continuation [by noting that h ~I + 1 (y,r) is analytic 
in the r plane with cuts running from r = - 00 to r = - I 
and r = I to r = oo.J 

We now turn to the other functions; first consider 
h ~I + 1 (y,r). The main complication arises in the calculation 
of the residues of the double poles. In particular, one needs to 
compute various derivatives of 2FI'S with respect to their 
arguments. Such computations are far from trivial and re­
quire extensive manipulations of special functions. We give 
one such example: 

[!!... F (s + 1 s - 21 + 1 Jr)] 
ds 2 1 2' 2 ' , s = I 

- r2FI(I,1 -l;~;r) 

r(~)F(l) (_ 1)lr l F (11'1 + ~'r) 
2r (I + ~) 2 1 " 2' 

+ !rmr(1) If (l)k [Sk + SI_k_ .]rk, (23) 
hO r(k + ~)F(/ - k) 

where we have written 

(24) 

The end result is that the expression for h ~I + 1 (y,r) is the 
most complicated one of all and is given by (02) in Appendix 
O. 

We may now add the two expressions (01) and (02) to 
obtain hn (y,r) [see (12) and (13)]. It is ofinterest to check the 
analytic structure of h n which should be analytic in the r 
plane cut from r = 1 to r = 00 (whereas h ~ and h ~ separate­
ly require an additional cut from r = - 00 to r = - 1). To 
demonstrate that the sum of(OI) and (02) has no cut along 
the·negative r axis, let us isolate the terms in h21 + 1 (y,r) 
which contribute to the cut structure. From (01) and (02) 
they are 

2/-1 
h () 1TY (_I)/(I_r)/-1I2+reg, (25) 

;1+ 1 y,r = 2r(21 + 1) 

2/-1 

hO () Y .,:zl+ 1 F (1,1;/ + 3;r) + reg, (26) 
21 + 1 y,r = r (2/ + 2) 2 1 '! 

where reg indicates pieces which are nonsingular for all real 
r. We may simplify (26) by using (B4) to extract the term with 
the singularity. Because 
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we note that when r> 0 (excluding the point r = ± 1) 
arccosr/(l - r)1/2 is real valued, and when r<O, 
arccos( - r)/(l - r)ll2 is real valued. It follows that 

, 1;' (1 1-1 + l'r) = ± (1 _ r)/- 112 "r/2(/ + !) (~)I ..l 
2'" 1 " 2' r (I + !) dr r 

+ reg, (28) 

which after some manipulation becomes 

F(l 1-1+ l'r) = ±(1_r)/-1I21T(-1)/(/+!) +reg. 
2 I " 2' rl+ I 

(29) 

The sign ( ± ) which appears in (28) and (29) is to be taken 
positive when r> 0 and negative when r < O. Inserting (29) 
into (26), we see thath2/ + I (y,r) is regular for - 00 < r< 1, as 
we originally claimed. 

Lastly, we comment briefly on the case of h2/( y,r). It is 
readily apparent from (14) and (15) that for h ~I we need only 
calculate the residues of single poles. For h ~I' in addition to 
the single poles there is one double pole at s = 1. Thus, it is 
fairly simple to compute the expansions for h ~l and h ~l 
which we have written down in (D3) and (D4), respectively. 
We may repeat the arguments of the previous paragraph to 
show that h2/(y,r) has the correct analytic structure. 

It is interesting to note that one can derive explicit ex­
pressions for h21 (y,r) and g21 (y,r) in terms of elementary 
functions and polylogarithms. In Section 5 we will derive the 
general expansions, which turn out to be useful in the low 
temperature expansion as well. For now, we will provide a 
simple example when I = 1. By making the substitution 
w = exp[ - (x2 + y2)1/2] in (1) and (2), we readily find 

g2(y,r) = Li2[elr-llY] -yln[1-e1r - I)Y], (30) 

h2(y,r) = -In[l - e1r-l)y] . (31) 

The high temperature (y-o) expansions may be easily 
worked out by using (C6). 

5. THE LOW TEMPERATURE EXPANSION 

We now consider (1) and (2) in the limit ofy-oo at fixed 
r, which corresponds to the low temperature limit. We may 
derive expansions for gn and hn directly by making the sub­
stitution w = exp[ y - (x2 + y2)1/2] in (1) and (2). The re­
sults are 

1 
gn(y,r) = r(n) 

i l (-In wr12-1(2y _lnWr/2-I(y -In w) 
X ~ , 

o exp[(1- r)y] - w 

(32) 

1 i l ( -In wr/2 - 1(2y -In wr12 - I 
hn (y,r) = - dw -'-----'----'-=-----'---

r(n) 0 exp[(1- r)y] - w 
(33) 

Expanding the numerators under the assumption that 
lIn w/2yi < 1, we may use(C1) to integrate term by term and 
obtain 
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(27) 

r(n/2) 00 1 (1 )k+l-nI2 
gn(y,r)= r(n) k~ok!F(nI2-k) 2Y 

x{yr(~ +k )Lik+n12(elr-l)y) 

+r(~ +k+ 1) Lik+n12+.(elr-1IY)} . (34) 

r (nI2) 00 r (n12 + k) ( 1 )k + I - nl2 
hn(y,r)= r(n) k~or(n/2-k)k! 2Y 

XLik + n12(e1r - l)y). (35) 

If n is odd then (34) and (35) are asymptotic series in y as 
y-oo. In the case of n even, then the sums in (34) and (35) 
contain only a finite number of terms up to k = n/2 - 1. 
This verifies the remarks made at the end of the last section, 
and confirms (30) and (31). Therefore, by using (C6), one can 
actually use (34) and (35) as high temperature expansions, 
provided n is even. On the other hand, one can always use 
(34) and (35) as low temperature expansions by making use of 
the series expansion given in (C1). 

We illustrate the use of(34) by computing the nonrelati­
vistic limit of the charge density p of an ideal Bose gas. It was 
shown in Ref. 8 that p is equal to the difference between the 
number density of particles (n) and antiparticles (n), where 

T3 
n = -:;1" g3( y,r) , (36) 

(37) 

withy = miT and r = fllm. Using (34), we see that the lead­
ing term in the low temperature expansion of g3 is 

(38) 

As discussed in Ref. 8, the nonrelativistic chemical potential 
is fl NR = fl - m. Let us define 

_ Ir- I)y _ JtNRIT 
ZNR - e - e . 

Then 

g3( y, - r):::::i(21T l)I/2 Li3/2(ZNRI e - 2y) 

1 
:::::~21T y3)1/2 e - 2 y , 

4ZNR 

(39) 

(40) 

which is exponentially small as y_ 00. That is, the contribu­
tion of the antiparticles is exponentially small in the nonrela­
tivistic limit. Therefore, in this limit, p = n and therefore by 
(36) and (38) 

(41) 

which is the standard result. 9 The first relativistic correc­
tions to (41) may be easily calculated using (34). 

6. SUMMARY 

The solution to the complete high temperature ( y-<)) 
expansion of integrals (1) and (2) has been obtained. The re-
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suits for (2) have been explicitly written down in Appendix 
O. For thermodynamic applications, this allows us to obtain 
the thermodynamic potential (3) (in an arbitrary number of 
dimensions) from which all thermodynamic quantities may 
be computed. In three spatial dimensions this requires evalu­
ating h ;(y,r) from (01) and yields 

~= -rr +L(I-2r) _L(I_r)3/2 
VT 4 45 12 61T 

+ 1 ~~ [In(;) - r + a - 2r + ~r4 ] 

_ ~(L)4 f (_ l)k (L)2k r(2k + l)t(2k + 1) 
rr 2 k= I 41T r(k + 1)r(k + 3) 

X 2F I ( - k, - k - 2;~;r), (42) 

wherey = miT, r = p..lm. The hypergeometric function is a 
polynomial in r of order k. By using (42) all thermodynamic 
functions immediately follow from the relations 

s- _ (an) 
- aT v.I-" 

p __ (an) 
- av T.I-" 

Q __ (an) 
- ap.. T.V' 

u= TS-PV+p..Q. (43) 
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APPENDIX A: SOME IMPORTANT INTEGRALS 

We list here two integrals used in the text. II In deriving 
(9), we need 

f~ dXX2(~2-::2~1:'~'" = 1T-l/2r(n +~) (;Y Kn(py), (AI) 

where Re n > -~, Re y > 0, and p > O. 
Second, in deriving (10) it is sufficient to know 

f~ dp pi-' - I eryPKNlyp) 

1TI/2(2yt rlj.t + N)rlj.t - N) 

[y(1 - r)]N+1-' rlj.t +!) 

X2FI(p..+N,N+~; p..+~; r+ 1), 
r-l 

where Rep.. > IReN I and Rey(1 - r»O. 

APPENDIX B: SOME PROPERTIES OF 
HYPERGEOMETRIC FUNCTIONS 

(A2) 

We quote some very useful relations for Gauss' hyper­
geometric function 2FI.13.14 2FI (a, b; c; z)lr(c) is an entire 
analyticfunction of its parameters a, b, c for fixed Izl < 1. An 
important relation used in deriving (11) is 15 
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~I (2a, 2b; a + b +!; 1 ~ z) 

- r(!)r(a + b + !) F ( z2 
- r (a + !)r (b +!) 2 I a, b;!; ) 

+ r ( - 2)r (a + b + !) z2 
z r(a)r(b) 2FI(a +!, b +!;~; ). 

(Bl) 

wherelarg(l±z)I<1Tanda+b +!¥=O, -1, -2, .... 
In using the recursion relations (4)-(7) the following two 

results are particularly useful: 

d ab 
dz 2FI(a, b; C;Z) = ~ 2FI(a + 1, b + 1; c + 1;Z), (B2) 

d 
dz [z" 2FI (a, b; c + 1;Z)] = cz" - I ~I (a, b; c; z). (B3) 

We note that all hypergeometric functions which ap­
pear in Appendix 0 are simple polynomials with the excep­
tion of 

F (1, 1·1 +,1. r) = (1 _ r)/-1I2 1TI/2(21 + 1) 
2 I , 2' r (I + !) 

X (~)I arcsin r , (B4) 
dr r 

F (1 ,1 _ I· .1. r) = (1 _ r)/- I _1_ (~)/- I [r l - 3 
2 I '2 ' 2' 2r (/) dr 

X In C ~ :)] . (B5) 

Finally, we briefly mention some properties of 
3F2(al, a2, a3; bl, b2; z). First, suppose a3 = b2; then 
3F2(al, a2, a3; bl, a3; z) = ~I(al' a2; bl; z). Second, it will be 
useful to express 3F2 as a sum over ~I 's when possible. This 
makes it easier to check recursion relations (4)-(7). We give 
one such example: 

I I-I 
3F2(1, 1, 1 -I;~, 2; r) = - L 2FI( - j, 1;~; r), (B6) 

I j=O 

which is useful in working with (01). Finally, we note the 
following useful relations found in Ref. 14: 

c 
3F 2(a,b,c;c+ l,d+ l;z)= --2FI(a, b; d+ 1; z) 

c-d 

and 

d 
- -- 3F2(a, b, c; c + 1, d; z) 

c-d 
(B7) 

3F2(a,b,c;c + I,d + l;z) = __ c_-_l __ 
z(a - l)(b - 1) 

X [2FI(a-l,b-l;c-l;z)-I]. 
(BS) 

APPENDIX C: THE POL YLOGARITHM 
The polylogarithm Lin (x) is defined (for n > 0) as 16

•
17 

Lin (x) = -=-.!.. tdt(-lntr-I = f x:. (el) 
r(n)Jo t-x- I 

p=IP 

The following properties are useful: 
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~L' ( )= Lin_dx) 
In X , 

dx x 

Lidx) = -In(l - X), 

Lin (1)=t(n) (n>I). 

(e2) 

(e3) 

(e4) 

00 (_ 1)k+ 1(2k - 1)!t (2k) ( y )2k +2yn-1 L - , 
k = 1 (2k + n - I)! 211' 

It is useful to deive a series expansion for Lin (e - Y) about 
y = O. To do this, start with the well known identity 

(e6) 
where Sn is the sum of the first n reciprocals [see (24)]. Note 
that as it stands, (e6) is only valid when n is a non-negative 
integer. The proper analytic continuation of (e6) is derived 
in Ref. 18 and we quote it here: 

00 (_ l)k!- (0' - k) 
Li,,(e- Y ) = r(1 - O')y,,-2 + L !> yk. (e7) 

k=O k! 1 = ~ _ ~ + ~ f (_ l)k+ 1 

exp(y) - 1 y 11' k = 1 

( 
Y )2k - 1 

xt(2k) 211' . (e5) 
APPENDIX D: TABULATION OF RESULTS 

Successive integration of(e5) n times will yield Lin(e- Y ): 

We list here the complete high temperature expansion 
of hn (y, r) that results from the calculations described in 
Sees. 3 and 4, where y is assumed to be positive. [The func­
tions gn (y, r) are immediately obtained by computing one r 
derivative as in (7).] There are four possiblities since the part 
of h n (y, r) that is even in r or odd in r is calculated separately 
[see (14) and (15)] and the index n may be either even or odd. 
Note that Sk is the sum of the first k reciprocals [see (24)]. 

21 - 1 ( 1)1 ( )21 
h ~I+ 1 (y, r) = 2;r21 + 1) (- 1)1(1- r)I-1 + 2[r~ + lW ~ 

X {In ( :11' ) + Hr -I/J(I + 1)] + Ir3F2(1,1,1 -I; ~, 2; r)} 

+ 1 If (_ W(L)2kr(/-k)t(2/-2k)~(_k I-k'~'r) 
2r(1 + 1) k=O 2 r(k + 1) I' , , 

+ ( - 1 )1 (L)21 ~ (_ l)k (L)2k r (2k + l)t (2k + 1) F k 1 k. r 
2r(/+l) 2 k~1 41T r(k+l)F(k+l+l)2 1(- , - - ,~, ), 

(01) 

h ~I+ 1 (y,r) = 

~ r( - 1)1 + 1 ( Y )21 - 1 { - 1 ( y ) 
r(1 + 1)"2 r(1) In "2 ~1(1, 1 -I;~; r) 

+1~1(_I)kr(k+l)t(2k+l)(L)-2k F(k+l k+l_/03'r)+(-I)I+lrmrl 1?(I,I'I+l.r) 
k~1 r(/-k) 2 2 I' 'l' 2r(/+~) ~I , l' 

+wmlf (_I)k rk(Sk+Sl_k_l) +4f (_I)k r(2k)t(2k) (L)2k[t/J!2k)+!r+ln(L)+ t'(2k)] 
k=O r(k + ~)F(/- k) k= 1 r(k )r(1 + k) 411' 41T t(2k) 

X2FI(I-k,l-k-I;~;r)+ _2_ f (_W r (2k)t(2k) (.!L)2k3F2(1,1,1-I;k+l,k+~;r) 
r(l)k=1 r(2k+2) 211' 

-2r(~)f (-I)kr (2k)t(2k)(L)2kkf l rj(Sk_j_I+SI+k_j_l) }, (02) 
k= 1 411' j=O r(j + l)r(j + ~)r(k - llr(1 + k - j) 

h ~I(y' r) = yl-2( - 1)1(1 - r)l-I [In [y2(1- r)] - r - t/J!I) + 2r(1 -1)3F2(1,1,2 -1;2,~;r)} 
2r(21) 

_ ~(L)21-1 r(2-1) + 1 If.2 (_ Wr(/-k-~)t(2/-2k-l)(L)2k ~(-k I-k-!'!'r) 
4 2 r(~ + I) 2r(1 +!) k=O r(k + 1) 2 I' , , 

+ (- 1)1+ 1 r(1) y21-2 ~ (_ l)k r(k)r(2k)(L)2k F (_ k -I + 1 1 _ k· 1· r) (03) 
r(21) k~1 r(k+l) 211' 2 I '2 '2' , 

h ~l(y' r) = r If (_ W r(/- k - ~)r(2/- 2k - 2) (L)2k+ I~ (_ k 1- k _103. r) 
r(/+~)k=O r(k+l) 2 I, 2'l' 

_ r (L)21- 2 00 r (2k + 1)F (~ - I - k )t (2k ) ( y )2k 
r(/+~) 2 k~O r(k+l) 41T ~dl-k,i-I-k;i;r) (04) 
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Rigorous iterated solutions to a nonlinear integral evolution problem in 
particle transport theory 

v. c. Boffi and G. Spiga 
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After a preliminary functional study of the operator associated with the relevant Boltzmann 
equation, which is shown to be a contraction operator, a nonlinear integral evolution problem 
occurring in the diffusion of the particles of a mixture is solved by resorting to a rigorous iterative 
scheme, in the case without removal. According to this scheme, an explicit recursive 
representation for the general iterated solution of order n is developed. Structure and behavior of 
the solution so obtained are investigated and commented on. 

PACS numbers: 05.60. + w, 51.10. + y, 02.30. - f 

INTRODUCTION 
We refer to the following physical situation. At the time 

t = 0, a spatially uniform, pulsed source, say Q (v,t ) 
= Qo S (v) 8(t ), injects Qo test particles (t. p.) (per unit volume) 

with the velocity distribution S (v) and such that 
f R, dvS (v) = 1 in an unbounded host medium, consisting, in 
tum, of some other particles to be distinguished as field par­
ticles (f.p.). The host medium is taken to be free oft.p. up to 
t = 0 so that for the initial t.p. distribution function/(v,t), 
right after the pulsed injection, we have/(v,O) = Qo S (v). 
With respect to this initial datum we want to study the be­
havior of/(v,t ) for any t> 0 by accounting for the three fol­
lowing binary events, that are supposed to take place 
between the particles of the mixture under examination. 
Whereas t.p. are removed, say, through absorption, by f.p., 
we assume instead that the t.p. can interact with each other 
through either scattering or removal (by absorption), the lat­
ter event being introduced to generalize the mathematical 
effects due to removal rather than having a strict physical 
meaning. We have thus to face a nonlinear evolution prob­
lem for the distribution function of the t.p. considered. 

The physical situation sketched above has been recently 
the object of several investigations aimed at focusing the 
mathematical problems connected with the existence, uni­
queness, and structure of its solution. This has been essen­
tially done on the basis of two main hypotheses concerning 
the cross sections and the scattering probability, respective­
ly. More precisely, the lIlvl approximation for the cross 
section and the model of isotropic scattering between rigid 
spheres for the scattering probability have been systemati­
cally exploited. In this context, we recall the works of Krook 
and Wu 1.2 and Bobylev,3 who first obtained independently 
the exact solution for the isotropic distribution function in 
the absence of any removal. Successively, and for the same 
physical situation, a series of papers by Ernst4 and by Barns­
ley and TurchettiS

-
9 have contributed significant progress to 

the knowledge and understanding of the problem. 
In this paper, still referring to the I1lvl approximation 

for the cross section and to the case without removal, but 
leaving the scattering probability unspecified, we succeed 
not only in establishing some general results concerning the 
existence and the uniqueness of the solution of the problem, 
but also in defining an iterative constructive scheme leading 

to explicit iterated solutions of some "practical" interest. 
This is achieved by starting with the so-called "scattering 
kernel" formulation of the relevant nonlinear integro-differ­
ential Boltzmann equation, and then by reformulating it in 
the equivalent integral form. 

In Sec. 1 the general theory of the problem is expound­
ed. In particular, we prove-for a general scattering prob­
ability and for a general velocity distributionS (v) of the t.p., 
emitted by the external source-the existence and the uni­
queness of the solution to the nonlinear integral evolution 
problem to be dealt with on the basis of a simple application 
of the contracting mapping principle. The contraction pro­
perties of the operator associated with the problem under 
consideration are guaranteed only up to a finite "critical" 
time T, that is shown to be a function of the scattering colli­
sion frequency Cs between the t.p., the intensity Qo of the 
source, and the functional properties of the scattering prob­
ability. In Sec. 2 we present, instead, on the basis of the the­
ory of the approximate methods for the solution of operator 
equations,1O the results for the sequence of the iterated solu­
tions/o(v,t )./I(V,t ),. .. ofthe problem, and give the explicit re­
cursive representation for the general/n (v,t). By choosing 
/o(v,t) = QoM(v), whereM (v) is the Maxwellian normalized 
to unity (with the physical parameters determined by the 
initial distribution S (v) and by the conservation laws of the 
scattering mechanism), we are also able to show that all the 
iterated solutions so obtained not only satisfy the initial con­
dition at t = 0, but also as t-oo tend to the correct limit just 
given by the Maxwellian M (v). This circumstance can be 
interpreted as showing that the "critical" time Tcan actually 
be extended much farther than the value estimated here. 

I. THEORY 
A. Statement of the problem 

The physical situation sketched in the Introduction is 
adequately described by the nonlinear integro-differential 
Boltzmann equation, that in the frame of the "scattering 
kernel" formulation and for t;;;.O read as ll

•
12 

a/ + [CRN+ Cn(t)]/(v,t) = Is(v,t) at 
=Cs l,i,dv' dv"/(v;,t)/(V",t)1T(V',V"-v), 

vER3 , tE[O,oo ), (1 a) 
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and is to be integrated upon the initial condition 

f(v,O) = QoS(v). 

In Eq. (la) 

(lb) 

(2a) 

where N is the assigned total density of the f.p., is the con­
stant collision frequency related to the removal of the t. p. by 
the f.p. in the lIlvl approximation for the relevant cross 

"'-
section. The;.... appropriate real positive constant C R is indeed 
equal to IvluR(lvll. Analogously, 

v(t) = Cn(t) = (Cs + CR)n(t), (2b) 

where 

n(t) = i dvf(v,t), 
R, 

(3) 

is the unknown total density of the t.p., is the total collision 
frequency, scattering plus removal, of the t.p. among them­
selves, still in the 1/1vl approximation for the cross sections. 
In this case Eq. (2b) follows from 

va(v,t) = i dv"lv - v"lua(lv - v"l)f(v",t), 
R, 

a =S,R, (4a) 

with 

(4b) 

Ca being an appropriate real positive constant. [Compare 
also Cs in Eq. (la)]. 

We recall also that the scattering probability 
1T{v',v"~v) obeys, by definition, the normalization condi­
tion. 

i dv1T{v',v"~v) = I, 
R, 

(5) 

whereas for the scattering-in integral we have, in general, 

i dv Is(v,t) = i dv' vs(v',t)f(v',t). (6a) 
R J R3 

In the present context, it is easily verified that 

i dvls(v,t) = Csn2(t). (6b) 
R, 

B. The continuity equation 

Equation (1) is made fully explicit once we know nIt ). 
An autonomous equation for nIt ) is, indeed, obtained by just 
integrating both sides ofEq. (1 a) itself over the domain of the 
velocity v. Assuming that the exchange of the order ofinte­
gration (over v) and differentiation (with respect to t) is per­
missible, we get in fact for n(t) the following nonlinear ordi­
nary first-order differential equation of Riccati's type 

, "'- 2 
n (t) = - CRNn(t) - CRn (t), (7a) 

which is the continuity equation holding for any 1T and S. 
The general solution to Eq. (7a) satisfying the initial condi­
tion 

n(O) = Qo, (7b) 

iS II •12 
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We obs~rve that, for large t, n(t) behaves exponentially like 
exp( - C R Nt ), as physically expected. 

C. The Integral formulation of the problem 

Equation (1) can be now integrated along the trajectory 
of the general t. p. to yield 

f(v,t) = QoS (v) To(t ) 

+ Csi i ('dv' dv" du 
R:J RJ)O 

.x T(t,U)1T(V',V" ~v)f(v',u)f(v" ,u), 
(9) 

where we set 

T(t,u)=exp[ -CRNt-Cf~n(u')du'], (lOa) 

with 

To(t) = T(t,O). (lOb) 

Equation (9)-which is of Volterra's type with respect to 
time-is a nonlinear integral equation for f(v,t ), and de­
scribes the evolution problem following the application of 
the pulsed source Qo S (v)o(t ). For any fixed 1T, the kernel of 
Eq. (9) becomes fully explicit once we introduce in its time­
dependent factor T(t,u) the expression of n(t), Eq. (8). There 
results that 

T(t,u) = B(t)B -l(U), (lIa) 

D. The case without removal 

We shall consider hereafter Eq. (9) in the limiting case 
when both C Rand C R vanish, that is when no removal is 
present. In this case, Eq. (8) for n(t ) reduces to 

nIt) = Qo' (12) 

which is the simple conservation principle, holding now, for 
the t.p., whereas Eqs. (lla) and (lIb) give 

- CsQolt- ul 
T(t,u)=B(t-u)=e , (13) 

that is, T (t,u) not only is separable, but it is also of displace­
ment type. 

Equation (9) can be then rewritten in an operational 
form as 

f=AJ, (14) 

whereA is the nonlinear inhomogeneous operator defined by 

Af QoS (v)e - CsQot 

+ CsJ: J: ('dv' dv" du e - CsQoU - ul 

R., R1JO 

X 1T(V',V" ~v)f(v',u)f(V" ,u). 
(15) 

We shall briefly study next Eq. (14) from the point of view of 
functional analysis. 
E. The operator A as a contraction operator 

The proper Banach space to work with is the space E of 
the functions (j?(v,t ), defined on JR.3 ® [0, T}, which are con tin-
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uous in t for almost every vER3, and summable in v for any 
tE[O,T]. If 

1197 II, = i,dvl97 (v,t )1, (16a) 

denotes the LI norm with respect to v, the norm in E is 
defined as 

11197 III = max 1197 11,· (16b) 
tE[O.T] 

We know that 1T is a nonnegative function in R3® R3 ® R3, 
summable with respect to v. Let B denote the closed ball of E 
centered at the origin with radius Qo (in other words 
11197111 < Qo if 97EB ). It is easy to check that A maps B int~ 
itself, namely, ABCB. As we may exchange the relevant In­

tegration orders, we have in fact for 97EB 

IIA97 II, <Qoe - CsQo' + Cs i'dU e - CsQo('- U)II97 II~ 

<lllclf + (Qo _lllclf)e -csQo', (17) 
Qo Qo 

and consequently 

(18) 

as required 
We shall show now that it is possible to choose T> 0 in 

such a way that A is a contraction operator onB. By account­
ing for the symmetry of 1T with respect to the velocities before 
collision, namely 

1T{v',v"-v) = 1T(V",V'-v), 

we verify successively that 

A97 -Atf; 

= Csi'dU e -CsQo(,-u) f f dv'dv"1T(V',V"-v) 
o JRJ )R_1 

(19) 

X [97 (v',u) + tf;(v',u)] [97 (v" ,u) - tf;(v" ,u)], (20a) 

IIA97 -Atf;II,<Cs i'dU e -csQ,,('-U)II97 + tf;11uII97 - tf;llu,(20b) 

IIIA97 - Atf;111 <2( 1 - e - CsQ", )11197 - tf;111. (20c) 

The opertor A satisfies thus a Lipschitz condition, and a 
sufficient condition for it to be a contraction is 

T < ln2lCs Qo. (21) 

Another estimate for Tcan be obtained if we assume that the 
linear integral operator generated by the kernel 
k (v',v') = 1T{v',v" -v) (depending on the parameter v) is a 
continuous mapping of L 1 (R3) into L 00 (R3)' Let N (v) denote 
its norm. If we make the further assumption that NEL 1 (R3) [a 
sufficient condition for both the previous assumptions to be 
true is that there exist XEL 1(R3) such that 1T{v',v" -v) <con­
stant X (v)], we may write 

Ii dv" 1T(v',V"-V)[97 (v",u) - tf;(v",u)] I <N(v)ll97 - tf;lIu' 

. ~~ 

and 

IA97 - Atf;1 <CsN(V)i'dU e - CsQoI'- U)II97 - tf;lIu 1197 + tf;llu' 

(22b) 
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from which there follow that 

IIIA97 - Atf;III<21IN 11(1 - e - csQo')III97 - tf;111, (23a) 

and then the new estimate 

T _I_In 211N II 
< CsQo 211NII- 1 

(23b) 

We realize thus that Eq. (23b) actually enlarges the previous 
condition for T, Eq. (21), when liN II < 1. A sufficient condi­
tion for the latter inequality to occur is that 1T is bounded, 
and there exists at least one pair v'o, v" 0 for which 

sup 1T(V',V" -v) 
(v'. v" }ER) ® R) 

max 1T(v',v"-v) = 1T(Vo',Vo"-v), (24a) 
(v',v")ER,"R, 

so that 

lIN II < f dv S~I?1T(V',V" -v) = 1 dv 1T(Vo',Vo" -v) = 1. (24b) 
JR3 v,v R) 

We notice that no restriction on T would appear in the case 
liN II <1 Now, if one of the above restrictions for Tis in order, 
A satisfies all the requirements of the contracting mapping 
principle on B, and therefore there exists in B a unique lIolu­
tion to Eq. (14). This is in agreement with the physical expec­
tation that the solutionf(v,t ) is a nonnegative function with 
h,dvf(v,t) = Qo· 

II. ITERATED SOLUTIONS 
A. Statement of the problem 

In studying the successive approximations scheme for 
the actual solution to Eq. (14) we recall that, \0 in the hypoth­
esis of the previous section, iffo(v,t ) is arbitrarily chosen in B, 
then the sequence Ifn I of the iterated solution 

fn = Afn _ 1 (n = 1,2, ... ), (25a) 

converges in the norm of E to the unique solution ofEq. (14) 
belonging to E, and very simple a priori estimates for the 
approximate solutions can be given, namely [compare Eq. 
(21)] 

2n(1 - e - CsQoTt 
Illf-fnlll< -CsQT Illfo-Afolll· (25b) 

2e "- 1 

The main shortcoming is that the time variable is restricted 
to a finite interval [O,T], where T cannot exceed a critical 
value [see Eqs. (21) and (23b)]. We shall construct in the 
sequel a practical iterated solution by means of a suitable 
choice of the starting pointfo, for which the proper behavior 
for t-oo is reproduced to any approximation order. 

We refer to the physical case in which the stationary 
version ofEq. (14) has a solution QoM(v), with 
f R, dv M(v) = 1, andM(v) is a solution to the nonlinear inte­
gral equation 

M(v) = f f dv' dv" 1T(V',V"-v)M(v')M(v"), (26) 
JR3JR3 

expressing equilibrium of the collision term. [In principle, 
M (v) might be even different from a Maxwellian distribu­
tion.] We expect then that 

limf(v,t) = QoM (v), (27) 
,~oo 
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as it necessarily occurs when an H-theorem exists. 
Let us now try to choose/oEB in such a way that II 

satisfies such a requirement. Confining ourselves, for the 
sake of simplicity, to a stationary 10, we take 10 = Qot/t(v), 
with Iit/tll.;;; 1, and get 

II (v,t ) = Q~ (v)e - CsQ"t + Qo( I _ e - csQ.,t) 

xli dv'dv l 1T(V',V I--v)t/t(v')t/t(v"). 
R3 R3 

(28) 

The limiting condition, Eq. (27), is thus fulfilled if and only if 

L, 1,dv' dV
I
1T(V',VI--v)t/t(v')t/t(v") = M(v). (29a) 

Combining this with the integral equation for M yields 

{L,dv' dvl-niv',v"--v)[M(v') + tft(v')] [M(v") - tft(v")] = 0, 

(29b) 

which, upon integration with respect to v, gives 
11M + t/tIIIIM - t/tll = 0, namely t/t(v) = ± M(v). We are led 
thus to the unique possible choice/o(v,t ) = QoM (v). The be­
havior ofthe higher iterated solution remains, however, to be 
investigated. In any case, the following decomposition is 
proposed: 

In (v,t) = QoM (v) + gn _ I (v,t), 

and the iteration scheme for the gn 's is 

gn(v,t) = Qo[S(v) - M(v)]e - CsQ.,t 

gn(v,t) = Qo[S(v) -M(v)]e -CsQ.,t 

where we use the position 

(30) 

V(~) = i, i,dV' dv" 1T(V',VI--V)M(V")~ (v') = W(M,~), 

W(~,t/t)= W(t/t,~)= ( ( dv'dvl1T(V',VI--V)~(V')t/t(V"). 
JR3JRJ 

After evaluating the integrals with respect to u, we end up with 

- CsQ.,t d(n.11 (nl j 
gn (v,t) = Qoe L F Ij(v)(CsQot) 

j=O 

+ 2Cs Qo ('due - CsQ,,(t - u) ( ( dv'dv" 
Jo JR, JR, 

X 1T(V',V"_V)M (v')gn _ I (v" ,u) 

+ C s (tdue - CsQolt - ul ( ( dv' dv" 
Jo JR, JR, 

x 1T(v',v"--v)gn __ I (v',u)gn _ I (v" ,u) 

starting from 

go(v,t) = Qo[S(v) - M(v)]e - csQ..t. 

We now prove by induction that 

where 

d (n,!) = (n - 1 - r)1 + 2' (I = 1,2, ... ,2n
), 

(31a) 

(31b) 

(32a) 

(32b) 

r=Ofor/= l;r= 1 + [/g2(/-I)] for/=2, ... ,2n. 
(32c) 

It is easily verified that d (n, 1) = n, and that the maximum 
value of d (n,/) is 2n - I for 2n - 2.;;;1.;;;2n - I. 

B. Proof of Eq. (32) 

Equation (32) is trivially true for n = 0 with 
F\~b (v) = S (v) - M (v). Let us assume that it is true for the 
index n - 1, and evaluategn(v,t) by means by Eq. (31). We 
get 

(33a) 

(33b) 

(33c) 

2n - 1 d(n-I,!) (I l)j d(n-l,Il k' 
_ 2Q "" e -ICsQ.,t "" - (C Q t)j "" . V(F(n-l l) 

o L L ~ SOL (I l)k + I I,k 1=2 j=O J. k=j-

_Q2n~1 _PCsQ..tP~ld(n~I,/ld(n-~-/I_ (i+j)! W(F(n.-I) F(n-ll)i~/ (P-l)k(C Qt)k 
OLe L L L i + j + I I,J' P - I,. L k! s 0 

p=2 1=1 j=O i=O (P-l) k=O 

2n - 1 din _ 1,/) din - I,p-/I 

L L L 
1= P _ 2n - 1 j = 0 i = 0 

e -pCsQ.,t (i + j)! W(F(n-l) F(n-l)) if (P - W (C Q t)\ 
(P _ l)i + j + 1 IJ' P - I,. k = 0 k ! S 0 

(34a) 
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where 

2n - 1 d (n _ 1,1) 

F\~b(v) = S(v) - M(v) + 2 L L 
1=2 j=O 

2n -I 2n - 1 d(n-I,I) d(n-I,m) 

+ L L L L (i + J1! W(F(n, - 1).F(n -:- I)). 
(/+m -IY+j+1 IJ m,1 

(34b) 
1=1 m=1 j=O ;=0 

F\~ = ~V(F\j-=-lll. j = I.2 ...• d (n.I) = n. 
J 

Rearranging the summation orders yields then 

CsQot d(n,l) , 
gn(v.t) = Qoe - L F\nJ(v)(CsQot)1 

j=O 

(34c) 

2
n

-
1 [d(n-I,p) (p I)id(n-I,p) k' 

-Qo L e-
pcsQot 

2 L (CsQot)j ~ L, _Iik+IV(F1~k-I)) 
p=2 j=O J. k=1 (P 

p-I d(n-l,/)+d(n-I,p-I) (P_I)k d(n-I,I) 
+ L L (CsQot)k, L 

1=1 k=O k. j=max[O,k-d(n-l,p-1)1 

X d(n-~p-I) (i+j)! W(F(n,-I),F(n~I))] 
£.. ' '+ I IJ P 1,1 

i = max(O,k - 11 (P - 1)' + 1 

d(n-I,I) d(n-I,p-I) (.+ ')' " "l J . W(F(n. - I) F(n - I)). 
X£..£.. i + j + I IJ' P - 1,1 

j=max[O,k-d(n-I,p-l)) i=max(O,k-11 (P -1) 
(35) 

Now. in order to check whether or not Eq. (32) is recovered. 
we must interchange the summation order between / and k. 
For this purpose we have to study d (n - 1,/) + d (n - I. 
P - I) versus I. It can be verified that the trend is always 
symmetric with respect to the midpoint I = p12. and is 
monotonic in each of the half ranges with a maximum at 
1 = !'p/2]. To evaluate this maximum we have to prove the 
following result: 

din - 1,/) + din - I.m)<d(n.1 + m) 

the equality sign holding if and only if m = I or I 
;,2[lg,(m - I)] , The case m = 1 is trivial. When m > 1 and / 
> 2[lg,(m - I)], then, putting 

s - 1 = [/g2(m - I)] = [/g2(/ - I)] we have 
[lg2(1 + m - I)] = s, and thus 

din - 1,1) +d(n - I,m) 
= [n - I - (s + 1)](1 + m) + 2$ + I = d (n,/ + m), 

(37a) 

When m > 2 and I = 2[lg,(m - I)). we have again 

[lg2(1 + m - I)J = sand 

d(n,1 + m) - din - 1,1) - din - I,m) = 2$-1 -I = 0. 
(37b) 

When m = 2 and I = I. we have immediately 

din - 1,1) + dIn - 1,2) = d(n,3). (37c) 

There remains thus to check only that the sign < holds in all 
cases excluded so far. Setting now r - I = [lg2(/- I)J, it is 
easily realized that there are only two alternatives: 

(i) [lg2(1 + m - I)] = s - 1, (ii) [lg2(1 + m - I)] = s. 
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I 
In the case (i) we may write 

d(n,/ + m) - din - 1,/) - dIn - I,m) 
= m - (s - 1 - r)/ - 2' = m - d (s,1 »m - 2$ - I > 0, 

(38a), 

whereas in the case (ii) we get 

d(n,1 + m) - din - 1,1) - din - I,m) 
= 2$ - (s - r)/ - 2' = 2$ - d (s + I,/) > 0, (38b) 

as follows now since 1< 2$ - I and, consequently, 
d (s + 1,/) < 2$. This completes the proof of Eq. (36). 

Let us now go back to din - 1,1) + din - I,p -I), 
whose maximum is reached at I = !'p/2]. Since !'p/2]and 
p - !'p/2] either coincide or are adjacent. the previous 
lemma applies, and we have 

d (n - 1,/) + d (n - I,p -I) 
<din - I,[p12J) + d(n-I,p - [pI2)) = d(n,p). 

(39) 

Ifwe denote by h = h (n - I,p, ko)<!'p/2] [withp = 2,3 .... 2n 

and ko<d (n,p)] the smallest intersection of the straight line 
k = ko with the stepwise function 
k = d (n - 1,1) + d (n - I,p -I), whennandparetixed,andl 
is running along its domain depending on the chosen values 
of nand p [compare Eq. (35)], the tinal inversion of the rel­
evant summation orders can be performed, to recover just 
Eq. (32a) with 
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FiJ(v) = -2U(!+2n-I_/)(/~ W 
}. 

dIn - 1.11 k! V(F(n _ II) 
X k"2;J (/- 1)k+ I I.k 

(/-l)J l-h(n-I.IJl d(n-l.pI 

- I I 
}1 P ~ h (n - I.lJl k ~ max [OJ - dIn - 1.1 - pil 

din-II-pI (. k)' 
~ I + . W(Fln - II F(n - II) 
L (I l)i+k+ I p.k' I-P.l' 

i ~ max(O.k - Jl -

1= 2,3, ... 2n, j= O,I, ... ,d(n,l), 

U denoting the unit step function. 

(40) 

Equation (40) allows us then to construct one by one all 
the coefficientsFI.Jlnl (v). The indexh (n - 1,l,j) can be deter­
mined easily by using the following recipe, which is equiva­
lent to its definition. 

If the equation 

(n - 1) - (n - 3 - [lg2(/- 2)])(/- 1) - 2·2[lg,(1- 211 = j 
(41a) 

is satisfied, then we have h (n - 1, I,j) = 1. Otherwise, one 
puts successively h = 2,3, ... ,[//2] in the equation 

(n - 3 - [lg2(h - 1)])h - (n - 3 - [lg2(/- h - 1)])(/- h) 
+ 2(2[lg,(h - III _ 2[lg,(l- h - Ill) = j (41b) 

until it is satisfied; such a value is h (n - 1,I,j). There always 
results 

h (n - 1,2,j) = 1, 
h (n - 1,2n,0) = 2n - I, 

C. Conclusions 

n> 1,0~<2n - 2, 

n>1. 

Inserting Eq. (32a) in Eq. (30), we have thus that 

2" - 1 

In (v,t) = QoM (V) + Qo I F\':o - II(v)e -ICsQol 
I~I 

(41c) 

2"-1 dln-I'!I 
+ Qo I e -ICsQol I F\~J- II(v)(CsQot )J, 

I~ I J~ I 

n = 0,1,2,... (42) 

is the nth iterated solution to the nonlinear integral evolution 
problem described by Eq. (14). 

About this general approximate solution of order n we 
may comment as follows: 

(i) according to Eq. (25b), its convergence in the norm of 
E is guaranteed even if only for a finite "critical" value T of 
the time, as estimated in Eq. (21) or Eq. (23b); 

(ii) as t-o, Eq. (42) tends to the correct limit QoS (v), Eq. 
(lb). It is, in fact, readily verified that 
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2" -1 

I F\~o - II(v) = S (v) - M (v); (43) 
I~ I 

(iii) as t--oo, Eq. (42) tends also to the correct limit 
QoM (v), Eq. (27). This circumstance amounts physically to 
an increase of the estimated critical T. 

In this respect, we have not attempted, indeed, to ex­
tend the value of Tby considering/(v,to) with to<Tas the 
initial datum of a new evolution problem; it seems, however, 
very likely that this task may actually be accomplished, and 
the value of Tmay be extended up to infinity, following the 
line proposed in Ref. 9. 

To conclude, let us examine briefly two particular cases 
for which an exact analytical solution to Eq. (14) is easily 
obtained. The first case is characterized by setting 
'/T(v', v" __ v) = M (v). In this case W ('P, S - M) = 0, and 
VIS - M) = W(M,S - M) = 0 so that for any n all the 
F\~j(v)'s for I> l,j> 0 vanish except the F\~b(V)'S that are 
equal to S (v) - M (v). Consequently, for any n we get 

In (v,t ) = Qo{M(v) + [S(v) - M(v)]e - CsQ<,1 J, (44a) 

that is just the exact analytical solution to Eq. (14) in this 
case. 

In the second case we take instead S (v) = M (v). As 
W('P,tP) = 0 if'P = 0 or tP = 0, and V('P) = 0 if'P = 0 we ob­
serve that all the F\~j(v)'s for any n,l,j are zero so that for any 
n we get 

In (v,t ) = QoM (v), (44b) 

coinciding with the exact analytical solution to Eq. (14) that 
is now in order. 
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On the inconsistency of a photon creation mechanism in an expanding 
universe 

H. Ceccatto, A. Foussats, H. Giacomini, and O. Zandron 
Instituto de Ffsica Rosario, Conicet, UNR, Av. Pellegrini 250, 2000 Rosario, Argentina 
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We show here that if the quantum equivalence principle (QEP), as it was formulated in previous 
papers, is applied to the massless vector field, an inconsistent unphysical photon creation is found. 
This timelike and longitudinal photon creation is obtained when the 4-potentialA I" is quantized in 
a covariant way. 

PACS numbers: 11.10. - z, 04.60. + n 

1. INTRODUCTION 

In previous papers (cf. Refs. 1 and 2) we developed the 
quantum field theory in curved space-time for massive and 
massless vector fields. In these papers we only quantified the 
material field, while the gravitational field was introduced as 
an unquantized external field through the curved space-time 
metric. For this purpose we used the Green's functions gen­
eral theory (cf. Ref. 3), which consists in generalizing to 
curved space-timethetensorkernelsLlI"Y'(x,x') andLl ~"'(x,x') 
of the fiat space-time, constructed from the Pauli-Jordan 
function. 

We showed that (unlike the fiat space-time), for general­
izing the bivectorial kernel G~V'(x,x') [curved space-time 
generalization of the kernel Ll ~Y'(x,x', m = 0)] it is not suffi­
cient to know the biscalar kernel G 1 (x,x'), curved space-time 
generalization of the kernel Ll1(x,x'). We also showed that 
the kernel G j"'(x, x') is not unique. That is to say, the formal 
properties that the kernel G ~"'(x,x') must verify do not deter­
mine it uniquely. Therefore, there is no unique way to define 
the positive- and negative-frequency parts of the vector field. 
This problem was pointed out in Ref. 1. 

In the scalar case, a similar difficulty occurs for the 
biscalar kernel G 1 (x,x'). In Refs. 4 and 5, and by using the so­
called quantum equivalence principle (QEP) for scalar fields, 
we found an adequate kernel G \I )(x,x') on each hypersurface 
~ of the curved space-time (that we suppose globally hyper­
bolic). The formulation based on this idea (cf. Refs. 6 and 7) 
leads to the existence of particle creation at the expense of 
the gravitational field. 

If we extend this idea to the massless vector field-giv­
ing on each hypersurface ~ of the curved space-time ade­
quate Cauchy date for the bivectorial kernel G \I )1"'" (x,x')-a 
photon creation is obtained. This fact is in disagreement with 
the commonly accepted result that, in a metric conformal to 
the fiat space-time one, there is no creation of massless parti­
cles (cf. Ref. 8). For the electromagnetic field, by quantizing 
the equation for the stress tensor FI""', the conformal invari­
ance of such an equation allows one to choose, in a natural 
way, a unique base for all V4 • Here we consider the equation 
for the 4-potential A I" in a particular gauge and, therefore, 
such a choice cannot be made. Consequently, a creation of 
particles is possible. 

In this paper we analyze such a creation by finding the 
time evolution of the creation and annihilation operators 

and we show that there is an inconsistency because unphysi­
cal (timelike and longitudinal) photons are created. The ap­
pearance of such "photons" in the intermediate steps of the 
argument, connected with the nonobservable 4-potential 
A 1", was made in order that the theory be relativistically sym­
metric and covariant. 

2. QUANTIZATION OF THE VECTOR FIELD 

In this section we summarize the most relevant aspects 
of the quantization of the massless vector field in curved 
space-time. 

We work in the particular case of a spatially-fiat Rob­
ertson-Walker metric, i.e., 

!t'Y=O, P#=v, lXJ=I, gii= __ 1_, i=I,2,3(2.1) 
a2(t) 

where a(t ) is an arbitrary function of time t. In this metric the 
scalar curvature R is 

(2.2) 

with a = da/dt and H = a/a (Hubble coefficient). 
The components of the contracted curvature tensor 

Rl"vpl" are 

a 
Roo = - 3 -, Ru = 2Q2 + aa, Rl"v = 0, P#=v. 

a 
(2.3) 

Starting from an adequate action integral (cf. Ref. 1) the 
following field equations are obtained: 

tYoAj- :2 V2Aj+ 5HaoAj+ (2H2- ~)Aj 

tYo A 0 - :2 v 2A 0 + 3Hao A 0 _ (~ + 6H2) A 0 
3 

=2H L ajAj, 
j~ 1 

3 
ao A 0 + L aj A j + 3HA 0 = - B , 

j~l 

where B is an unphysical auxiliary scalar field. 

(2.4a) 

(2.4b) 

(2.4c) 

The Lorentz condition is established as a condition on 
the physical states, Le., 
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(VI' A I')-Iphys) = B -Iphys) = 0, (2.5) 
which ensures that the mean values of V·A and B vanish. In 
(2.5), (VI' A 1')- and B - are the negative-frequency parts of 
the scalar fields V·A and B, respectively. 

We define the inner product in the vector field case as 
follows (see Refs. 1 and 2): 

(cpl';¢I') = - if [(VV;I')¢1l - ;1'(Vv¢I')]d-rv . (2.6) 

Using the definition (2.6) of the inner product the posi­
tive-and negative-frequency parts of the field A I'(x) are de­
fined by 

A I'(x) = - i( GI'V'(x, x',m = O);Av' (XI)) , (2.7a) 

and 

11'(x) = - i( GI'Y(x, x',m = O);Ay(XI)) , 

where 
e 
GI'V'(x, x',m = 0) 

(2.7b) 

= !(GI'Y(X, x',m = 0) + iG~V'(x, x',m = 0)], (2.8a) 
.. 
GI'Y(x, x',m = 0) 

= HGI'Y(x, x',m = 0) - iGtv'(x, x',m = 0)] . (2.8b) 

In Eqs. (2.8) the bivectorial kernel GIlY'(X, x',m = 0) is 
the solution propagator of Eq. (2.4a), i.e., 

A I'(x) = - i(GI'Y(x, x',m = O);Ay(X') . (2.9) 

Such a kernel is the curved space-time generalization of 
the kernel.:!I'Y(x, x' ,m = 0) of the fiat space-time. It gives the 
field commutator 

[A Il(X), A Y(x')] = iGI'Y'(x, x',m = 0) . (2.10) 

The kernel G~V'(x, x') is the curved space-time general­
ization ofthe kernel':! tV(x, x') and must satisfy the following 
conditions9 (Lichnerowicz conditions generalization I): 

• GtY(x, x') = G~Y(x, x'), 

G~Y(x, x') = G rll(x', x), 

.:!"G~Y(x, x') = .:!",G~Y(x, x') = 0, 

GI'Y(x x/)-i(GI'P"'GY ) , - 1, Ip" , 

(physl(A 1';AI'JiPhys)G= 

= (physl (A I';A II') Iphys) G >0, 

where 

A ~(x) = i(G~Y;Ay) . 

(2.11a) 

(2.11b) 

(2.11c) 

(2.11d) 

(2.11e) 

Besides, the bivectorial kernel G ~Y(x, x') must fulfill the 
following equation (see Ref. 1, Sec. 7): 

(2.12) 

where the kernel G\(x, x') is the curved space-time general­
ization of the kernel.:!) (x, x' ,m = 0) . 

• 
Let ItP I' Jut tPll 1 be a base of complex solutions ofEq. 

k s k s 
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(2.4a), orthonormalized according to (Ref. 10) 

(tP ll;tP ) = 7Jss' 8(k - k ') , 
ks k's·).L ___ 

(2.13a) 

• (tP l';tP ) = 0 . 
k s k's'l' 

(2.13b) 

In this base, the field A I'(x) can be expanded as follows. 

A Il(X) = f d 3k sto {a k_s tP:: (x) + a:! ¢ :.5 (X)} (2.14) 

with 

(2.1Sa) 

and 

• 
at = - 7Jss (tP (X);AIl(X). 

ks k s 
(2.ISb) 

The operators at and a satisfy the commutation 
k s k s 

relations 

(2.16a) 

[\:\'5'] = [a~:a:.'s'] =0, (2.16b) 

and can be interpreted as the creation and annihilation parti­
cle operators, respectively. 

The kernel GI'Y'(x, x', m = 0) as a function of the base 
has the expansion 

G I'V'(x,x') 

= i f d 3k sto 7Jss {tP ~5 (x)¢ ~~s (x') - ¢ ~ s (x)tP ~s (XI)) . 

(2.17) 

This expansion is invariant under a general base transforma­
tion which preserves the orthonormality conditions (2.13) 
(Bogoliubov transformations). This fact ensures the unique­
ness of the kernel GIlV'(X,X') . 

The following expansion for the kernel G~V'(x,x'), 

G~V'(X,x')= f d 3
k sto 7Jss{tP:/X)¢:~S(XI) 

+ ¢ I' (x)tP Y' (XI)} , 
k s k s 

(2.18) 

satisfies the conditions (2.11). The condition (2,12) is satisfied 
• 

taking into account that the base {tP I' J u{ tP I' 1 satisfies 
k s ks 

(2.19a) 

where {tP 1 u{ tP I' 1 is a base of complex solutions of the mo-
k k 

- -> 

tion equation for the scalar field taking m = 0, and C de­
k 

pends only on k . Besides, it can be proved that 

(2. 19b) 
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Equations (2.19) ensure that the generalized transversa­
lity conditions (see Ref. 1) 

(V",p;,p ) = C (7]0. + 7]3. )B(k - k'). (2.20) 
k k'sl' k --+ --+ 

are fulfilled. II 
We have shown in Ref. 1 that Eq. (2.18) is not invariant 

under the Bogoliubov transformation which preserves the 
condition (2.19). This fact proves the nonuniqueness of the 
kernel GfV(x,x') . 

The particle-number operator is defined by 

N = !:(A ";A,,):=!:(A ";AI,,): . (2.21) 

Using (2.14) and (2.18), it is easy to obtain 

(2.22) 

The condition (2.5) enables us to show that 

(physlN Iphys)G 

=fd3k(Physlat a +at a Iphys)G, (2.23) 
k1.kl k2k2 

... -.. ----+ 

i.e., the contributions of the pseudophotons (timelike and 
logitudinal) are mutually cancelled. 

The definition (2.21) clearly shows that the particle 
number operator is GfV'(x,x')-dependent. That is, the opera­
tor N is not unique, 

In the flat space-time this difficulty is overcome by re­
quiring Lorentz invariance for the theory. This requirement 
leads one to choose the plane wave as a base in which the 
expansion (2.18) must be done. In curved space-time, there is 
no analogous symmetry group. Hence, extra conditions to 
(2.11) and (2.12) must be introduced in the formulation for 
determining the kernel G fV(x,x') and the corresponding par­
ticle-number operator N. 

A similar difficulty appears in the scalar case. This 
problem has been treated in Ref. 4 and 5 by using the so­
called Q EP. In the next section we will generalize this idea to 
the vector case. 

3. THE QUANTUM EQUIVALENCE PRINCIPLE FOR THE 
MASSLESS VECTOR FIELD 

In the scalar case, the QEP proposes giving up the idea 
of determining a unique GI(x,x') for all the curved space­
time. Instead of this, it proposes the existence of a different 
G \I I(X,x') on each hypersurface ~ of curved space-time (sup­
posed globally hyperbolic). 

For determining the kernel G \II(X,x') the strong equiv­
alence principle and simplicity arguments are taken into ac­
count. Hence, the following Cauchy data on the hypersur­
face~, t = const are given l2

: 

G\II(x,x')II = LlI(s) , (3.1a) 

VOG\II(X,x')II = VO,G\II(x,x')II = VoLlds) , (3.1b) 

where S (x,x') is the length of the geodesic arc between x and 
x'. 

The most important consequence of these assumptions 
is that they lead to a particle creation at the expense of the 
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gravitational field. We have proved besides that the density 
of created particles is finite (cf. Ref. 5). 

To generalize these ideas to the vector case, it is neces­
sary to find on the hypersurface ~ a unique kernel 
G\IiI'v(X,x'), which satisfy the conditions (2.11) and (2.12). 
Since the kernels G"V(x,x') and GfV'(x,x') are solutions in 
both variables of the field equations (2.4), the condition 
(2.11d) is equivalent to the following relations on the hyper­
surface~, t = r: 

L d 3x"{Vo' GfP'(x,x")Grp'(x',x") 

- GfP'(x,x")Vo' Grp' (x',x")} = 0, (3.2a) 

a3(r) L d 3x"{VoVo·GfP'(x,x")Grp'(x',x") 

- VoGfP'(x,x")Vo' G tp ' (x' ,x")} 

= ty:V(x,x') = ("V(r) .o(x - x') (3.2b) 
• a~~ , 

L d 3x"{VoVo' GfP'(x,x")Vo,Gtp' (x',x") 

- VoGfP'(x,x")Vo' VO' Gtp' (x',x")} = 0, (3.2c) 

and the condition (2.12) is equivalent to 

[V" GfV(X,x')] II = - VVGI(x,x')II , (3.3a) 

Vo[V" GfV(X,x')] II = - VovvGI(x,x')II' (3.3b) 

VO' [V"GfV]II = - Vo,vvGI(x,x')II' (3.3c) 

VO' Vo[V"GfV'(x, X')]II = - VO' VovvG t ( x, X')II' 
(3.3d) 

To deal with the relations (3.2) it is convenient to write 
them by using the Fourier integral representation. Owing to 
the symmetry properties of the metric (2.1) the kernel 
G fV( x, x') must be a function of r = (x - x'); therefore, we 
have 

1 f ik(x-X'I 
GfV'(x,x')II =~ d 3kY [GfV'(x,x')II]e-

(21T) .~ 

and analogous expressions for VoGfv'II and VO' VoGfvI I . 
Using these expressions in Eq. (3.2), we obtain the 

relations 

Y (Vo·GfP·II)Y (Gr> II) 
k - k 

(3.4c) 

Then, we see from Eq. (3.4b) that the mixing data 
VoVo,Gfv'II is fixed when the data Gfv'II' VoGfv'II' and 
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V GI""I . O· 1 .J: are glVen. 
In the following we assume that the Cauchy data 

G~v'I.J:' VoG~vl.J:' and Vo' Gfv'II' which satisfy Eqs. (3.3) and 
(3.4), are known. That is to say. we have a unique kernel 
G f Ipv' ( x, x') on each hypersurface.I of the curved space­
time. Hence, a photon creation takes place when going from 
a hypersurface.I, t = 0 to another t = r. It is possible to 
show (see Sec. 6) that the created unphysical photons are not 
mutually cancelled. 

4. EQUATIONS FOR THE BASE OF SOLUTIONS 

In this section, and according to the above assumption. 
we are going to determine on the hypersurface.I the base in 
which the decomposition of the vector field A 1'( x) in its posi­
tive- and negative-frequency parts must be done. 

Let {tP::} up: 5 } be the "good" base of complex 

solutions of Eqs. (2.4a) and (2.4b) in which the kernel 
G~v'( x, x') has the expansion (2.18). Using Eq. (2.18) and the 
orthonormality conditions (2.13) we get 

* (tP p (x);Grp(x',x) = -tP y
' (x'), (4.la) 

ks ks 

Taking into account the expression (2.6) for the inner 
product, Eqs. (4.1) on the hypersurface.I, t = l' result: 

ia3(T) f d 3x[VotP
p
. (x)Gr:p(x',x)-tP P (x)VoGL.!x'.x)] 

~ ~ ~ 
= tP y' (x'), (4.2a) 

k5 

ia3(T) f d 3X [ VotP I' (x)Vo' G r:p (x', x) JI k: 
- tP p (x)VoVo,Gr:p( x',x)] = VO'tP v' (x'). (4.2b) 

ks ks . . 

Ifwe know G~V'(x, X')II' VoG~V'( x, X')II' and 
VO' G t V

'( x, X')II Eqs. (2.13), (2.19), and (4.2) enable us to de­
termine the adequate initial conditions for tP I' on the hyper-

ks 

surface .I, t = 1'.13 
According to the symmetry properties of the metric 

(2.1) we propose the following form for the base l4
: 

- ikx 

tP I' (x) = r (t)e 
k s k 5 

(4.3) 

Taking into account Eqs. (2.4a), (2.4b). (2.13), and (2.19) 
it is possible to show thatfP must satisfy 

k5 

jO. (t) + 3HjD (t) + (~_!i. - 6H 2)fo (t) 
k, k s a2 2 k.s 

3 

- 2iH L kj'i (t). 
i~ 1 k:' 

(4.4a) 

/' (t) + SHji (t) + (k: _!i. + 2H2)fi (t) 
k s k:' a 3 k:' 

= 2iHk 10 (t). (4.4b) 
ks 
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(r (t);f (t)) = 1155" 
k s k s'p 

(4.Sa) 

• If I' (t);j (t)) = 0, 
k, -k5'p 

(4.Sb) 

and 

. . 
f (t) = C [fO (t) + fO (t)] , 

k k kO k3 . .... . 
(4.6a) 

• 
- ik 1 (t) = C [fi (t) + fi (t)] , 

k k kO k3 . -.. .. 

(4.6b) 

where 

(g'"(t); hI' (t)) 

= (2;)3 a3(t){ (Vo ~(t ))hp (t) - ~(t)( Vo hl.!t) } ,(4.7) 

and we have calledf (t) the time-dependent part of the sca­
k 

lar base tP (x) = f (t) exp( - ik X). 
k k ~ . . 

Equations (4.2) forfP (t = 1') and VofP (t = 1') result in 
ks ks 

(21T)3/ 2a3(T)i{ (Vor (1')) A v' (1') - fP (T)B v' (T)} 
k 5 k.p k 5 k.p 

.. .. ... 
= F' (1') , (4.8a) 

k5 

(21T)3/2a3(T)i{ (Vofp (1')).8 v' (1') - fP (T)C v' (T)} 
ks k.p ks k.p 

.. .. .. 

= VO' F' (1') , (4.8b) 
ks 

where 

A v' (1') = Y (G¥:p II)' BY' (1') = Y (VoG¥:p II)' 
k.p k k.p k 

(4.9) 

BV' (T)=Y (Vo,G¥:pII) , cv' (T)=Y (Vo,VoG¥:I'II)' 
k.1' k k.1' k .. ... 

Owing to the symmetry property (2.11b). 

A'/ =A v' BV' =B v' cv' =C v' 

kp - kl" k'it 

(4.10) 

Taking into account (4.10), Eqs. (3.4) and (4.8) result in 

A (1')8 (1') - IB (T)A (1') = 0 , (4.11a) 
k k k k 

IB (T)C (1') - C (1')8 (1') = O. 
k k k k 

A (T)Y (T) - IB (r)x (r) = - ia(r)x (7), 
k ks k ks ks 

8 (Tty (7) - C (7)x (r) = - ia(Tty (1'). 
k ks ks ks ks 

(4.11b) 

(4.11c) 

(4.12) 

(4.13) 

where we have defined the matrices A , IB , B . C ,and 
k k k k 

[, the elements of which are A v' , BY' , B v' • C v' ,and 
k '1' k '1' k '1' k '1' . . . 

8;', respectively. Besides, we have set 

a = (21T)-3/2a -3, xl' =fl'. yI' Vofl'. (4.14) 
ks ks ks ks 
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Taking into account (4.11a) and (4.11 b) it is possible to 
show that Eq. (4.13) is dependent on (4.12). An analogous 
fact occurs in the scalar case (see Ref. 4). 

From Eq. (4.12) we obtain 

y (7')=D (7')x (7'), (4.1S) 
k s k k s 

where 

D (7') = A - 1(7')[ lB (7') - ia(7')I] . 
k k k 

(4.16) 

In the matrix notation, for t = 7', the orthonormality 
conditions (4.S) are 

• • 3 Y (7')x (7')-y (7')x (7')= -i1]ss·/[21Ta(7')] , (4.17a) 
ks ks' ks' ks 

Y (7')x (7') - Y (7')x (7') = 0 . (4. 17b) 
ks -ks' -ks' ks 

The transversality conditions (4.6) for t = 7' are equiv­
alent to the equations 

x (7')+x (7')=y (7'), (4.18a) 
kO k 3 k 

Y (7') + Y (7') = E (7'), 
kO k3 k 

(4.18b) 

where 

.JJ 1 . i . r. =-Vo/, y' =-k'f 
k. C: ". k C

k 
". 

(4.19) 

1 (k2 ) /30 =- -2 I + 3HVoi , 
k C a k k 
- k - .-

/3j = _i_ kj(Vol - HI ) • 
k C k k 

k -

(for obtaining /3 0 , the motion equation for the scalar case 
k 

has been used). 
The system (4.1 SH4.18) is compatible (and dependent) 

if 

D (7')y (7') = /3 (7'), 
k k k 

(4.20) 

which can be proved by straightforward calculations by us­
ing Eqs. (3.2), (3.3), (4.9), (4.16), and (4.19). The fulfillment of 
relation (4.20) is a consequence ofEq. (2.12). 

To solve Eqs. (4.1SH4.18) it is necessary to generalize 
the usual choice of the polarization vectors in the flat space­
time. These equations, which define the initial conditions for 
the base at t = 7', are analogous to the following equations of 
the fiat space-time: 

and 

1869 

jl' (7') = - ikll' (7'), 
ks ks 

e' € = 1]ss' , 
k s k 5'1' 

kl' 
e' +e' =-, 

kO k3 k 
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with 

According to Eq. (2.19) (cf. Ref. 11), the adequate gener­
alization to curved space-time of the kl' vector is 

In the fiat space-time the polarization vectors e' and 
k3 

e' are chosen as follows: 
kO 

e' = (O,k /k), e' = (1,0). 
k 3 kO 

(4.22) 

Consequently, in curved space-time, and according to 
(4.18), (4.21), and (4.22), we choose 

.. 0 .. 
xl' = (O,y), xl' = (y ,0). (4.23) 

k3 k kO k 

By replacing in (4.17), and taking into account (4.1S), it 
is easy to verify that xl' and xl' are correctly orthonorma-

k 3 k 0 

lized for the value C = ik / a( 7'). This value of C can also 
k k 

be obtained by requiring that Eq. (2.19) is satisfied in the fiat 
case. 

For determining xl' and xl' we must solve the remain-
k 1 k 2 - . 

ing equations (4.17), i.e., 

and 

•• 1]~ 
Y (7') X (7') - Y (7') X (7') = - i 3' 

k_r ".r' ".r' k.r [21Ta(7')] 

Y (7') X (7') -.E 
(4.24) 

(7') x (7') = 0, r,r' = 1,2 
k r -kr' - k r' k r 

• /3. (7') X (7') - /3 (7') X (7') = 0, 
k kr k kr 

y. (7') Y (7') - Y (7') r* (7') = 0, r = 1,2. 
kr k kr k 

(4.25) 

Equations (4.2S) are the orthonormality conditions be­
tween x (r = 1,2) and x ,x . They can be obtained from 

kr kO k3 - - -
(4.17) taking into account (4.1 S), (4.20), and the following 
identity: 

/3. (7') Y (7') - /3 (7') r* (7') = O. (4.26) 
k k k k 

......... - .........-
5. TIME EVOLUTION OF THE PARTICLE NUMBER 
OPERATOR 

The present formulation of quantum field theory in 
curved space-time leads to particle creation at the expense of 
the gravitational field. As is well known (cf. Ref. 8). the Bo­
goliubov transformation can be interpreted as the mecha­
nism to analyze such a creation. 

Let P)~s }uF;;} be a base of the space of complex 
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solutions ofEq. (2.4a) and (2.4b) that satisfy the initial condi­

tions (4.22) and (4.26) at the time t = 7 and {;pI:! }uFI~:} the 

base that satisfies analogous initial conditions at the time 
( = 7', both orthonormalized according to (2.13). The most 
general transformation (Bogoliubov transformation) which 
links two bases is 

(1'11' J 3 ((r'll' (1"1*1' ) 

<P k s = d 3k' i~O a k.k.'ss' <P k_'s' + /3k.k.'SS' <P k.'s' . 

(5.1) 

Owing to the metric used we are going to take as a base 

of solutions those with well defined momentum k . Thus, it is 

easy to notice that [using (4.3)] the expression (5.1) is reduced 
to 

(5.2a) 

and 

(5.2b) 

From this relationship between the bases and taking 
into account the expression (2.14), the following relation be­
tween the creation and annihilation operators can be 
obtained: 

(5.3a) 

(5.3b) 

Making use ofEq. (5.2) and the orthonormality condi­
tions (2.13) in 7 and in 7', the following conditions for the 
coefficients a and /3 result: 

k ss' k 55' 

3 

,.~o (a k ,,' a: ,"5' - /3 _ kss' /3 * ~s"s,) = 
3 -~ ~ 

i~o(/3 -,kss' a -,ks"s' -ak!S,/3k!"S') =0. 

-1'/ss" , 
(5.4a) 

(5.4b) 

Using (5.3) it is possible to calculate the mean value of 
the density of particles in ( = 7 if we know such a value in 
(=0, 

Ifwe suppose that the initial state in (= 0 be the vacu­
um state 10)1" we get 

Now we will discuss the particle creation in an alterna­
tive way, taking into consideration the time evolution of the 
creation and annihilation operators, 

We define 

(1'11' (1')1' - ik51 

¢I' (X,7)=<p (x,7)=1 (7)e 
ks ks ks 

(5.6) 

(1'11' 
FI' (7) = I (7), 

k s k s 
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(1'11' (rll' _ ik 51 

Vo¢1' (X,7)=Vo<p (x,7)=Vol (7)e (5.7) 
ks ks ks 

(1'11' 
Vo FI' (7) = Vol (7), 

k s k s 

The functions ¢ I' (x, 7) and V o¢ I' (x, 7) are defined 
ks ks 

, , 

like this throughout the space-time and they constitute the 
collection of the initial conditions for the basis. 

(1'11' 
By developing the field A 1'( x) in the base! <p 1 

k, 

11')*1' 
u! <p J, we get 

ks 

J 
3 [11'1 11'11' ITlt 11'1*1' ] 

A I'(x) = d 3k s~o a k,s <P k,s (x) + a k,s <P k,s (x) . (5.8) 

For x = (X,7), according to (5.6) and (5.7), 

A I'(X,7) = J d 3k ,to [ \s (7)F:: (7) + at
_ k,s (7)F*:k,' (7)] 

- ik51 

Xe 

I Tit 
where we have used a lTI = a (7) and a = at (7). 

ks ks ks ks 

Similarly, 

VoAl'(X,7) 

(5.9) 

= J d 3k stJa k,S (7)V oF:,s (7) + at_,kS (7)V JI'_,kS (7)] 

-ik51 

Xe (5,10) 

Since (5.9) and (5.10) are valid for every 7, the field equa­
tions (2.4a) and (2.4b) require that the initial conditions FI' 

ks 

and VoF I' and the a and at operators change in such a 
ks ks ks 

way that the quantity 

stJ \5 (7)F:! (7) + at_,kS (7)FI'_,kS (7) l 
satisfies Eq. (4.4) and the equation 

:7 ttJak,s(7)F:,s(7) + at 
__ kS (7)FI'_,kS(7)]} 

stJ\s(7)VoF::(7) +a
t
_ k)7)VoFI'_k:(7)]. (5.11) 

III (21 
If we call h I' and h I' a base of solutions of Eqs. (4.4) 

ks k s 

normalized so that 
II) III 
hI' (7) = 8;, Vo hI' (7) = 0 , 

ks k s 

(5.12) 

121 121 
hI' (7) = 0 , Vo h I' (7) = 8; , 

k s k s 

the general solution of these equations is 
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(5.13) 

We must impose on solution (5.13) the following initial 
conditions: 

h ~ (1') = sto [a,)r)F~s (1') + at
_ k: (rWI"_:s (1')]. (5.14) 

and 

d I 3 -hI" = L [a (r)VoFI" (1') 
dt k, 1= T S = 0 k: :s 

+at_k:(r)Vo;l"_k)r)]. (5.15) 

From Eqs. (5.14) and (5.15), we get thefollowingexpres­
sion for C and D 

ks k s 

C k: = s,to [a kf (r)F: ... (1') + at
_ :s' (r);S_ :s' (1')] , (5.16a) 

Dk: = sto [akf (r)VoF:
f 

(1') + at_kf(r)v;s_".s,(r)]. 

(5.16b) 

Taking into account (5.13) and (5.16) we obtain 

h:,(t) = sto [ak:(t)F::(t) + at_k:(t);I"_k:(t)] 

where 

(T) 3 [ ( I) (2) ] 

I::(t) = r~o F::(r) h:.r(t) + VoF::(r) h:.r(t) • 

is the base orthonormalized in t = r. 
Similarly, as a result ofEqs. (5.11), results 

stJ a k: (t )Vo F:: (t) + at
_ k: (t )Vo ;1"_ k: (t)] 

(5.17) 

(5.18) 

3 [(T) (T)] 
= s~o \s(r)Vo/:/) + at_k:(r)Vo/~\y) , (5.19) 

From Eqs. (5.17) and (5.19), and taking into account the 
orthonormality conditions (4.5) and the definition (4.8), we 
find 

(5.21a) 

and 
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+ (? ~~s;7~~s'l")at_~)r)]. (5.21b) 

UsingEq. (5.21), andiflO)T represents the vacuum state 

in t = 1', the mean value N (1',1") ofthe density of the k,s 
ks ~ -

type created particle from t = l' to t = 1" is 

N (1',1") = T(Olat (r')a (r')IO)T 
ks ks ks 

3 1 ( (T) . (T) . ) 12 = - L 1]rr I I" ;/* . 
r = 0 ".s - k.rl" 

(5.22) 

From (2.22) the mean value of the created particle den­
sity is 

(5.23) 

6. THE UNPHYSICAL PHOTON CREATION 

We will prove now that the created timelike and longi­
tudinal photons are not mutually canceled for all 1', i.e., 

N (1',1") - N (1',1")#0. 
k 3 kO 

Using Eq. (2.19) we obtain 

V·A =fd 3k[ik(a -a )1 a k3 kO k 
-- -- --> 

ik ] - ikil 
- -(at - at )/* e' (6.1) 

a -k.3 -:0 -~ , 
where the function I (t) verifies the equations (see Ref. 4) 

k 

(6.2) 

( I ;/ ) = (21Ta)3[V 1* I, - I*V I ] 
k k' i 0 k k' k 0 k' 
- -- --> ---+ --+ -.,. 

=8(k -k'), (6.3a) 

and 

(I) )=0. 
k - k' 
~ ~ 

(6.3b) 

By expanding the scalar field V·A, according to Eq. 
(6.1), in two bases with initial conditions on t = l' and t = 1", 
respectively, we obtain 

* b (r')/IT')(t) + b t (r')/(T') (t) = b (r)/(T)(t) + b t (1') 
k k -k -k k k -k 

* X I(T) (t), (6.4) 
-k 

where we have set 

(6.5) 

b t = (at _ at )( _ i 5:...) . ". :3 k.O a 
Using Eq. (6.3), we find from Eq. (6.4) 
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b (T') = (I'T);/("'))b (T) + (/('1');/(""· )b t (T), 
k k k k k -k -k -- --- -- ----

(6.6a) 

b t (T') = (/(T);/("'))·b t (T) + (1''1');/('''). )·b (T). (6.6b) 
k k k k k -k -k -- -- -- -- -- --

Taking into account the commutation relations (2.16) 
for a and at, the subsidiary conditions (2.5) on t = T and 

k s ks - ~ 

Eqs. (5.21), (6.5), and (6.6), it is easy to prove that 

[
b (T), b t (T')] = 0, 

k k' - -
(6.7) 

.,. (physlb t (T')b (T')lphys).,. = ° , 
k k 

(6.8) 

.,. (physlVA (T')lphys).,. = 0, (6.9) 

[
b (T), a (T')] 

k k's 

='T/ss8(k+k')_'- 11';/· + 11';/· , 
'k [( ('I') (.,.) ) ( ('I') (.,.) )] 

~ ~ a(T) ':'s - ':'01' ':'s - ':'31' 
(6. lOa) 

[\ (T), a;:s (T')] 

= 'T/ss8(k - k')- IJl.;j + II' ;j . 
ik [( ('I') (.,.) ). (('I') (.,.) ).] 

~ ~ a(T) ':'s k.'OJl. ':'s ':'31' 
(6. lOb) 

From Eq. (6.5) it follows that 

k 2 k 
-2 [ak3ak3 - akoOkO] = ~ [b t a - at b ] + b t b 
a ~ ~ ~ ~ a ~. ':0 ':0 I<. I<. I<. 

(6.11) 
If 10).,. is the vacuum state in t = T, defined by 
a (T)IO).,. = 0, then 

ks 

.,.(Olat (T')a (r') - at (T')a (r')IO).,. ~ 
k3 k3 kO kO a (r') 

(6.12) 
k2 ('I') (.,.) ('I') (.,.) (T) 

- , (f ;j. )(fJl.;j* +1· )* 
a(T)a(r) k. -.k ':0 -:.k3Jl. -~kOJl. 

+C.C. 

According to Eq. (4.6), (4.19), and (4.23) we have 

(fJl.;j. +1· )=- l;j· 
(T') (T) (T) a(T)a(T') (") (,) ) 

kO -kOp. -.k3p. k 2 ~ -.k 1=.,.' 
and by using Eq. (6.2) we obtain 

(? }*) =~(? ;7· ). 
k. -.k 1= T' a2(r') k - k 

(6.13) 

Hence the mean value of the density of created unphysi­
cal photons at t = r' is 15 

(N -N) =T(Olat (r')a (r')-at (T')a (r')IO)T 
k3 kO k3 kJ kO kO 

.. _... t = r' 

(T') (T) 

= 21(1 ;j* W· 
k -k 

(6.14) 

We remark that the right-hand side of (6.14) is just twice 
as large as the limit for m-D of the density of created parti­
cles for a massive scalar field (see Ref. 5.). As was proved in 
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that paper, such a creation (at least for k--+oo) does not de­
pend on m. Consequently, 

(N -N) #0. k3 kO _ _ 1='1' 
Finally, it can be proved that 

N =N >0. 
k I k2 

CONCLUSION 

We have shown that, independently of the chosen 
Cauchy data for the bivectorial kernel G~v'(x,x'), an unphy­
sical photon creation takes place and it is connected with the 
particle creation for a massive scalar field in the limit m-D, 
as can be seen from Eq. (6.14). 

The chosen Cauchy data for the biscalar kernel G I (x,x') 
[see Eq. (3.1)], which are the simplest that allow one to for­
mulate a model for the massive scalar field where the density 
of the created particle is finite, lead to a mass-independent 
particle creation (at least for k--+ 00 ). Hence, the creation of 
unphysical photons is non vanishing. To avoid this difficulty 
it seems to be necessary to choose other Cauchy data for 
GI(x,x',m) such that the scalar particle creation vanishes 
whenm-D. 
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and G,(x, x') exists (see Ref. 4). 

13We note that the system (2.13), (2.19), and (4.2) does not determine univo­
cally the initial conditions for the base. This fact is connected with the 
invariance of (2.18) under particular base transformation (see Ref. 4). 

"We define k·x = (k,x' + k,x2 + k,x') and k 2 = (k r + q + k~). In the 

flat space-time the function/" - € I' e - 'hI, where €" are the polariza-
If. sits k s 

tion vectors. 
ISLet us note that the result (6.14) is a consequence of the assumption made 

1'>:1 
in Sec. 3, that is, to consider a different G f"(x, x') on each hypersurface Z 

of V •. On the other hand, the result (2.23) was obtaining by supposing the 
existence ofa unique kernel Gf"(x, x') for all V •. 
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We here state a collection of results in axiomatic quantum field theory obtained under the general 
philosophy of "mapping approaches." It is hoped that these results will stimulate further 
investigations along this direction, especially in connection with the prOblem of the existence and 
the construction of nontrivial four-dimensional quantum field theories. 

PACS numbers: 11.10.Cd 

I. INTRODUCTION 

This paper presents some substantial results in axiom­
atic quantum field theory 1,2 under the general philosophy of 
mapping approaches. The precise formulation of various 
mapping approaches studied here will be clear from theo­
rems to be stated. From a general point of view, a mapping 
approach, in the restricted sense studied here, consists of a 
linear map Vfrom some function space Q (JRd) on JRd (d>2) to 
some function space Q '(JRd') on JRd' (d '>2) and of studying 
the properties of the set [K n , n = 1,2,.··) of multilinear func­
tionals Kn (/1'/2'''''/n) over Q (JRd) X Q (Rd) X .. · X Q (JRd) (n 
copies), defined by 

Kn (/1'/2'''''/n) = K ~ (VII' VI2'"'' Vln), 

/;EQ (JRd), V/;EQ '(JRd'), i = 1,2, ... ,n 

where K ~ is a multilinear functional over Q '(JRd ') X Q '(JRd ') 
X ... X Q '(JRd 

') (n copies) for each n = 1,2,. .. , with the set 
{K ~, n = 1,2, ... ) possessing some additional structures. 
[K ~, n = 1,2,. .. ) might be a set of Wightman distribu­
tions, 1.2 in which case Q '(JRd') is identified with Y(JRd'), the 
Schwartz space on Rd

', or it might be a set of expectations of 
some random variables occurring in some random field3- s 

possessing some specific properties, in which case Q '(JRd') 
might be identified with Y(Rd

'), SO(JRd ') (the subspace of 
Y(JRd') consisting of functions of compact support), or the 
Sobolev space ~-I(Rd') on JRd', 

The results we have obtained include, among others, an 
improvement of Nelson's method3

-
s of constructing d-di­

mensional quantum field theories (d>2), and we hope that 
further studies of various mapping approaches would lead to 
further developments in solving the problem of the existence 
and the construction of nontrivial four-dimensional quan­
tum field theories, 

We now present in the following an overall view of the 
results in this paper. 

On Sec. II 

In this section we present a mapping method of con­
structing quantum field theories of a lower space dimension 
from any given quantum field theory of a higher space di­
mension. We obtain generalized free fields from a free field, 
By means of a further limiting procedure, we can obtain a 
free field from a free field, with the masses equal. 

On Sec. III 

In this section the following problem is studied: Given a 
random field ¢ over3 ~-I(JRd)(d = 3 or 4) on some prob­
ability space ( n,~, f-l) satisfying certain properties, what 
can be said about the multilinear functional rn over 
Y(R4) X Y(JR4

) X ... X Y(R4) (n copies) defined by 

rn(/I'/2""'/n) = E [¢ (hdx¢ (h2)X"'X¢ (hn)) 

/;E.Y(JR4
), hi~-I(JR4), hi = M/;, i = 1,2,._n, 

where E denotes expectation and M is some real continuous 
linear map from Y(JR4) to ~-I(Rd)? 

For d = 4, we find that if M satisfies certain simple pro­
perties then the set [r n' n = 1,2,. .. ) defines the Euclidean 
Green's functions6--8 of a four-dimensional quantum field 
theory if each r n is Euclidean invariant, where r n is the 
unique continuous linear functional on Y(R4n ) obtained 
from r n according to the Schwartz kernel theorem. This 
result is an improvement of Nelson's work,S where the map 
M is restricted to be the identity map (Nelson treated the case 
Q' = Y is Ref. 5). (See Note at the end of subsection IIIB 1.) 
Our results for d = 4 introduce an extra degree of freedom 
into Nelson's program. 

The case d = 3 is concened with the deep problem of 
generating four-dimensional quantum field theories from 
three-dimensional probabilistic structures ( including three­
dimensional Euclidean Markov fields3

-
S

) via some mapping 
approach. 

On Sec. IV 

In this section a theorem on the generation of quantum 
field theories from certain four-dimensional Euclidean in­
variant probabilistic structures over ~-I(R4) [including 
Euclidean-Markov fields3•

4 over ~-I(R4)] is presented as a 
simple application of a theorem in Sec. III. 

A remark 

Theorems 1 and 2 in Sec. III and the theorem in Sec. IV 
can be generalized to any dimension d satisfying d>2. 

II. FROM HIGHER DIMENSIONAL QUANTUM FIELD 
THEORIES TO LOWER DIMENSIONAL ONES 

A. The theorem and sketch of proof 

We first state the central theorem in this section and 
then we give a sketch of the proof. 

Theorem: suppose we are given a set of Hermitian scalar 
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Wightman destributions ['Jr. M+N+ I, n = 1,2, ... } in 

(M + N + 1 I-dimensional space-time (M> 0, N> 0, the 
time dimension is always one and is the first dimension), and 
suppose we define a distribution 'If''n M + I for each 
n = 1,2, .. ·, by 

'If''. M+ 1([IJ2, ... J.) 

= 'Jrn M+N+ 1([1 ®gJ2 ®g ... J. ®g), 
where 

/;EY(RM + I), i = 1,2, ... ,n, 

gEY(RN) and real. 

Then the set [ 'Jr. M + I, n = 1,2,.·· J is a set of Hermitian 
scalar Wightman distributions in (M + 1 I-dimensional 
space-time. 

Sketch 0/ proof 0/ theorem: It is easy to show that each 
'Jr. M + I defines a continuous linear functional over 
Y(R·IM + II). We have also 

(i) Proof of relativistic invariance: obvious. 
(ii) Proof oflocal commutativity: Let x = (xO,xl,···,xM) 

and Y = (Yo, Y I"" Y M) be spacelike separated vectors in 
(M + 1 I-dimensional space-time; then 

-! = (xO,xl····XM'XM + I ,···,xM + N) and 
.l! = (YO'YI"" YM'YM + I ""'YM+ N) are spacelike separated 
vectors in (M + N + 1 I-dimensional space-time, for any 
Xi ER,y;ER, i = M + I,M + 2, ... ,M + N. 

(iii) Proof of positive definiteness: We use the reality of g 
and the expansion of any FjEY(WIM + II) as a linear combina­
tion of hi ® h; ® ... ® hi [in general, an infinite linear combi-

I 1 J 

nation, and convergence is a convergence in the Schwartz 
topology of Y(WIM+ II)], where [h k, k = 0,1,2,. .. J forms a 
complete linearly independent basis of Y(RIM + II). 

(iv) Proof of hermiticity: obvious. 
(v) Proof of spectral condition: We have 

'Jrn M + I(U l'U2"",u.) 

= f_+ ","" f-+ ",,"" .. J-+ ",,"" dV I dv2 ,,·dvn 

X 'Jr. M + N + I(U I>V I;U2,V2;",u. ,v.) 

xg(vd xg(v2) x· .. xg(v.), 

where u;ERM + I, Vi 3RN, i = 1,2, ... ,n; we then consider the 
Fourier transforms (W. M + 1)- ofthediffenence variable dis­

tributions W. M + I(SI,S2""S. _ I) = 'Jr. M + I(U I,U2, ... ,u.) 
n = 1,2, ... , with Sj = uj - uj + I' j = 1,2, ... ,n - 1, and we 

can then show that the joint energy-momentum spectrum of 
the lower dimensional structure is contained in the projec­
tion of the joint energy-momentum spectrum of the higher 
dimensional theory onto the zero hyperplane of the extra 
momentum variables. (Note: we use - to denote Fourier 
Transform throughout.) 

(vi) Proof of cluster decomposition property: let 1/ be a 
spacelike vector in (M + 1 I-dimensional space-time; then 
(1/,0,0, ... 0) with N zeroes following 1/ is a spacelike vector in 
M + N + I-dimensional space-time. 

B. An example, a proposition, and a remark 

(I) Example: It can be easily shown that a Hermitian 
scalar free field in (M + N + 1 I-dimensional space-time 
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gives a Hermitian scalar generalized free field in (M + 1)­
dimensional space-time. 

(II) We now state the following important proposition, 
the proof of which is obvious. 

Proposition: Let ['Jr •. lml M + N + I.IFI, n = 1,2""1 be the 
set of Wightman distributions corresponding to the Hermi­
tian scalar free field of mass m in (M + N + 1 I-dimensional 
space-time and we define, for each n = 1,2,.··: 

'If''n M + l.k,C([IJ2""'/.) 
= 7~·n.lml M+ N+ I.IFI(/I ®gk Icl,/2 ®gk (CI, ... ,/. ®gk ICI), 

/;EY(RIM + II), i = 1,2, ... ,n, 
gk (CIEY(RN

), gk (clreal, C > O,k = 1,2,.··, 

wheregk (ci are chosen such that (gk IC1)- are real and satisfy 

[( gk (cln p) P ~ c X c5( pI, pERN. 
k-_oo 

If we let 

'If''. M + 1''''''C(/1>/2'''''/.) = lim 'Jr. M + l.k'C(/I,/2,""/.)' 
k~"" 

then [ 'If''. M + I. "" .c, n = 1,2,. .. J defines the Hermitian scalar 
free field of mass m in (M + 1 I-dimensional space-time for 
some suitable c. 

Thus we can, by the above mapping method and a suit­
able limiting procedure, arrive at a free field of a lower space 
dimension from a free field of a higher space dimension, the 
masses being equal. 

(III) A Remark: It is a natural question to ask whether, 
given an arbitrary higher-dimensional field theory, there ex­
ists a lower-dimensional field theory such that the joint ener­
gy-momentum spectrum of the lower-dimensional field the­
ory is the same as the restriction of the joint energy­
momentum spectrum of the higher-dimensional field theory 
to the zero hyperplane of the extra momentum variables. 
The problem is open. We hope that the above mapping meth­
od and a suitable limiting procedure, or some variations, 
might be of help in studying this problem. 

III. ON THE CONSTRUCTION OF FOUR-DIMENSIONAL 
QUANTUM FIELD THEORIES FROM PROBABILISTIC 
STRUCTURES 

A. Some definitions 

1. Definition of a d-dimensional probabilistic X-structure 
(ifJ, (fl, I, Il)) over ?-l(Rd), for d>2 

A d-dimensional probabilistic X-structure over 
jy-I(Rd ) is a real random field t/> over jy-I(Rd

) on some 
probability space (fl~,Il) such that: 

(i) t/> (g)EL P(fl, I, Il) for gEJ¥'-I(Rd
), P = 1,2,.··, and 

such that E [ifJ (gd XifJ (g2)X", xifJ (go) J is separately contin­
uous in each g;, for i = 1,2, ... ,n, n = 1,2,. .. ; 

(ii) There is reflection covariance in the X o variable in 
connection with a representation of the reflection group of 
the X o variable on (fl, I, Il), where X o is the first coordinate of 
the point (xO,XI, ... ,xd _ I ) in R d; 

(iii) The following "weak Markov property" holds: 

E{ul I(A C)} = E{ul I(aA I}, 

where U is an integrable random variable belonging toI (A ), 
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with 

A = {xo> 0, (X I,x2, ... ,xd_ t!eRd
-

I
}, 

A C = {xo<O, (X I,x2, ... ,xd_1 )eRd
-

I
}, 

BA = {xo = 0, (X I,x2, ... ,xd_ I )eRd
- I}. 

(See Notes at the end of this subsection for explanations on 
notations and terminology in the above definition.) 

2. Definition of a map Mo from Y (R 4 
) to K - 1(R 

3 
) 

(a) Some preliminaries: Let/eY(R4). TheleY(R4). We 
can expand [L 2(R4) expansion]: 

l(p) = L. C\~tP;(Po) tP
j

l
( I PII) Y" (1)(0, ((J) 

I,VJ P 
j even 

+ ~ C\~~tP;(Po) tPj~~~I) Y" (2)(0, ({J) 

j even 

where P = (Po. PI' P2' P3) and is conjugate to 
(XO,xI,x2,x3)' (XO,xI,x2,x3) being a point in R4 on whichlis 
defined. P = (PI,P2,P3)' Ipi = + (p.z + p/ + p/)1/2. 
P = (lpl,O, ({J) in spherical polar coordinates. and 

Y" (1)(0, ({J ) = d \~ PI m(cos 0 )cos mtP, 
Y" (2)(0, ({J ) = d I;'; PI m(cos 0 )sin mtP, 

v being an indexing of (/.m) (I = 0.1,2 ... ·; 
m = - I, - 1+ 1, ... ,/ - 1,/) such that v is even if (I + m) is 
even and v is odd if(1 + m) is odd (v = 0.1.2, ... ), d\~ and 
d\;,; being normalization constants and {tPk' k = 0.1,2, ... } 
being the set of Hermite functions. We may choose d \~ and 
d I;'; such that 

J J Y'" ((W. ({J )Y'" (1)(0. ({J )dcos 0 dtP = 0"""" 

J J Y'" (2)(0, tP ) Y", (2)(0, tP )dcos 0 dtP = 0",."" 

We also have 

J J Y'" ((W. ({J )Y'" (2)(0. ({J )dcos 0 diP = 0, 

for all VI and v 2• 

(b) ThemapMo: The mapMofrom Y(R4) toK- I(R3)is 
now defined by 

- '" (I) tPj(121)cos vtP 
h I.e) = L. C i"jtPi(PO) -I 11/2 -(2 )1/2 

4~ 2 ff 
j even 

'" C (2) A.. ( ) tPj ( 121) sin vtP 
+ L. i"j'l'i Po -I 11/2 -(2 )1/2 

4~ 2 ff 
j even 

([ K- I(R3) r convergence) 

where h = Mo/eJr'-I(R3
), given/eY(R4) with the above ex­

pansion for j, and where e. = (PO,PI,P2), 

P = (PI,P2).1 pi = + ~p/ + p/. and P = (lpl, tP) in polar 
coordinates. - - -

Notes on (1): (i) A random field tP over JY'- I(Rd) is a 
stochastic process indexed by JY'- I(Rd ), which is linear and 
such that if ga - g in JY'-I(Rd). then f/J ( ga )-¢J ( g) in mea­
sure. 

(ii) (a) A representation of the reflection group ofthexo 
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variable, denoted by G. is a homomorphism rJ-T., ofG into 
the group of measure-preserving transformations on the 
probability space (n, I, p) on which the process is defined. 

(b) Reflection covariance in the Xo variable means: 

T., {f/J ( g)} = ({J( gOrJ -I), rJeG. 

(iii) IfBCRd• then I (B ) denotes theu-algebragenerat­
edbythetP (g)withginJY'-I(Rd)andsupp gC B.I( B ) also 
denotes the set of all random variables which are measurable 
with respect to the u-algebra I ( B ). 

(iv) E 1·1 I ( B ) 1 denoted conditional expectation with 
respect to I ( B ). 

B. Statement of theorems 
1. Construction of four-dimensional quantum field theories 
from four-dimensional probabilistic structures 

Theorem 1: (a) Let (tP,(n, I. p)) be a four-dimensional 
probabilistic X-structure over JY'-I(R4). Let also leY(R4), 

M 

and/_h = Mf, heJr'- I (R4), be a real continuous linear map 

from Y(R4) to JY'-I(R4) satisfying the following assump­
tions: 

(1) Support of IC R~ • implies that 
support of h C R~ , 
R~ = R> XR3. 
R> = [0,(0). 

(2) e lis mapped under M to eh. for Iwith support of 
ICR~. where 

(e I) (XO,X I,x2,x3) = I( - XO,xI,x2,x3)' 
(eh )(XO,xI,x2,x3) = h ( - XO,xI,x2,x3)' 

(3) F n(flJ2, ... Jn). for each n = 1,2, .. ·, is invariant un­
der the simultaneous action of any element ofISO(4) on 
all/;. i = 1,2, ... n, whereFn is the multilinear functional 
on Y(R4)XY(R4)X"'XY(R4) (n copies) defined by 

F n(flJ2 .. ·In) = E {tP (hl)XtP (h2)X .. ·XtP (h n)}, 

/;eY(R4), h i eJY'-I(R4), hi = M/; i = 1,2, ... n. 

Then. for each n there is a unique tempered distribution r n 

on R4n satisfying rn(fl ® 12 ® ... ® In) = F n(flJ2 ... ·Jn) 
such that the collection I r n • n = 0,1,2. "'1, with r 0 = 1, sat­
isfies all the Osterwalder-Schrader axioms6-8 for Euclidean 
Green's functions in four-dimesions except cluster decom­
position (for a four-dimensional Hermitian scalar quantum 
field theory). 

(b) Further, if the set 
{E {tP (gn.) XtP (gn,) X .. · XtP (gnn)}. n = 1,2, .. J satisfies 
cluster decomposition for arbitrary gn. eJr'- I(R4), 

I 

i = 1,2 ..... n. n = 2,3 ... ·• then the set I r n' n = 0,1,2''''1 
also satisfies cluster decomposition. 

Theorem 2: Let N be a continuous linear operator in 
L 2(R4) satisfying 

(i) Nk is real for k real, with ke L 2(R4). 

(ii) Nke L 2(R~ ), for ke L 2(R~ ), where L 2(R~ ) is the 
subspace of L 2(R4) consisting of square integrable functions 
on R4 with support in R~ . 

(iii) (a) (Nk )(x) is even in Xo if k (x) is even in xo, 
(b) (Nk )(x) is odd in Xo if k (x) is odd in XO' for keL 2(R4), 

x = (XO,xl,x2,x3)eR4 

[this is equivalent to the statement 
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(eN)u = (Ne )u for uEL 2(JR4
), 

with 
(ev)(XO,X I,x2,x3) = v( - x O,X I,X2'X3) for vEL 2(JR4).] 

N 

Then the map N:f -+h = N f forfEY(JR4 )CL 2(JR4) is a real 

continuous linear map from Y(JR4) to JY'-1(JR4) satisfying 
assumptions (1) and (2) of Theorem 1. 

Note: Theorem 1, supported by Theorem 2, forms an 
improvement of Nelson's works [Nelson treated the case 
where JY'-I(JR4) is replaced by Y(JR4); Theorem 1 still holds 
with JY'-I(JR4) replaced by Y(JR4) and with the" reflection 
property" postulateds]. The improvement is that whereas, 
given a certain probabilistic X-structure ((,b,(n, .I,,u)) over 
JY'- I(JR4

), Euclidean invariance of 
E {(,b (/n, ) X (,b (/n,) X ..• X (,b (/nn )} for arbitrary fni EY(JR4

), 

i = 1,2, ... ,n, n = 1,2, .. ·, is required in Nelson's work, in 
our case only Euclidean invariance of 
E {(,b (M fn, ) X (,b (M fn,) X ... X (,b (M fnn )} for just one map M 
belonging to a certain wide class is required. 

2. Construction of four-dimensional quantum field theories 
from three-dimensional probabilistic structures 

Theorem 3: (a) Let ((,b,(n,.I,,u) be a three-dimensional 
probabilistic X-structure over JY'-I(JR3). Let also fEY(JR4

), 

M 

andf-+h = M f, hEJY'-I(IR3), be a real continuous linear 

map from Y(JR4) to JY'-1(JR3) satisfying the following as­
sumptions: 

(I) support ofjC JR~ implies that 
support of h C IR; , 
IR; = IR;;. X IR2; 
(2) e fis mapped under M to eh, for fwith support of 
fCIR~, 
where 

(e f)(xO'X I,X2,X3 ) = ff - XO,XI>X2,X3 ), 

(eh )(xO,X I,X2) = h ( - x O,X I,X2)' 
(3) rn (/1.!2''''.!n)' for each n = 1,2, .. ·, is invariant under the 
simultaneous action of any element of ISO(4) on all/;, 
i = 1,2, ... n, where rn is the multilinear functional on 
Y(IR4) X Y(IR4) X .. · X Y(JR4) (n copies) defined by 

r n(/I.!2'''·.!n) = E {(,b (hdX(,b (h 2)X .. ·x(,b (h n I}, 
/;EY(IR4), h i EJY'-I(IR3), hi = M/; i = 1,2, ... n. 

Then, for each n there is a unique tempered distribution r n 

on JR4n satisfying r n (/1 ® f2 ® ... ® fn) = rn (/1./2,"·./n) 
such that the collection! r n , n = 0,1 ,2, ... 1, with r ° = 1, sat­
isfies all the Osterwalder-Schrader axioms6--R for Euclidean 
Green's functions in four-dimesions except cluster decom­
position (for a four-dimensional Hermitian scalar quantum 
field theory). 

(b) Further, if the set 
{E {(,b (gn, ) x(,b (gn,) X .. · X (,b (gnn)). n = 1,2,. .. } satisfies 

cluster decomposition for arbitrary gn.EJY'-1(JR3), 
I 

i=I,2, ... ,n, n=2,3,. .. ,thentheset!rn, n=0,1,2, .. ·J 
also satisfies cluster decomposition. 

Theorem 4: Let Mo be defined as in subsection IliA. Let 
N be a continuous linear operator in L 2(JR3) satisfying 
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(i) Nk is real for k real, with kE L 2(JR3). 
(ii) NkE L 2(JR; ), for kE L 2(R; ), where L 2(JR; ) is the 

subspace of L 2(JR3) consisting of square integrable functions 
on JR3 with support in JR; . 

(iii) (a) (Nk )(x) is even in Xo if k (x) is even in xo, 
(b) (Nk )(x) is odd in Xo if k (x) is odd in xo, for 

kEL 2(JR3), x = (xO,X I,X2)EJR3 

[this is equivalent to the statement 
(eN)u = (Ne)u for uEL 2(JR3), 

with 
(ev)(xO'X I,X2) = v( - xO'X 1'X2) for vEL 2(JR3).) 

Then the map NMo is a real continuous linear map from 
Y(JR4) to JY'-I(JR3) satisfying assumptions (1) and (2) of 
Theorem 3. 

Theorem 5: Let M o be defined as in subsection IlIA. 
Further, let ((,b,(n,.I,,u)) be the free Euclidean Markov field 
over JY'-I(JR3).4Then {rn' n = 0, 1,2,. .. } is the set of Euclid­
ean Green's functions for the free Hermitian scalar quantum 
field in one time dimension and three space dimensions, r n 

being defined in terms of (,b as in Theorem 3 via the map M o, 
n = 1,2, .. ·. The masses in these fields are the same. 

C. Proof of theorems 

Here we present proof of Theorems 1 and 4. Proof of Theo­
rem 2 and 5 is obvious. The proof of Theorem 3 is parallel to 
that of Theorem 1. 

f. Proof of Theorem f 

We proceed to show that the set! r n , n = 0,1,2, .. · J sat­
isfies Osterwalder-Schrader axioms6-8 for Euclidean 
Green's functions provided that assumptions (1)-(3) are ful­
filled and that cluster decomposition property for the ran­
dom field (,b holds. 

(a) Proof of distribution property: The set of tempered 
distributions! r n,n = 1,2,.·.] defines, by restriction, con­
tinuous linear functionals on Y(O)(JR4n ), n = 1,2,. ... rn de­
jines.!or each n = 2,3,. .. , the difference variable distribu­
tions Sn _ I which, by restriction, defines a continuous linear 
functional S ~~) I on Y(JR4i" - I)), which is also continuous 
with respect to some 1 I;" norm. (Note: In the above, the 
notations .Y(O)(IR4n), .Y(IR4~n - I)), and 1 I;" norm follow Ref. 

8). 
(b ) Proof of Euclidean invarianee: by assumption (3). 
(c) Proof of positivity: Let Fo,FI, ... ,FA be given (A < 00): 

FoEC, FmEY(JR4m ) (l<m~A), and 
support of Fm(x[ll,xI21, ... ,xlml) 

C IR~ X IR~ X .. · X IR~ (m copies), 
xlilEJR4 , i = 1,2, ... m. 

Positivity flows from the inequality 

m -0 

tJ =- 0 
for any Fo, FI> ... FA' A = 0,1,2,. .. , (Y) 

which we shall prove, where 

(e Fm(xlll,xI21, ... ,xlml) = Fm(Oxlll,OxI21, ... ,Oxlml), 
OXlil = ( _ xgl,X\il,x~i],X~i]), 

for Xiii = (Xbi],x\iI,x~i],X~iJ), 
i = 1,2, ... m, 
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and the overbar denotes complex conjugation. 
Now there exist sequences FOj,Flj, ... ,FAj,j = 1,2,.··, such 

that FOjeC, For'" Fo, F mjeY(JR4m) (1 <m <A ) with 
J-oo 

support of Fmj(x[ll,x121, ... ,x[ml) 

C R~ XR~ X'''XR~ (m copies) 
JR~ =R> XR3 

R> = (0,00) 

and F mj- F m in the Schwartz topology of Y(R4m ). 
}-OO 

We have 

n=O 

if we can prove 
A _ 

L r m + n(e Fmj ® Fnj»O, j = 1,2,.·., 
m=O 
n=O 

where eFmj is defined as for eFm. 
We now prove statement (Y'): We can write 

F mj(x[ II ,x[21 , .•• ,x[ml) 

= ~ A.
J
· i i ... i XUi (X[ll)xu i (X[2 1) X ... xu,· (x[m 1) L 'I~ m I .z m 

(Y') 

1~1 even 

[Y(JR4m ) expansion] 

where 

Ui.(X[8 1) = e - I/(X~·))'tPi.(X[8 I) for xb81 > 0, 0 = 1,2, ... m, 
Ui.(X[8 1)=0 forxb81 <0, o=I,2, ... m 

with 1.1•. i = (iO) IiI) ,12) PI). I~O) 1~I) ,~2) 1~3) - 0 1 2 .j bel'ng 'f"'a' 8 6 , 6 , 8 , 6 , 6,8, 6 '6 - , , , •• 

the set of Hermite functions on R4 [i.e., tPi.(X[8 1) = tP,~)(Xb8 I), 

tP'1:)(X\81)XtP,~)(X~61)XtP,~)(X~81) with {tPk' k = 0,1,2,. .. j being 
the set of Hermite functions on RJ. We note that we can so 
arrange things such that only even l~), 0 = 1,2, ... ,m, occur in 
the summation: This is indicated by the wording l~) even. We 
can show that 

IA..·· . I "'.'l'··',,. 

< 3 

IT {(I + I\K)), X (1 + lY))'X ... X (1 + l~))'} 
K=O 

for s = 1,2,···, where Qj,s depends only onj and s for fixed 
F mj' This is seen as follows: For any ieY(R), the expansion 
coefficients in the expansion 

i= f CktPk [Y(R) expansion], 
k=O 

where! tPk' k = 0,1,2, ... j is the set of Hermite functions on 
R, satisfy9 
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where Qs depends only on s for fixed/; here s = 1,2,. ... 
The function u I eY(R4) is mapped under M to an ele­

ment VI e.:W'-I(R4). Since M is real, continuous, and linear, 
we can say that VI is real and further 

{
/ = 0,1,2,. .. , 

IIvIII_I<K lIuIllp" some/3,r, 
where K> 0 and is independent of /, II 11-/ denotes the 
JY'-I(R4 ) norm, and II lip" is defined, for /3 and r being non­
negative integers, by 

lIudlp,/ = f-+ 0000 ... f-+ 0000 dxodx l dx2dx3 

X L L (1 +X2)P 
O<p<P O<q. + q, + q, + q,<r; 

1 

dq· d q, d q, d q, 12 
X --------UI(X) 

dxo
q• dx l

q, dx2
q, dx3

q, 

X = (XO,xI,x2,x3)eR4
. 

We have 

;.;2"';"" 

i1r' even 

with Gm depending on m only [since tP (g)eU (n, I,J.l), 
p = 1,2,. .. , for any geJY'-I(R4), and since 
E {tP (Vi, )XtP (Vi,)X'" XtP (Vim)} is separately continuous in 
Vi, ,Vi, ,,,,,Vim with respect to JY'-I(R4

) topology]; 

X· .. X lIu i• lip., 
<Bm·Gm,Km. L lA.j,i,i""im I 

3 
if' even 

X IT {( 1 + it)' X (1 + zY)' X ... X ( 1 + zi~),} 
K=O 

<00 

since 
3 

lIuIilp.,<Bx IT (l +/(K)', /=0,1,2, .. · 
K=O 

for some t> 0, B being a constant for fixed /3 and r, and since 

for any s = 1,2, .... 
We now let 

,-gt, even 

Then ajeL I(n, I,p.). 
Further, we have 

support of VI C R~ 
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since 

support of U I C JR~ . 

Hence we can construct a sequence VI•r ' 7 = 1,2,. .. , for each I, 
such that 

T --~oo 

in df'-I(JR4) topology and such that 

support of vI,r C JR~ . 
This follows from the fact that the sequence 
{TI/n' n = I,2,. .. } of translation operators (where T lln cor­
responds to translation through lin in the positive Xo direc­
tion) in df'-t(JR4) converges strongly in df'-I(JR4) since the 
set {Tl/n , n = I,2,. .. } is uniformly bounded in norm (by 1) 
and since the sequence converges weakly on the dense subset 
of df'- t(JR4) consisting of continuous functions on JR4 with 
bounded support (note: this argument is due to the referee 
and replaces a previous longer proof). Then¢ (v I.r )E2' ( A ) and 

¢ (v/,r) - ¢ (VI) in measure, where A = JR~ . Consequently, 
T--~oo 

we have 

¢(v/)E.2'(A ). 

The proof of this goes as follows: There exists a subsequence 
7"" CT = 1,2,.··, for each I, such that 

¢ (VI,rn) - ¢ (VI) 
a--.= 

almost everywhere in (fl,.2' (A ),Il) if we choose the conven­
tion that any sub-CT-algebra of (fl, .2',Il) contains all elements 
of measure zero in the CT-algebra (fl, .2',Il). Therefore, ¢ (VI) 
E.2' (A ) since ¢ (VI.rn )E.2' (A ). 

Thus we also have ¢ (Vi, )x¢ (vdX···X¢ (V,JE.2'( A) 

for all i 1,i2,.oo,im (1~0) being even, {j = I,2,oo.,m). Therefore, 

n ~ 0 ~ (0) (0).··(0) 

l~1 even 

(0) = (0,0,0,0). 

belongs to.2' (A) and L I(fl,..!' (A ),Il), where 
It; = (I~O),1~I),I~),l~)) andI~V) = 0,1,2,.·· for v = 1,2,3, and 

I~) = 0,2,4,. ... Since L I(fl,..!' (A ),Il) is complete and since 

E ( • t ,.~.'~t. AM.,,···,. X ¢ 1";.1 X ¢ I"" I X ... X ¢ 1";.1 l 
n - 0 = L 1 L z:,.L," 

rlr) even 

for L = (L (0) L (t)L (2 )L (3) i - (LA(O) LAII) LA(2) LA(
3) w\'th 

[} 6' {) 8 {j, fj- 6' 6' 6' {j 

L~) andi~) even andL I[;),il[;) > someN(£) for v = 0,1,2,3, 
given any £, we conclude that 

ajEL l(fl,.2' (A ),Il). 

Let Tp be the reflection operator corresponding to the 
reflection p: xo- - xo, x \>X2,x3 kept fixed (see Notes in Sec. 
IlIA). Then we have, with A C being the complement of A in 
JR4 and aA being the boundary of A in JR\ 
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E [(T/ij )aj ] 

= E [(Tpclj)E {aj 1.2' (A e)}] 
conditlonal 

expectation 

= E [(T"clj )E {aj 1.2' (aA )}] 
weak Markov 

property 

= E [(clj )E{aj l.2'(aA )}] 
reflection 

property 

~ E [E{cljl.2'(aA )}E{aj l.2'(aA )}] 
condltlOnai 

expectatIon 

= E [IE {aj 1.2'(aA )}12] 

;;;.0. 

[This proof of E [ (Tp iij )aj ] ;;;.0 is analogous to that of Ro­
sen's for Euclidean Markov fields over Y(JRd ).5] 

On the other hand, we have, by assumption (2) and re­
flection covariance, 

A _ _ 

L rm+n (@Fmj®Fnj)=E[(Tpaj)aj]' 
m=O 

n=O 

Hence we have proved statement (Y '); hence statement (Y), 
and hence positivity, follow. 

(d) Prool 01 symmetry: Obvious. 
(e) Prool 01 cluster decomposition: 
Lemma: Let 1]EJR4

• Then a rotation (proper) 91 in JR4 
exists such that 91 -11] = ;, where; = (;0,0,0,0) and 91- 1 

denotes the inverse of 91. Also let/EY(JR4). Then 

I"" = .9l'( .9l' - '1)"" A> 0, 

where 

IA'I(x) = I(x - A1]), 

(9t- 1/)"s(x) = (9t-'I)(x -A;), xEJR4
. 

[Note: we define ( ..a1f)(x) = f(..a1- lx) for any rotation (prop­
er) ..a1 in JR4 and for any fEY(JR4).] 

Prool 01 lemma: Let k = 91 -If Then we can prove 

(9tk),,'1 =9t(kAs) 

where 

(9tk h'l(x) = (9tk)(x - A1]), 
k",(x) = k(x -A;). 
Cluster decomposition for the set {r n , n = 0,1,2, ... } 

then follows, using the above lemma, from rotational invar­
iance of the set and cluster decomposition property of 

E {¢ (gn,) X¢ (gn,lX'" X¢ (gnn)} for all gni 
Edf'-1(JR4), i = 1,2,oo.,n, n = 2,3,. ... 

2. Proof of Theorem 4 

Let/EY (JR4) Then MoIEL 2(JR3) C df'- I(JR3), and NMo is 
a linear map from Y(JR4

) to L 2(JR3)Cdf'-t(JR3) and hence a 

linear map from Y(JR4
) to df'-I(JR3). Futher, let/;- I in 

Schwartz topology, where /;EY(JR4
), i = 1,2, .. ·, and 

IEY(JR4 ), then Mo/; converges, as i- 00, to Molin L 2(JR3) 
topology, and hence (NMo)/; converges, as i- 00, to (NMo)1 
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in L 2(R3) topology and hence in JIr-I(R3
) topology. Hence 

NMo is a continuous linear map from Y(JR4
) to JIr- I(R3

). 

It remains now to show only, as a consequence of the 
properties of the map N, that the map Mo is real and satisfies 
assumptions (I) and (2) of Theorem 3. We proceed as follows: 

(a) Proo/that Mo is a real map: Let/EY(R4
) and/real. 

Let u = M O/EJIt'-I(R3).Let further ute) = vl(e) + iv2(e), 
where VI and V2 are real. Then the map Mo is real (i.e., 
u = Mo/is real for/real) if and only if 

vI ( - I?J = vl(I?J, 
v2( -l!J = - V2( l!J. 

This condition is satisfied by the map Mo since 

Y\~(1T - (J,1T + ¢) = (- 1)/+mY\~((J,ip)} 

Y\~(1T - (J,1T + ¢) = (- 1)/+my\~((J,ip) , 

Let 

{
1T/2>O>0, 21T> ¢>O, 

1=0,1,2, .. ·, m = 0, ± 1, ... , ± 1. 
cos V(1T + ¢) = ( - 1)" cos v¢} 21T> ¢>O, 

sin v(1T + ¢) = ( - 1)" sin v¢ , v = 0,1,2, .. ·. 

(b) Proo/that Mosatisjies assumption (1) o/Theorem 3: 

1[/(1)( ) - ¢j(lpll y(I)(O m I 
j" PI,P2,P3 - Ipi "'T 

1[/(2)( ) _ ¢j(/pi) y(2)(O m) 
j" PI> P2' P3 - Ipi v 'T 

1[/(1)( ) _ ¢j(lei) cos Vip 
-jv PI>P2 - lel 1l2 .[iii 

1[/(2)( 1= ~j(lel) sin Vip 
-jv PI>P2 1211/2.[iii 

Then (Vi)~, Vij~,j = 0,2,,,,, V = 0,1,2,. .. ) forms a complete 
orthonormal basis in L 2(R3

) and also (~X),~5~),j = 0,2,· .. , 
v = 0,1,2,. .. ) forms a complete orthonormal basis in L 2(R2

). 

We know that/E Y(R4)C L 2(R4) and u = Mo/ 
E L 2(R3)CJIr-I(R3

). We have, lettingX[a.b I be the charac­
teristic function for the closed interval [a,b ], 
O>b>a> - co: 

(Xla,b I ® ~)~,u> L'(R') 

(
- .TI(I) - > = Xlo.b I ®::c.jv,U L'(R') 

= (Xlo,b I ® 1[/)~.7h'(R4) 
= (XIO,b) ® Vi)~)'/>L'(R4) 
=0 

for allj (even) and all v, if 
support of/CR~ 

and similarly 

<X(a,b l~j~),U>L'(R') = ° 
for allj (even) and all v, if 

support of /C R~ . 
Consequently, 
support of u C R; 

if 
support of fC R~ 

Hence Mo satisfies assumption (1) of Theorem 3. 
(e) Proof that Mo satisfies assumption (2) of Theorem 3: 
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The proof is obvious if we notice that 

for all i = 0, I ,2,.··. 

IV. GENERATION OF FOUR-DIMENSIONAL QUANTUM 
FIELD THEORIES FROM FOUR-DIMENSIONAL 
EUCLIDEAN MARKOV FIELDS 

In this section we present a theorem on the generation 
of quantum field theories in four-dimensional space-time 
from four-dimensional probabilistic X-structures over 
JIr-I(R4) which are also "Euclidean invariant." Such struc­
tures include Euclidean-Markov fields over JIr-I(R4

) stu­
died by Nelson in Refs. 3 and 4. 

Theorem: Let (~E,(n, ..r,Il)) be a four-dimensional pro­
babilistic X-structure over JIr-I(R4) satisfying 

E {(TS¢EH gn, )X(Ts¢EH gn,lX .. · X(TS¢EH gnn)} 

=E{¢E(gn,)X~E(gnJX"'X¢E(gnn)}. (0) 

wheregn .EJIt'-I(R4) and (Ts¢EH gn.) = ¢E( gn' OS-I), 
I I I 

i = 1,2, ... ,n, n = 1,2,. .. , for any SEISO(4). Let PIA ) be any 
real polynomial in the four-dimesional Laplacian and define 
the multilinear functional rn (E,P(<1 I) 

overY(R4) X Y(R4) X .. · X Y(R4) (n copies) by 

rn (E.P(<1 1)(/1'/2''''/n) 
=E{¢E(P(A )ft)x¢.dP(A )/2)X"'X~dP(A )fn)}' 

/;EY(R4), i = 1,2, ... ,n. 

Then rn (E,P(<1 I) defines a certain tempered distribution 
r (E.P(<1 I) on R4n for each n = I 2 .. · and the set 

{r
n 

(E,P(<1 I) n - 0 1 2 ... } with' r (~.P(<1 II = 1 is a set of Eu-
n ' -", 0 

clidean Green's Functions for a four-dimensional Hermitian 
scalar quantum field theory not including the property of 
uniqueness of vacuum. 

Proof This theorem is an immediate consequence of 
Theorem 1 in Sec. III since P (A ) is a real continuous linear 
map from Y(R4) to JIr-I(R4) satisfying assumptions (I) and 
(2) of that theorem and further since, for each n = 1,2,. .. , 
rn (E,P(<1 II isjointIy invariant under any element ofISO(4) asa 
consequence of condition (0) on (¢E,(n, ..r,,u)) and the fact 
that P (A ) commutes with the action of any element ofISO(4) 
on any element of Y(R4). 

We now present a remark on the above theorem. 
Remark: The theorem can be obtained by noting that 

the probabilistic X-structure (~E,(n, ..r,Il)) gives rise to a 
Hermitian scalar quantum field theory in four-dimensional 
space-time with field (J E and that P (0)0 E' together with a 
restriction of the same unitary representation of the Poin­
care group and the same vacuum, also form a four-dimen­
sional Hermitian scalar quantum field theory, where 0 is the 
d' Alembertian in four-dimensional space-time. What we 
want to emphasize here is that the theorem is also an ex­
tremely simple consequence of Theorem 1 in Sec.III. 
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Maxwell's equations in axiomatic quantum field theory. II. Covariant and 
noncovariant gauges 

P. J. M. Bongaarts 
Instituut Lorentz, Nieuwsteeg 18, 2311 SB Leiden, The Netherlands 

(Received 15 June 1981; accepted for publication 7 August 1981) 

The outlines of a general formalism for the description of the Maxwell field in the framework of 
axiomatic quantum field theory were given in a preceding paper. It was based on the use oflocally 
convex topological spaces connected in a natural way with the distribution properties of the n­
point functions of both the AI' (x) and FI'Y(x) fields. In this paper this approach is developed 
further. We discuss in particular aspects of the reconstruction theorem, gauges and their 
equivalence, and symmetries and gauge transformations. Finally a systematic and unified 
derivation is given of the various Lorentz covariant and noncovariant free field gauges together 
with the properties of the associated A I' (x) operator field theories. 

PACS numbers: 11.1O.Cd, 03.70. + k, 02.30. + g 

I. INTRODUCTION 

A general, mathematically rigorous formalism for the 
quantized electromagnetic field, in the spirit of Wightman's 
axiomatic approach to quantum field theory, was developed 
in Ref. 1. The special problems of the Maxwell quantum field 
such as the difficulties connected with the simultaneous oc­
currence of the two fields AI' (x) and FI'Y (x) and the incom­
patibility of manifest Lorentz covariance with a positive­
definite metric in the space of state vectors were met by ex­
tending the standard Wightman framework in a suitable 
manner, facilitated by the use of algebraic concepts due to 
Borchers. 

The leading principles in this generalization of Wight­
man theory are, in the first place, the importance attached to 
the reconstruction theorem which states that a quantum 
field theory is completely determined by its system of n-point 
functions, i.e., vacuum expectation values of products of 
field operators, and, in the second place, the fact that in the 
light of the reconstruction theorem the fundamental math­
ematical structure of the Wightman formalism is not that 
given by the Hilbert space nature of the state space but the 
underlying structure of locally convex topological spaces 
connected with the distribution properties of the n-point 
functions. 

Borchers' algebraic version of Wightman theory is par­
ticularly well suited to this point of view because it treats 
systems of n-point functions as continuous linear functionals 
on an involutive topological algebra constructed as tensor 
algebra from the basic space of test functions used for smear­
ing the field operators. As a consequence, the reconstruction 
theorem takes the form of a special case of a well-known 
general theorem on the representation of algebras. 

In its original form the Borchers formalism uses only 
positive linear functionals and is then completely equivalent 
to standard Wightman theory. The essential mathematical 
ingredient in the reconstruction theorem is, however, not 
positivity but continuity. It is therefore natural to extend the 
formalism to arbitrary continuous linear functionals leading 
to representations in topological vector spaces more general 
than Hilbert space, with inner products that are not neces­
sarily positive definite. This is exactly what is needed for a 

general theory of the quantized electromagnetic field on the 
principles just indicated. In this extended form the Borchers 
formalism gives a natural generalization of Wightman the­
ory in which the Hilbert space property is no longer a general 
requirement for the spaces in which the field operators are 
defined but appears as an additional property only at places 
where this is desirable for physical interpretation. 

The fundamental difference between our approach and 
work such as that ofStrocchi et al. (see Refs. 2 and 3 and, for 
further developments Ref. 4) is that we do not employ auxil­
iary, noninvariant Hilbert space structures, which are math­
ematically very awkward and, moreover, have no physical 
meaning, but make instead a consequent use of the 10calIy 
convex spaces that are given in a natural way by the proper­
ties of the n-point functions. This involves us in mathemat­
ical methods that are slightly less familiar than Hilbert space 
theory, but this is more than compensated for by a consider­
able gain in coherence and transparency of the resulting for­
malism. 

For the description of the AI' (x) and FI'Y (x) fields we 
start with two distinct Borchers' algebras. There is an alge­
bra .ifA = };:~ 0 Ell ( ® n yO)), with yO) a space of test func­

tions/ I'(x), suggested by the heuristic expression A (f) = fAI' 
(xlf I'(x) d 4X for the potential operator, and a second algebra 
.ifF = };: ~ 0 Ell ( ® n y(2)), where .5"'(2) consist of antisymme­
tric functions t/l'Y(x), because of the expression F(t/l) = fFI'Y 
(x)r/r(x) d 4X . The algebras are related by an algebraic homo­
morphism ed' generated by a linear map d (or dd: 
y(2)-+y(3), defined as (dt/lY' = 2ayt/I'v. The continuous lin­
ear functionals on the algebras, i.e., possible systems of n­
point functions for the AI' (x) and Fl'v(x) fields are then con­
nected by the transposed map e~: .s;[A-+d,F, and this 
takes the place of the classical relation al'Av - ayAI' = FI'Y' 
All this can be found in detail in Ref. 1, where also the first of 
the two basic results on which our formalism is built is given 
as Theorem 3. This states that the image of the transposed 
map e ~ consists of all systems of F-field n-point functions 
that correspond, through the reconstruction theorem, to op­
erator field theories in which the first Maxwell equation 
al'Fvp + ayFpl' + apFI'Y = 0 holds as an operator equation. 
This allowed us to introduce the concept of gauge as a system 
of A-field n-point functions in the inverse image under e ~ of 
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a given F-field system, and also as the corresponding All (x) 
operator field theory. Although the state spaces of F and A 
theories are in this way a priori distinct, we showed that they 
are connected by a canonical "partial" isometry which in 
special cases can be used as an identification map. 

In this paper the formalism is developed further and is 
finally applied to the case of the free field, where a rigorous 
and systematic derivation is given of the various Lorentz 
covariant and non covariant gauges together with their prop­
erties as operator field theories. In Sec. II special mathemat­
ical aspects of our version of the Borchers formalism neces­
sary for the subsequent sections are discussed. Particular 
attention is paid to aspects of the reconstruction theorem 
and to the subject of transformations and symmetries. In 
Sec. III there is first a brief review of some results from Ref. 
1, and then a definition of the concept of gauge equivalence. 
A characterization of this in terms of n-point functions is 
given in Theorem 3.1, the second result that is basic for the 
formalism. Remarks on different gauge conditions and a dis­
cussion of various possible meanings ofthe term gauge trans­
formation make up Sec. IV. In Sec. V the systematic treat­
ment of the free field gauges is started and the general form 
of the translation invariant two-point function for the free 
All field derived. To facilitate the subsequent investigation of 
the operator field properties of the various free field gauges, 
we study in Sec. VI in a general setting what we call "Gaus­
sian" states, i.e., systems of n-point functions determined by 
a two-point function in the way that is typical for free boson 
field theories. The main characteristic of such a system is 
shown to be that the associated operator field theories have 
canonical realizations in terms of systems of creation and 
annihilation operators in Fock or "many-particle' spaces. 
The Fock space structures involved are of a more general 
nature than those occurring in standard Hilbert space free 
field theories. They are based on "natural" locally convex 
topologies, in accordance with the spirit of our approach. In 
this respect this is different from and in fact more transpar­
ent than recent work on indefinite metric second quantiza­
tion with auxiliary Hilbert space structures such as e.g., Ref. 
5, although in Ref. 6 these additional structures have become 
already less important. In Sec. VII the discussion of the free 
field gauges is resumed. The general form of the Lorentz 
invariant two-point function for the free All field is derived, 
and it is shown that a Lorentz invariant free field gauge al­
ways leads to an indefinite metric space. Two distinct impor­
tant classes of Lorentz invariant free field gauges are dis­
cussed, the generalized Landau gauges and the generalized 
Gupta-Bleuler gauges, characterized respectively by the 
conditions allAIl = ° and a vavAIl = 0, as operator equa­
tions for the field All' In Sec. VIII the Coulomb gauge is 
investigated, as the most important and typical example of 
noncovariant but positive metric gauge. Its properties as an 
operator field theory are worked out in some detail, in par­
ticular the precise meaning of non covariance under Lorentz 
transformations. This provides a characteristic example of 
the interplay oflocally convex aspects and of a physical Hil­
bert space structure arising in this case in a natural way. 

The main reference for this paperis Ref. 1, which will be 
denoted as I. It contains among other things a brief review of 
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the Borchers formalism as needed for this work; see, howev­
er, for more details Refs. 7-12. The references for Wightman 
axiomatic field theory are 13-15, and for the theory of topo­
logical vector spaces 16-19. There is an unfortunate but un­
avoidable double use of the terms homomorphism and iso­
morphism in this paper, denoting on one hand maps that 
preserve algebraic, i.e., multiplicative structure, and on the 
other hand continuous linear maps between topological vec­
tor spaces having the important additional property of being 
relatively open, see, e.g., Ref. 16, Chap. 17, or Ref. 19, Chap. 
III, Sec. 1. Hopefully the context together with additional 
remarks will prevent confusion. We use heuristic "general­
ized function" language for distributions at some places, in 
particular in Secs. V, VII, and VIII, where this makes for 
easier reading and where a reformulation in the correct test 
function language is obvious and straightforward. Finally 
we consider in this paper only Lorentz transformations be­
longing to the connected part of the Lorentz group. 

II. REMARKS ON GENERAL MATHEMATICAL ASPECTS 
OF ALGEBRAIC WIGHTMAN THEORY 

The principal theorem in standard axiomatic field the­
ory is the reconstruction theorem, which says that an opera­
tor field theory is completely characterized, up to unitary 
equivalence, by the vacuum expectation values of products 
of field operators, from which it can in fact be recovered by 
an explicit construction. In Borchers' algebraic version of 
Wightman theory this theorem has a simple form; it is a 
special case of the general relation between cyclic represen­
tations of an involutive algebra and its positive linear forms. 
This relation is, of course, well known from C *-algebra the­
ory and its applications in statistical mechanics and field 
theory. The term GNS (Gel'fand-Naimark-Segal) represen­
tation which we shall occasionally use has its origin there. 
An advantage of the special context of topological algebras 
constructed as tensor algebras of test function spaces com­
pared to that of C *-algebras is that in the relation between 
linear functionals and representations the role of positivity is 
less important; only continuity is essential. Therefore, the 
reconstruction theorem remains true, after minor modifica­
tions, in our generalized approach to algebraic Wightman 
theory, in which, with an eye to application to the Maxwell 
field, positivity has been dropped as a general requirement. 

For a more explicit discussion of this and related as­
pects of this approach we consider the general situation 
where we have a Borchers algebra d = I.: = 0 E9 ( ; n r) 
constructed as a topological direct sum of completed tensor 
products of a basic complex vector space r which we sup­
pose to be a nuclear Frechet space with continuous conjuga­
tion. (The spaces r that we use are the spaces of multi com­
ponent test functions on ]R4 that will be listed in the next 
section.) 

We introduce some convenient terminology: By a repre­
sentation of d we shall mean a homorphism 11' of .if into the 
algebra of linear operators in a complex vector space dY, 
equipped with a nondegenerate Hermitian form (-, .) (not 
necessarily positive definite!), such that (.a I' 
1T{a){}2) = (11'(a*).a I, .a2), VaEd, V .aI' .a2E7r. [The linear 
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operators 1T(a) are of course defined everywhere in £'.] A 
vector [1 in £' will be called strictly cyclic if the map from .xff 
to £' defined by a<-+1T(a)[1 is surjective. The representation 1T 
for which such a vector exists is also called strictly cyclic. 
Two representations 1'1"1 and 1T2, in £'1 and £'2' are called 
equivalent if there exist a linear bijection W: £'1-+£'2' iso­
metric, i.e., with (WlJ, WlJ ') = (lJ, lJ 'I, 'V lJ, lJ 'EJY'I' and 
such that W1TI(a) = 1T2(a)W, 'Vae.xff. 

Lemma 2.1: Two strictly cyclic representations 1T I and 
1T2, in £'1 and £'2' are equivalent if and only if for some pair 
of strictly cyclic vectors [11 and [12 the equality (lJ I' 
1TI(a)[1I) = ([12' 1T2(a)[12) holds for all ae.xff. 

Proof On one hand, if 'TT I and 'TT 2 are equivalent and lJ I 
strictly cyclic in £' I' then [12 = WlJ I is strictly cyclic in £'2 

and the equality holds: on the other hand, iffor strictly cyclic 
[11 and [12' one has (lJ I, 'TT I(a)[1I) = ([12' 1T2(a)[12)' 'Vae.xff, 
then 1T I(a)[1If--+1T2(a)lJ2 defines a linear map Wwith all the 
properties required, because 1T I (a )[11 = ° <=> ([11' 

'TTI(b *a)lJd = 0, 'Vbe.xff <=> (lJ2, 1T2(b *a)lJ2) = 0, 
'Vbe.xff <=> 'TT2(a)lJ2 = 0. 

A representation will be called continuous if £' is a 
locally convex Hausdorff topological vector space, for which 
the Hermitian form (-, .) is separately continuous (it will then 
be called an inner product on JY) and if the bilinear map from 
.xff X£' to £' defined by (a, [1 )t--.1T(a)[1 is separately con­
tinuous. Two continuous representations are called topologi­
cally equivalent if they are equivalent and the isometry Wis a 
topological isomorphism. 

For continuous strictly cyclic representations one can­
not, from the equality of "expectation values" ([11' 

1TI(a)lJ I) = ([12' 1T2(a)lJ2), conclude that the representations 
are topologically equivalent. A slightly modified statement 
holds, however. To obtain it, one observes the following: If 
for a strictly cyclic, not necessarily continuous representa­
tion 'TT, with strictly cyclic vector [1, the expectation value (lJ, 
1T(a)[1) happens to be a continuous function of a, then the 
surjective map X: .xff -£', defined as X (a) = 'TT(a)lJ, can be 
used to induce a locally convex Hausdorff topology on £', 

for which the Hermitian form (', .) is separately continuous 
and the representation 1T continuous. This topology is, of 
course, just the quotient topology on the quotient space 
.xff /Ker X transferred to dY'; it makes X into a surjective to­
pological homomorphism, giving the continuity properties 
and also the fact that we have in this way the strongest possi­
ble topology in £' for which 'TT is continuous. This implies 
that a continuous, strictly cyclic representation has on its 
representation space a "natural" strongest topology, the to­
pology induced by the continuity of (fl, 'TT(a)[1 ). 

Lemma 2.2: Two continuous, strictly cyclic representa­
tions with representation spaces equipped with the "natu­
ral" topologies are topologically equivalent if and only if for 
some pair of strictly cyclic vectors fll' fl2 the equality (lJ I' 
'TTI(a)fl l ) = (fl2' 1T2(alfl2) holds for all a in Jf. 

Proof The only point worth mentioning is that the iso­
metry W is a topological isomorphism because X I: .if -dY'1 
and X2: .if -cW'2 are topological homomorphisms. 

Let UJ be an element from the topological dual.if' that is 

real in the sense of UJ(a*) = UJ(a), Vae.if. Define f", 
= [aE.ifIUJ(ba) = 0, VbE.afj. This is a closed left ideal in .af. 
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(For UJ;;;'O, i.e., UJ(a*a);;;.O, 'Vae.xff, this coincides with f w 

= [ae.xffIUJ(a*a) = OJ). Let X be the canonical surjection 
.xff -.if / f w' Then UJ defines a continuous, strictly cyclic 
representation of .xff, the GNS representation: 

Lemma 2.3: The representation of.xff defined by taking 
£' = .xff / f w as representation space with inner product 
(t (a),x(b)) = UJ(a*b ) and as operators 1T(a) theoperatorsgiv­
en by 7T(a)x (b): = X (ab ),isacontinuous, strictly cyclic repre­
sentation, with strictly cyclic vector [10: = X (e), e unit ele­
ment of .if. The representation space cW' carries the 
"natural" topology and one has UJ(a) = ([10' 1T(a)[1o), 'V ae.xff. 

The proof of this lemma is also very simple and follows 
from the preceding remarks. It is therefore omitted. 

Lemma 2.2 and 2.3 together constitute the reconstruc­
tion theorem in the present version of algebraic Wightman 
theory. 

We shall mainly use elements UJ in .xff' that are not only 
real but have also the normalization UJ(e) = 1. Such elements 
will be called states on .xff. The strictly cyclic vectors [1 corre­
sponding to such UJ through the reconstruction theorem 
have then unit length. 

Ifa state is positive, i.e., if UJ(a*a);;;'O, 'VaE.if, the GNS 
representation space dY' is a pre-Hilbert space. After com­
pletion of £' to a Hilbert space, we are back in the situation 
of standard Wightman theory. jy'then appears as the invar­
iant dense domain on which the in general unbounded opera­
tors 1T(a) are defined and the continuity properties of the 
representation become continuity properties of expectation 
values with respect to vectors from this domain. 

Transformations and symmetries are an important as­
pect of any field theoretic formalism. In the Borchers for­
malism as it is employed in this work it is natural to describe 
transformations by means of algebraic automorphism of .xff. 
Such automorphisms should commute with the conjugation 
* and as linear maps should be topological isomorphisms. 

The most important and at the same time simplest of 
such automorphisms are those generated by real (i.e., conju­
gation preserving) linear topological isometries T in the basic 
test function space 'P", according to aT(f1 ® .•• ®fn) 
= (T!I) ® ••• ® (Tfn ),/;e'/< This is the way Lorentz transfor­

mations appear in the theory. One has, for example, for the 
AI' (x) field theory, where 'P' = .yC'I, .af = .ifA, for every in­
homogeneous Lorentz transformation (u, A ) a topological 
isomorphism Iiu, AI: .}I'(3)_.}I'OI, given by (Tlu.,11 fY'(x) 
= A l'jV(A -I(X - u)), which in turn defines an automor­

phism a(u.A I: .af A -.af A. 

There is a second class of simple explicitly given auto­
morphisms. These depend on real elements A of the topologi­
cal dual '//' and are defined by extension of a", e = e, aJ 
= f + A (f)e, a", (fl ®f2) = (fl + A (fde) ® (f2 + A (f2)e) 
= It ®f2 + A (ftl!2 + A (hlfl + A (fdA (h)e, V /,fl,hE'P/', 

etc. These a", shift expectations values of single field opera­
tors. They will not be used in this paper, except as basis for a 
single remark on gauge transformations in Sec. IV, but are of 
importance in further developments connected with the defi­
nition of scattering states and appear in particular in the 
discussion of "displaced Fock representations" in the ter­
minology of Ref. 20, or noncentered Gaussian states in the 
more general terminology of Sec. VI. 
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An automorphism a determines a symmetry if a state W 

is invariant under a, i.e., w(a(a)) = w(a), VaEd. As one veri­
fies easily the relation 7T(a)l1o ..... 1T(a(a))l1o defines then a lin­
ear map U of the GNS representation space JY' onto itself, 
which is a topological isomorphism, isometric with respect 
to the inner product in JY', leaves 110 invariant and has the 
property 1T(a(a)) = U1T(a)U -I, VaEd. If the state w is posi­
tive, U can be extended to a unitary operator in the Hilbert­
space completion of JY'; we are then back in the situation of 
symmetry in standard quantum theory. In the example of 
A'l (x) field theory the GNS space of a Lorentz-invariant state 
carries a representation of the inhomogeneous Lorentz 
group by isometric linear isomorphisms, transforming the 

fieldoperatorsA (f)as U(u,A IA (/)U 1~~11 = A (~u,A f), which 
corresponds to the heuristic relation U1u,A IA'l (x) U (;;:1 1 
= A ""A,,(Ax + u), the conventional transformation rule 

for a Lorentz covariant vector field operator. It is a charac­
teristic feature of the Borchers formalism as we use it that the 
representation U(u,A I as a representation in terms ofisomet­
ric operators has strong smoothness properties, independent 
of a possible positivity of the invariant state. [In fact, for the 
free A" (x) photon field there are no positive Lorentz invar­
iant states, as will be proved in Sec. VII.] 

It is useful to consider transformations in a somewhat 
more general setting. 

Let .('/ I and .if 2 be two Borchers algebras. Let a be a *­
preserving, continuous algebraic homomorphism of .if I into 
. if 2 and WI' W2 two states on d I' d 2 respectively, such that 
W I is the image of W 2 under the transposed map a': 

.cY; ...... cY;, i.e., wl(a) = w2(a(a)), V aE.if l . 

Corresponding to a there is a canonical "partial" iso­
metry between the GNS spaces of WI and w 2• Let the GNS 
representations be 1TI and 1T2, in the spaces dY'1 and jY'2' 

1T2(a(a l ))112f-+1T I (a 1)111, V aEd I' defines a surjective linear 
map W from a subspace .W~I OLW'2 onto dY'1' because 
w2(bp(a l )) = 0, V b2E.cY2' implies wl(bla l ) = 0, V hIE.cY l. 
One verifies that this map W is isometric, maps 112 onto 111' 
and has the "intertwining" property W1T2(a(a tl) = 1Tda I) W, 
Va IE.cY I' It also agrees with a' in the sense that if a vector 
tP2EJ(~'1 C jyz corresponds to the state V 2 on .cY 2 according 
to v 2(a Z) = (tP2' 1T2(a 2)tPZ)' V azE.cY 2' then the vector 
WtP2E.7fl corresponds in the same way to a state VI on ·rYl 
which isjust a'v2• In general, W is not continuous, and nei­
ther is jy~1 closed. If Ker W = 0, as is the case for a positive 
state w 2, then W - I exists also and can then be used to identi­
fy"o/\ albegraically with the subspace £12

al
. If a is also a 

homomorphism in the sense of topological vector spaces, 
then W can be shown to be an open map, and, therefore, 
W - I, when it exists, a continuous map. 

Symmetry as defined above is a special case of this situa­
tion where .rY l = .cY 2' WI = w2, and a with continuous in­
verse. The isometry U, implementing the automorphism a is 
just W - I, defined in this way to have agreement with con­
ventional transformation formulas. 

A less trivial case is the general connection between 
All (x) and ~",(x) theories for the photon field, a basic feature 
of our formalism. In this situation .cY I = .cYf', .cY 2 = ,dA, 

and a is the algebraic and topological homomorphism e d' 

The state w I is a state of the FI'" (x) field, W 2 a possible gauge 
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for WI' The isometry W the canonical map from JY':h on to 
JY'F. 

The case where .CJf I = d 2 = d A
, WI and W2 gauge 

equivalent (to be defined in the next section) and a not neces­
sarily invertible will be used in the discussion of gauge trans­
formations. 

III. GAUGE EQUIVALENCE 

In classical electromagnetism two different potentials 
A'l are equivalent when giving the same field strength F"v 
= allAy - a,A ,l · In that case the difference A ~ - A" can be 

written as a gradient a"ifJ. 
In I we showed that in a Wightman formalism for the 

quantized electromagnetic field the relation between poten­
tials and field strength is fundamentally a relation between 
systems of n-point functions. From the n-point functions for 
the potential operator A" (x) one obtains the n-point func­
tions for the field strength operator F"v(x) by means of the 
map ed' defined in I and corresponding to the heuristic 
formula 

(3.1) 

with a~) = a/ax'/', the usual summation convention, and ~:. 
the permutation symbol in two indices, nonzero only when 
p, T is a permutation of fl, vand then equal to ± 1 according 
to the sign of that permutation . 

A system ofn-point functions w~"V'''''l"V" associated with 
a F"v(x) theory satisfying the ordinary Wightman axioms 
and in which a"Fvp + avFp" + apE"v = 0 holds as an oper­
ator relation can always be obtained in this manner from a 
system off unctions w~'"'''''' This was proved in I, as a state­
ment on the image of the map e d (Theorem 3). Such a system 
wL.'I' .. together with theA" (x) operator field theory obtained 
from it by the reconstruction theorem as discussed in the 
preceding section was called in I a gauge for the given F",. (x) 
theory. There is an obvious notion of equivalence for two 
different gauges: 

Two All (x) field theories will be called gauge equivalent 
if their n-point functions w~,,,.,, .. give in formula (3.1) the 

same n-point functions w~""'"'''''''''' The main result of this 
section is that the differences of such A" (x) n-point functions 
can also, in a certain sense, be written in terms of gradients. 
This will be formulated in a precise and compact way in 
Theorem 3.1. To see that we have indeed a rather natural 
generalization of the classical situation, it may be helpful to 
state the theorem first in more heuristic form. 

Theorem 3.1 (heuristic formulation): Two All (x) theor­
ies are gauge equivalent if and only if there exist (tempered) 
distributions ifJ ;7: 11

11" ,(x i' ... , x,,), n = 1,2, "', 1= 1,2, ... , n, 
such that the differences of the n-point functions for the 
All (x) fields can be written as sums: 

(3.2) 

This theorem provides an explicit characterization of 
all possible All (x) field theories gauge equivalent with a given 
All (x) theory. Such an equivalence class is very large as it 

p, J. M. Bongaarts 1884 



                                                                                                                                    

involves the choice of an infinite sequence of arbitrary distri­
butions cP ~:.'!ltn I' Only a small part of these possibilities 
have practical value and will occur in the standard theory of 
the quantized Maxwell field. On the other hand. the notion 
of gauge equivalence based on the formula A ~ = Ait + altcp. 
as operator relation. with altCP the gradient of some operator 
field. an idea which also might suggest itself as a generaliza­
tion of the classical situation. is definitely too narrow. This 
will be argued in the next section and will be evident from the 
explicit discussion of the free field in Secs. VI and VII where 
the more general idea of equivalence through the n-point 
functions will be needed to connect some of the well-known 
free field gauges. 

To prepare for the rigorous version of Theorem 3.1. we 
collect some material. part of which was already introduced 
in I. 

The basic testJunction spaces YVI.j = 1.2.3.4. that we 
employ are defined as spaces of complex valued. multicom­
ponent Y(JR4) functions; all antisymmetric tensor functions 
X It"P(x) for j = 1. ¢"'''(x) for j = 2. all vector functionsJIt(x) 
for j = 3. and scalar functions cP (x) for j = 4. The spaces yI.Jl 
are obviously nuclear Frechet spaces. 

We consider linear subs paces yglCyVI.j = 2. 3.4. de-
fined as 

y~1 = I l/JEyl2l1 ¢"'V = apXltvp; XEY(I)j. 

y~1 = I JEy'(3V It = av tII'v; l/JEy(2) j, 

,.9'b41 = I cpEY(4)lcp = a~It;JEy(3)j. 

The y~l can be defined equivalently as 

y~) = ll/JEy(21 Ia
lt 

¢"'V = OJ. 
y~1 = I JEy(3)la~1t = OJ. 

Yb41 = I cpEY(4) I t+ 0000 cP (x)d 4X = 0 j. 

Forj = 2. 3. this was proved in I (Theorem 1). Forj = 4 we 
give a proof along the same lines. using again the division 
property of test functions. After Fourier transformation one 
has to prove that for cpEY(JR4

) with cP (0) = O. there exists 
Y(JR4

) functions such that cP = k~ It. Choose a Y(JR') func­
tionp(u) withp(O) = 1. DefineJo(k) = k 0- 'cP (ko• O. O. 
0)p(k,)p(k2)P(k3)' Because cP (ko• kl' O. 0) - kJO(ko• kIt O. 
0) = 0 for k, = O. one can defineJI(k) = k ,- 'Icp (ko• k,. O. 
0) - kJO(ko• k,. O. 0 j P(k2) P(k3)' Now cP (ko• kl' k2• 
0) - kJO(ko• k,. k2• 0) - kJ I(ko. k" k2• 0) = 0 for k2 = O. so 
one definesJ2(k) = k 2- 'I cP (ko• k,. k2• 0) - kJO(ko• k,. k2• 
0) - kJ'(ko• k,. k2• O)j P(k3)' Finally because 
cP (k) - kJo(k) - kJ'(k) - kj'2(k} = O. for k3 = Oonede­
finesJ3(k) = k 3- '(cp - kJO - kJ' - kj'2). Q.E.D. 

Note that this implies also that Yb41• just at Y~) and 
Y~) is a closed subspace. 

We define linear maps between the spaces yI.Jl; d2,: 
Y(I)_Y(21 by XItVPt-+ - 3apX ltvp• d32 : Y(2)_y(3) by ¢"''' 
l--+2av ¢"'v. andd43 : Y(3)_Y(4)byJ"t-+ - a~". These maps 
are continuous and. moreover. homomorphisms in the sense 
of topological vector spaces. because the yI.Jl are Frechet 
spaces. the ygl closed subspaces. We have in fact Y~) 
= Imd2, = Kerd32• Y~) = Imd32 = Kerd43• and Yb41 
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= Imd43 • Observe that d32 was denoted as d in I and that the 
definition of the djk is such that the transposed maps d lk : 

Y'I.Jl_y,(k 1 correspond to exterior differentiation of distri-

butions written heuristically as d i, : F""~ItF"p + a"Fp" 
+ apFltv • d 32: A ,,1--+ a" A " - a"AIt • and d ~3: rP~" cpo 

We shall make frequent use ofthe following lemmas 
containing more or less standard results from the theory of 
topological vector spaces. 

Lemma 3.1: Let 'Y , •...• 'Y" be closed subsJ>aces of the 
nuclear spaces '1r, • .... 'If/'". The space 'Y, ® ... ® 'Y" can 
then be identified algebraically and topolocially with a 
closed subspace of 'If/', ® ... ® 'fr". 

This is a property of the €-tensor product topology; see 
Ref. 16. the corollary of Proposition 43.7. 

Lemma 3.2: Let 'Y , ..... 'J/' n be nuclear Frechet spaces; 
then we have a canonical identification ('Y, ® ... ® 'Y" )' 
~ 'Y; ® ... ® 'Y~. with respect to strong dual topologies. See 
Ref. 16. Proposition 50.7. 

Lemma 3.3: Let 'Yand 'If/' be Frechet spaces and T: 
'Y - 'If/' a continuous linear map with closed image. The Tis 
a homomorphism. KerT' = (ImT)l, and ImT' = (KerT)1. 
(with T' the dual map 'If/"-'Y'). 

For a proof see Ref. 19. 7.7 and for the last part of the 
statement. I. the proof of Theorem 3. 

Lemma 3.4: Let 'Y , ..... 'Y" and 'If/' , ..... 'If/'" be nucle­
ar Frechet spaces and T, • .... T" continuous linear maps; Tj: 
'Yr:-... '1~j· If the !J ar~e. moreover.~hoIl}omorphisms. then 
T, ® ... ® T,,: 'Y, ® ... ® 'Y,,_'#"', ® ... ® 'If/'" is a homomor-
phism with Im(T) ® ... ® T,,} = (ImT))® ..• ® (ImT,,) and 
Ker(T, ® ... ® T,,) the closed linear subspace spanned by the 
subspaces 

'Y, ® ... ® 'Yj _, ®(KerTj)® 'Yj+' ® ... ® 'Y". 
j= 1.2 ..... n. 

Proof This can be assembled from Ref. 16. Proposition 
50.1. sub J(for the equality of ® rr = ® E = ®). Propositions 
43.6.43.7.43.9. and exercise 43.2 (for the properties of ten­
sor product maps) and. of course. with the associativity of 
tensor products, just as for the preceding lemmas. Because 
the result in Ref. 16, Exercise 43.2. is rather crucial and no 
proof is given. we provide one for the special case considered 
here: 

Denote 'Y, ® ... ® 'Yj ® (KerTj) ® 'Yj + , ® ... ® 'Y" by 
0;; j; Let FE( 0;; , + ... + 0;; " )1 C( 'Y, ® '" ® 'Y,,}'; then cP F 

(T,u, • .... T"u,,) = F(u, ® ... ® vn ) defines an n-linear map CPF: 
ImT, X .. · X ImT" -C. Because of the continuity of F there 
exist neighborhoods of zero 8U j C 'Yj such that 
F(u, ® ... ® u" )1<1 for uj E8U j .j = 1 ..... n. The Tj are homo­
morphisms. i.e .• relatively open. so there exist neighbor­
hoods of zero C(J j C 'If/'j' such that (C(J jnTj ('Yj)) C Tj (8U j); 
then one has ICPF(W, • .... w,,)1 <1 for WjEC(JpTj('Yj).j = 1 ..... 
n. which proves that CPF is continuous. With PF t~ere corre­
sponds a continuous linear map from (ImTd ® ... ® (ImT" ) to 
which after identification of (ImTd ® '" ® (ImT,,) with a 
closed subspace of 'If/', ® ... ® 'If/'" can be extended to an ele­
ment G of ('If/', ® '" ® 'If/',,)'. because of the Hahn-Banach 
theorem. One verifies that (T, ® ... ® T" )' G = F. so we have 
(0;;, + ... + 0;; JClm(T, ® ... ® T,,)'. The inclusion in the 
other direction is obvious. From (0;; , + .. + 0;;,,)1 
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= Im(:z:,1 ® .;. ® T"), one then obtains finally 
Ker(T I ® ... ® T") = (~I + ... + ~ "). Q.E.D. 

A set ofn-point functions for theA" (x) field is a statelUA 

on the Borchers algebra J§A, a set for the corresponding 
F"v(x) field is a state lU F on .r/F, with lUF = e ~lUA. We can 
reformulate the definition of gauge equivalence as follows: 
Two states lU1 and lU~ on d A are gauge equivalent whenever 
lU1 - lU~EKere ~. With this definition and the observation 
that the operation A. I",i) (x ... x )-KJi A. I",i) 

If'lll'''Il" I I nil] "P 1lI"'/-lJ Ill, I 1"'ll" 

(x I"'X") can be written rigorously as the map 

(( ® i- 11y"") ®d43 ; (® n-i 1y I"))': 

(( ®i-IYI3)) ® yl41 ® (®" --iY(3)))'_( ® "YI3))' 

we formulate 
Theorem 3.1 (rigorous version): Two states w1 and lU~ 

on d A are gauge equivalent ifand only if, for every n = 1,2, 
"', the restriction of w1 - lU~ to ( ® "y(3))" can be written as a 
finite sum of vectors from the subspaces Im( ®i - 11/,,,) 
® d43 ® ( ®" - i1/ ,,,))' ,j = I,2, ... ,n. (ly ", denotes the identity 
map on yIJ),) 

Proof (a) lU1 - lU~EKere ~q\;J n = 1,2, ... ; the restric­
tion of w1 - lU~ to ® n yO) is in 

Ker( ® ndd' = (Im( ® "dd)l 

= (® "Imdd l = (® "y~)( 
Im(( ®i - I} /",) ® d43 ® ( ®" -i1;/ ,,,))' 

= (Ker(( ®i - 11/ ,,,) ® d43 ® ( ®" - i1/ '" )))1 

= (( ® i- I Y(3) ® Ker d43 ® (®" -iy(3)))! 

= (( ®i- ly(3)) ® y~) ® (® n -iYO)W, 

So one has to prove, for n = 2, 3, "', that 

( ® n.Y'(3))! = I (( ®i - I yO)) ® y~1 ® (® n - I y(3)W. 
i~ I 

as a subspace of ( ® n y(3)),; the summation on the right-hand 
side means considering finite sums. 

(b) We consider the case n = 2 and show first that 

y~) ® y~1 = (Y~) ® y(3))n(y(3) ® y~)), 

From 

y~) ® ygl = (yg) ® y(3))n(yI3) ® y~)) 

one obtains 

y~1 ® y~)C(y~) ® y(3))n(yI3) ® y~)), 

For the inclusion in the other direction one considers an 
element 

tP33E(y~1 ® y(3))n(y(3) ® Y~)); 

tP33 Eygl ® yO) = Im(d32 ® l y"" ); 
~3h23Ey(2) ® y(3), 

such that tP33 = (d32 ® 1 y "" )h23 • Because also 

tP33Ey(3) ® y~) = Ker( 1;/1" ® d43 ), 

one has 

(d32 ® d43 )h23 = (ly"" ® d43 )(d32 ® 1/,,, )tP33 = 0, 

so that 

h23E Yb2) ® Y(3) + y(2) ® Y~) . 
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From (d32 ® 1, '" )(Y~) ® y(3)) = ° one has 

(d)2 ® 1/,,, )(y~1 ® yO) + y(2) ® Yb1
)) 

= (d32 ® 1, ", )(y121 ® ~1)) 
= y~l)®.y~1, 

and, because this is closed in y(3) ® .yO), 

(d32 ® 1/,,,) (JP~)® y(3) + yi21® y~l)) 

=.ygl®y~l, 

and therefore 

tP33 = (d32 ® l y ", )(h23Ey~1 ® y~)). Q.E.D 

(c) One has in general for closed subspaces rr l, 'Jf'2 ofa 
locally convex topological vector space 7r that 

'Jr ln'Jr2 = (7r/)1n(7f'/)1 

= (Jr l + 'Jr2)\ 

and therefore 

(rr lnrr2)1 = (~'i + 'Jri) 

(for properties of polars, see Ref. 18, Corollary 1 of Theorem 
4. Chap. II). This gives us 

(y~l) ® .y~'I)l = ((yg) ® Y(3))n(Y(3) ® y~IW 

= ((Y~) ® y(3))1 + (y(3) ® ygl)l), 

(d) We have to show next that (yg) ® YI3I)1 
+ (.YO) ® .9'~1)1 is a closed subspace in (.9'13) ® y(3)), (in 
weak and strong dual topologies), and therefore we show 
first that ygl ® y(3) + y(3) ® ygl is closed in yO) ® yu). 
The map d43 ® 1/,,, : yO! ® .y(3)_.yI4) ® .yl}) maps 

yO) ® y~) into the closed subspace 'Yb4
) ® y~l, because by 

restricting d43 ® 1, y'" to y(3) ® y(3) and using the identifica­
tion properties of Lemma 3.1 one is allowed to apply Lemma 
3.4. One has Ker(d43 ® 1/",) = ygl ® y(3), and therefore 

y~1 ® yl3l + yO) ® y~') 
= Ker(d43 ® l y ",) + yu) ® yg) 

= (d43 ® 1/ ", )-1(d43 ® 1/",) (yI3) ® y~l) 

(d A I i-it (..014) A (t7(3)) = 43 ® f'" J 0 ® J 0 , 

and this is a closed subspace of y(3) ® y(3). Consider next 
the map (d32 ® I.YII, ),:(y(3) ® y(3)) = _(YI3) ® y(3))'. Be-

cause Ker(d32 ® I,Y'''')' = (Im(d32 ® Iy",W = (yg) ® (3)1 
one has (yg) ® y(3))1 + (Y(3) ® y~I)1 = [(d32 ® 1,Y',,,),]-1 
X (d32 ® I,Y"")' ((y(3) ® ygl)1l- It is therefore sufficient to 
show !hat (d32 ® I'y"3)n(Y~) ® yg)1] isAclosed in A 
(Y(3) ® Y(3)),. The map d32 ® l y ",: y(2) ® y(3)-+YI31 ® Y(3) 

induces a continuous linear map T from the quotient space 
(Y(2) ® yI3V(yI2) ® y~)) to the quotient space 
(yI3) ® yI3V(YI3) ® y~)). 1m T = (ygl 
® y(3))/(yI3) ® ygl) viewed as a subspace of 
(y131 ® yl3i)l(y(3) ® yg)); it is the same as 
(yg) ® y(3) + y(3) ® ygl)/(y(3) ® ygl) and is therefore 
closed. Consequently, T is a homo~orphism between Fre­
chet spaces. Going over to duals, we know that T': ((yI31 
® y(3))I(Y(31 ® ygl))'-+((Y(21 ® yC>I)/(Y(21 ® ygl))' has 
closed range (weakly and strongly). We have forj = 2,3 the 
canonical isomorphisms 
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f(YUl ® y(3))/(yUl ® y~)))' 
= (yvl ® y~))l C (yvl ® y(3))" 

which are topological with respect to the weak duals [see 
Ref. 17, Sec. 17.14 (ii)]. This can be used to identify T' with 
the restriction of (d32 ® ly,,')' to (yI3) ® y~))l and from this 
one sees that (d32 ® If''')' (YI3) ® y~))l) is closed in 
(yI2) ® yOl)', 

(e) From (c) and (d) we have (Y~) ® y~))l 
= (Y~) ® y(3))1 + (yI3) ® y~))l. In a completely analogous 

way one shows that 

(r. ®y~)® r2®Y~)® r3)1 

= (r. ®y~)® 1/2 ®YO)® r3)1 

+ (r'. ® y(3) ® r 2 ® Y~) ® r3)1 

for arbitrary nuclear Frechet spaces rj,j = 1,2,3. This can 
be used to transform ( ® y~l)l into 

i (( ®j-. y(3)) ® y~1 ® (® n -jy(3)))\ 
j=. 

in n - 1 steps: 

(®ny~))l = (y~I®Y~I®( ® n-2y~IW 
= (y~l®y(3)®( ®n -2y~W 

+ (yO) ® y~) ® (® n- 2y~I))1 

etc., for general n, and this completes, according to (a), the 
proof of the theorem. 

IV. REMARKS ON GAUGES AND GAUGE 
TRANSFORMATIONS 

All the different gauges for a given FI'Y(x) theory are 
physically completely equivalent. Choosing a gauge is a mat­
ter of mathematical convenience only. The variety of gauges 
allowed by Theorem 3.1 is very large, but only a small num­
ber characterized by simple general conditions will be used 
in practice. 

A gauge for a Lorentz covariant Fl'v(x) theory is not 
necessarily itself Lorentz-covariant. It is therefore obvious 
to require this as an additional simplifying property. Ac­
cording to the discussion at the end of Sec. II this means 
Lorentz invariance of the state (j)A or equivalently the exis­
tence in the G NS state space of a representation of the Lo­
rentz group by isometric operators, transforming the field 
operator AI'(x) in the proper manner. 

The positive-definite metric of the Fl'v(x) theory does 
not imply positivity of its gauges, and again it is natural, in 
order to obtain a Hilbert space for theAI'(x) field, to impose 
this as an extra condition. 

The fundamental difficulty which complicates the field­
theoretic description of photons is an incompatibility be­
tween these two conditions. At the level of generality where 
we are at this point and where we have not yet used anything 
corresponding to the second Maxwell Equation a ''FJLY = JI" 
this does not show up. In Sec. VII we shall give a rigorous 
proof of this incompatibility for the case of the free field, 
aYFl'v = 0. 

In classical theory one uses as a convenient restriction 
the Lorentz gauge condition a I' AI-< = 0. It simplifies the sec-
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ond Maxwell equation for the potentials to the wave equa­
tional'al'A y = Jv ' The analog for the quantized photon field 
is al'AI' = 0, as an operator relation for the field operator 
AI' (x), or equivalently a condition for the state (j)A that can be 

written in terms of n-point functions as al'j{j)~''''I'Jx., ... , x n ) 

= 0, \;/ n = 1, 2, ... , \;/ j = 1, 2, ... , n. The resulting situation 
is, however, more complicated than in the classical case. The 
wave equation does not necessarily hold for the field opera­
tor All (x), as we shall show in Sec. VII for the free field. In 
fact in that case the condition al'al'A v = ° gives rise to a 
different important set of Lorentz-covariant gauges. 

We have a precise and satisfactory definition of gauge 
and of equivalence between gauges. No such dearcut mean­
ing can be given to the term gauge transformation. There are 
several distinct concepts, all having to do with the transfor­
mation of gauges into equivalent ones and playing a role 
somewhere in the formalism. We shall briefly discuss some 
of the possibilities. 

(a) From our algebraic point of view it is natural to de­
fine a gauge transformation as a continuous .-automor­
phism a of d A onto d A

, with the inverse having the same 
properties, and such that every state {j)A on dAis mapped by 
a', the dual of a, onto a state a' {j)A that is gauge equivalent to 
{j)A. A simple characterization for this is aed = ed • (ed is the 
basic homomorphism from,r/F into d A

, generated by d32 .) 
The scheme developed at the end of Sec. II allows us to 

identify the GNS state spaces of equivalent gauges connect­
ed in this manner and reduce the action of a gauge transfor­
mation in this sense to the introduction of a transformed 
field operator A ~I(x) in the state space of the given AI' (x) 
operator. Take d I = ,r;pf 2 = ,r/A, {j)2 = {j)A, (j) I = a' {j)A, 
dY'2 = jf'A, theGNS spaceof{j)A anddY\ = dY'Alal, theGNS 
space of a' {j)A. The "partial isometry" W is a topological 
isomorphism from jf'A into jf'A lal and can be used to identi­
fy JYA lal with JYA, and n A lal with n A. In ,;¥,A we have the 
representation 1T of ,r;pfA, connected with (j)A, but also the 
"gauge transformed" representation 1Tlal, coming from 
jf'A lal. Due to the intertwining property of W, it can be writ­
ten as 1Tlal(a) = 1T(a(a)), 'tJ aE,r;pfA. This means in particular for 
the field operator: A lal(f) = 1T(a(f)), \;/ fEy I3l CifA. 

The transformed field operator A a( f) may be written as 
A la)(f) = A (f) + D (f). The difference termD (f) = A la)(f) 
- A (f) is in fact a gradient. In heuristic language where 

D (f) = SDI'(X}(ll(X) dx, this means thatDll (x) = alL<P (x), for 
some operator field <P (x). To prove this, one must show, in a 
more rigorous formulation, the existence, \;/ gE.Y*1, of a con­
tinuous linear operator </J (g): jf'A~,JY'A, with a continuous 
linear dependence on g, and such that D (f) = <p (d4d), \;/ 
fEylJI. Note first that Y641 = Imd4 :l has finite codimension 
(see Sec. III). There exists therefore a continuous projection 
Po in y(41 on Yb41 (see Ref. 16, proposition 9.3). Note also 
that, \;/ fEy~1 = Kerd43 = Imd32, D (f) = 0, because then 
D (f) = 1T(al(f) - 1T(f) = 1T((a - 1 if) = 1T((a - 1)d32¢), for 
some ¢Eyl2I, and this is zero because (a - l)ed = 0, the 
characteristic property of a gauge automorphism. These two 
results together imply that, \;/ gEy141, <p (g): = D (d 43 1Pog) is 
a well-defined continuous operator in ,Jr"A. Of course, one 
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has then t/J (d4:1) = D (g. Moreover, t/J depends continuously 
on geY(4). To see this, consider for each fixed neJr'A the 
continuous map y(3)---+Jr"A defined by f.-D (f)IJ. Because 
D (f) = 0 on y~), this gives rise to a continuous linear map 
Y(3)/ Y~)---+Jr"A. The map d43 is a topological homomor­
phism; therefore, Y(3) / Y~) is topologically isomorphic with 
Yb4) provided with its relative topology as a subspace of Y(4). 
This gives a continuous map Yb4)---+Jr"A. By composition 
with the projection Po one obtains finally a continuous linear 
map Y(4)---+Jr"A, which isjustg.-t/J (g)n. In this way we have 
shown that gauge automorphisms can be realized as field 
operator transformations of the special "classical" form: 
A ~ (x) = A!, (x) + a!, t/J (x), with t/J (x) an operator field. 

Examples of gauge automorphisms are readily avail­
able. Let Tbe a .-preserving, linear topological isomorphism 
of y(3) onto itself with (T - 1 )d32 = O. The .-automorphism 
aT' as defined in Sec. II, is then a gauge automorphism. For 
an explicit case take T, in terms of Fourier transforms 
((TffY'(k) =jl'(k) + CI'(k )KJV(k), with CI'(k) apolyno­
mially bounded vectorial C'" function, satisfying kl' CI'(k) 

= 0, C I'(k) = - C 1'( - k ). [The inverse is then 
((T -lffY'(k) = j I'(k) - CI'(k )kJ V(k ).J A second class of 
examples consist of special "shift" automorphisms a A (see 
Sec. II) with IlEImd ;3 c Y(3)'. This means that Il is a vector­
ial distribution of the form al't/J (x), with t/J (x) a real scalar 
tempered distribution. A gauge automorphism of this type is 
in terms of transformation of the field operator AI' (x) just 
addition ofa "e-number" gradient term al't/J (x). 

(b) A wider concept of algebraic gauge transformation is 
obtained by dropping the invertibility of a. A gauge transfor­
mation is then a continuous .-preserving algebraic homo­
morphism a of,yfA into itself with the property aed = ed. 
As an example one may consider an aT as given in (a), but 
without the condition kl' C I'(k ) = 0 for C I'(k ). There is again 
a certain linear correspondence between the GNS space Jr"A 
of a gauge U)A and the GNS space Jr"A (a) of an equivalent, 
transformed state a'U)A. However, in general the linear iso­
metry W is not injective, not defined on all of Jr"A, and there­
fore cannot be used to identify the spaces Jr"A and Jr"A (a). 

The field operator AI' (x) and the transformed operator 
A i:')(x) remain in different spaces, and it does not even make 
sense to ask whether A i:')(x) - AI' (x) can be written as a gra­
dient. [One might be tempted to define in Jr"A as transformed 
field A '(f) = 1T(af). However, unless Wis a topological iso­
morphism of JYA onto JYA (a), the corresponding representa­
tion is not the G NS representation associated with the gauge 
transformed state a' U)A.J 

It may happen, as a special case, that a gauge homomor­
phism a gives an adjoint a' that is invertible on a subset of 
states only. If there are appropriate continuity properties, 
this will again lead to the situation of (a), i.e., topological 
isomorphisms Wbetween representation spaces and, after 
suitable identifications, gauge transformations as transfor­
mations of the field operator in one representation space, but 
all this only for a restricted set of gauges. An example of this 
will occur in Sec. VII where gauge homomorphisms aT> 

with T given by C I'(k ) = Ilk 1', connect the so-called general­
ized Gupta-Bleuler gauges. 
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(c) Several other ways of connecting equivalent gauges 
can be detected in the literature, some of which are essential­
ly further generalizations of case (b); see in particular Ref. 2. 
They all have in common that they cannot be realized by 
addition of a gradient term to the field operator AI'(x) and 
involve distinct representation spaces that cannot be 
identified. 

V. THE FREE FIELD 

A conspicious feature of the field-theoretic description 
of free photons is the lack of uniqueness for the field opera­
tors AI' (x). This is in strong contrast to the situation for other 
particles. In the case of massive spinless particles, for in­
stance, it can be proved that the standard free field theory is 
the only one that meets the requirements of the Wightman 
axioms combined with the free Klein-Gordon equation for 
the field operator t/J (x). 

The photon case follows this general pattern as long as 
one considers only the "physical" field Fl'v(x). There exists a 
system of Wightman functionsU):,v''''l'nvJx l , ... , x n ), made up 
in the usual way from a two-point function which is 

U)F (x x) 
J.LIV.J1-2V2 I' 2 

(5.1) 

with 

D (+)(x 1 - x2 ) =.a (+)(x 1 - X
2

' m = 0) 

= _ _ i_ r dk e-ik(x,-x,) 

(21T)3)k O =lk I2k o 

and with 

goo = 1, gjj = -1 forj= 1,2,3. 

The corresponding operator field theory satisfies all 
standard Wightman axioms (including positivity for the in­
ner product of the state space) together with the free Max­
well equations al'Fl'v = 0 and al'Fvp + avFpl' + apFl'v = 0 
as operator equations. It is the only Fl'v (x) theory known that 
has these properties and can therfore be regarded as the 
proper description of free photons by means of a Fl'v(x) field. 

The discussion of the variety of different descriptions in 
terms of AI' (x) fields will be based on this unique free Fl'v(x) 
theory. This amounts to an investigation of the possible 
gauges for this Fl'v(x) theory, in the sense discussed in the 
preceding sections. In the language of states and algebras it 
means studying the solutions of the inhomogeneous linear 
equation e dU)A = (UF, for U)F given explicitly, essentially by 
formula (5.1). 

There is an obvious particular solution, that is, the state 
(UA associated with the standard Gupta-Bleuler formalism, 
usually called the Feynman gauge and consisting of n-point 
functions determined by the two-point function 

(U~v(XI' x 2 ) = - igl'vD(+)(x\ - x 2 ). (5.2) 

According to Theorem 3.1 all other gauges for the free 
photon field can be obtained from these n-point functions by 
adding gradient terms 
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n 

L a£; tP~'~:-I"J_'I"J.'---I""(Xl, ... ,Xn)' 
j= I 

with tP ~/:I"} ,I"j+ , ___ I"" tempered distributions, arbitrary ex-
cept for a reality requirement following from the condition 

w(a"') = w(a), VaE.r/A
• 

In this way one has, in principle, a complete description 
of all possible gauges for the free AI" (x) field as sets of n-point 
functions and consequently by the reconstruction theorem 
as operator field theories. As argued before, only a limited 
number of cases from this vast collection have practical val­
ue. These are selected by the application of additional re­
quirements not necessary in themselves but leading to math­
ematically convenient formulations. Some of the obvious 
requirements are mutually incompatible, so choices have to 
be made. 

A first simplification can be obtained from the require­
ment that the n-point functions have just as those of the free 
Fl"v(x) theory the free field form, i.e., are based on a two­
point function according to 

(5.3) 

for n even and with summation over all permutationsil' ... ,in 
of 1, ... , n withil <i3 < ... <in _ I ,il <i2' ···,in _ I <in' and 

(5.4) 

for n odd. Field theories for which the n-point functions have 
this general form will be called Gaussian. By this restriction 
the discussion of free field gauges is reduced to a discussion 
of two-point functions, which according to Theorem 3.1 
have the form 

W~v(XI' x 2 ) 

= - ig/LVD(+)(x l - x 2 ) + a~tP ~1(xl' x2 ) 

+ a~tP ~)(XI' x 2 ). (5.5) 

A second simplification can be obtained from the obvi­
ous requirement of translation invariance. Theorem 3.1 does 
not imply that in that case w~v (x I - x 2 ) can be written in the 
form (5.5) with translation invariant distributions tP ~), tP ~I; 
the situation is slightly more complicated. 

Theorem 5.1: The translation-invariant two-point func­
tions for the free AI" (x) photon field have the form 

W~v(XI - x 2 ) = - igl"vD (+)(x i - x 2 ) + (al"tPv)(x l - x 2 ) 

+ (avtPl")(x2 - xd + CI"Vp(~ - xi) (5.6) 

with the tPl" arbitrary tempered distributions, the CI"VP arbi­
trary real constants, totally antisymmetric in /-l, v, p. For a 
givenw~v(xl - x 2 ), the CI"VP are uniquely determined, thetPl" 
up to transformation tPl" ---+<PI" + ial" + bl"vxv + al" tP, with 
aI"' bl"v real constants, bl"v = - bVI"' and tP a tempered distri-

bution with tP ( - x) = - tP (x). 
Proof We give this theorem and its proof in "general­

ized function" language. In this case rewriting everything 
with test functions would be elementary and not at all 
enlightening. 

Suppose w~v(x) = w~v(x I - x 2 ) to be a translation in-
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variant two-point function for the free AI" (x) field. The ex­
pressionil"v(x) = w~v(X) + igl"vD (+)(x) then satisfies 

al"(a~vu - auivp) - av(a~l"u - auil"P) = 0. 

Because of our earlier result Kerd i2 = (Imdd1 = (Kerdd1 

= Imd ~3 this implies, for each pair p, a, the existence of a 
tempered distribution tP pu' such that tP pu = - tP up and a ~vu 
- auivp = avtPpu' One has 

au(al"tPvp + avtPpl" + aptPl"v) 

= al"(aJup - a~uv) + av(a~ul" - aJup) 

+ ap(aJuv - aJul") = 0, 

so that there are constants al"vp' totally antisymmetric in /-l, 
v,p, such that al"tPvp + avtPpl" + aptP/LV = al"vp or 

al"(tPvp - 1aTVpXT) + av(tPpl" 

- ¥XTPI"XT) + ap(tPl"v - ¥XTI"VXT) = 0, 

which with Kerd;1 = (Imd2 d1 = (Kerdd1 = Imd i2 im­
plies the existence of tempered distributions tP~) such that 

tPl"V - ¥XTI"VXT = al"tP ~I - avtP ~I. 

From this follows 

aJvp - a~vl" = avtPl"P = aval"tP 11
) - avaptP~) + ¥XVI"P 

or 

al"(fvp - tP~1 + iaVPT XT) 

- ap(fvl" - avtP~) + iaVI"TXT) = 0, 

which again with Kerd;1 = Imd i2 implies, for each v, the 
existence of a tempered distribution tP~) such thativp 
- avtP 111 + iaVPTXT = aptP ~I, which means thatil"v can be 

written asil"v = al" tP ~I + avtP ~I + ial"VpxP. The reality con-

dition for the two-point function implies il"v(x) = il"v( - x) 

oril"v(x) = ~ [il"v(x) + il"v( - x)]. This givesil"v(x) 

= (al"tPv(x) + (avtPl")( - x) + CI"VPxP with tPl"(x) 

= ~ [tP ~)(x) - tP ~I( - x) ] and CI"VP = iReal"vp' This 
proves that w~v(x) has the desired form. 

To prove the uniqueness statements, suppose (al"tPv)(x) 

+ (avtPl")( - x) + CI"VPxP = 0. This implies al" tPv - avtPl" 

+ 2CI"vpxP = ° for tPv(x) = tPv(x) + tPv( - x), and this gives 
apal" tPv - apav tPl" + 2CI"vp = 0. Adding to this the two re­
lations obtained by cyclic permutation of p, /-l, v, one obtains 
CI"VP = ° and this shows that the constants CI"VP in (5.6) are 
uniquely determined by w~v(x). From (al"tPv)(x) 

+ (avtPl")( - x) = ° one obtains then by using the antisym­
metric part, al" tPv - av tPl" = 0, which implies the existence 
of a tempered distribution tP (x) such that tPl" (x) = tPl" (x) 

+ tPl"( - x) = 2al"tP (x) and with tP (x) = - tP (x). The sym­

metric part gives al" [tPv(x) - tPv( - x) ] 

+ av [tPl" (x) - tPl" ( - x) ] = ° and therefore tPl" (x) 

- tPl" ( - x) = 2ial" + 2bl"pxP, with aI"' bw real and bl"P 
= - bpI"' Together this makes tPl" (x) = ial" + bwxP 
+ al"tP (x), which proves the statement in the theorem. 

Note that a term CI"Vp(~ - xi) with antisymmetric 
CI"VP in the two-point function can still be written in the 
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general form a I A, (II + a 2A, (21 [take egA, (11(x 1-''1' 'V v'f' J-l , •• , 'f' J.t l' 

X2) = CI'Vpx~ ~, rp ~I(x I> x 2) = CI'Vpx~ x~], but according to 
this theorem not with translation-invariant rp ~l(x I - x 2). 

The collection oftwo-point functions given by Theorem 
5.1 must be analyzed further and the associated Gaussian 
operator field theories investigated. For this it is useful to 
have general information on Guassian states and their repre­
sentations. This will be provided in the next section. 

VI. GAUSSIAN STATES AND THEIR 
REPRESENTATIONS 

We consider again the general situation of Sec. II, a 
(complex) nuclear Frechet space 'Y' with continuous conju­
gation *, .sY' = L: ~ ° Ell ( ; n r) the Borchers algebra over r. 

For every continuous bilinear form b (', .) on 'J/ with 

b if, g) = b (g*,f*), 'V J,gEr, there is a stateli..l on .W" defined 
by extension of li..l(e) = 1, li..l(fl ® ••. ®!n) = 0, for n odd,.fjE;V, 
and li..l(fl ® ... ®!n) = Lb(.fj, ,.fj, ) ... b 1£" ".fj.,l for n even and 
with the same summation over permutationsj''':in as in for­
mula (5.3). 

Such a state will be called Gaussian. In the special case 
wherebhastheadditionalpropertiesb (J,g) = b (g,J)andb (J, 
!»O, 'V J, gE'f/, li..l is indeed the system of moments of a 
Gaussian (generalized) stochastic process (up to a trivial 
complexification). The definition contains the essential alge­
braic elements of what is called a generalized free boson field 
in standard field theory. It is of course also related to the 
concept of quasifree state on a CCR algebra in C *-algebra 
theory, in fact, the term Gaussian state has recently been 
used in a C *-algebra formalism of classical systems. See Ref. 
21. 

Strictly speaking, the states li..l just defined should be 
called boson Gaussian states with zero mean. There is an 
obvious modification for the fermion case which we do not 
need here. In this paper we also shall not use Gaussian states 
with nonzero expectation for the fields. These can be ob­
tained from the mean-zero states by means of the "shift" 
automorphisms a A defined in Sec. II. They will playa role in 
the further development of our formalism. 

Particular properties of the form b are reflected in prop­
erties of the Gaussian state defined by b, for instance, if b is 
invariant under a linear (topological) isomorphism T of r 
that commutes with the conjugation, then the Gaussian state 
is invariant under the automorphism aT of .W". A Gaussian 
state is positive if and only if the Hermitian form h associated 
with b by h (J, g) = b if*, g) is positive definite. This will be 
obvious later (Corollary of Theorem 6.1). 

A Gaussian state is characterized by the property that 
its GNS representation is a Fock space representation with 
creation and annihilation operators. To show this, we have 
to set up a Fock space formalism in which the role of Hilbert 
space is taken over by topological inner product spaces: 

Let there be given, as a "one-particle space," a (com­
plex) nuclear Frechet space JYill with a (continuous) inner 
product h .)(0. The Fock space over JYi1l is then defined as 
the topological direct sum JY' = L;;'~ 0 Ell JYinl, in which 
JYiO) = C, and JY"1nl = (® nJYiII)s (for n = 1,2,3, ... ), the 
symmetrization of the n-fold tensor product completed in 
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the projective tensor product topology (which because of nu­
clearity coincides with the €-topology). Every JYinl is again a 
nuclear Frechet space and JY' is therefore a nuclear LF 
space. The inner product (', .)10 in JYiI) defines an inner prod­
uct in each "n-particle space" JYinl by extension of 
((u I ® ... ® Un L (VI ® ". ® Vn ),)Inl = (n!)-IL(Uojli' Vdl)"'(Uojnl' 
Vn )(1) (sum over all permutations u of 1, ... , n), and subse­
quently in ,wby (rp, t/J) = L;;' ~ ° (rp (n l, t/J(nl)(n l. It is positive defi­
nite ifand only if the given inner product (', .)11) in JYiI) is 
positive definite. The unit vector flo = lEC = JYiO) is called 
the vacuum vector. For each u~ I) there is an operator C (u) 
in JY', called creation operator, defined by linear extension of 
C(u)flo = U, C(u)(u l ® ... ® un)s = v(n + 1) 
(u ® U I ® ... ® Un), (n = 1,2, ... ), and an operator A (u) in JY', 
an annihilation operator, defined by extension of 
A (u)flo = 0, A (u)(u l ® ... ® Un), = n-I/2L;~ I (u, Uj)11) 
(u, ® ... ® Uj ~ , ® Uj +' ® ... ® Un )s' TheC(u)andA (u)arecon-
tinuous linear operators, and the dependence of C (u), respec­
tively A (u), on u~1) is linear, respectively anti linear; this 
dependence is continuous in the sense that u-C (u)t/J and 
u-A (u)t/J define continuous maps from JYiIi into $', for 
each fixed t/J in ,W'. Finally on has the relations [C (u), 
C(v)] = [A (u), A (v)] = 0, [A (u), C(v)] = (u, v)II)I;f" and 

(C(U)t/JI' t/J2) = (t/JI' A (U)t/J2)' 'V u, v~l), 'V t/J" t/J2EJY'· 
We shall refrain from writing out detailed proofs of all 

these statements. The following may, however, be observed: 
Part of this many-particle structure is quite general and 

can, for instance, be built on an arbitrary locally convex 
Hausdorff topological vector space JYiIi with (separately) 
continuous inner product (', .)(1). In that case it is not hard to 
show, using standard properties of multilinear maps and ten­
sor products, suitably modified for antilinearity at places, 
that the expression given above for (', .) defines a (separately 
continuous) inner product on L;;' ~ 0 Ell ( ® ~JYi I))" the locally 
convex direct sum of the spaces ( ® ~JYiI))" which carry the 
projective tensor product topologies and are not completed. 
One also verifies that the operators C (u) and A (u) are well 
defined in this space and have all the properties mentioned. 
If one adds as an extra assumption joint continuity of(., .)111, 
then it is not hard to prove by the same methods that C (u) 
and A (u) have unique extensions to the completed space 
JY' = L;;' ~ 0 Ell ( ® n JYiI))s' with the same properties, and, 
moreover, that the inner product extends to a separately 
continuous Hermitian form on JY'. All this is left to the 
reader. 

One cannot, however, in this general setting prove that 
this Hermitian form on JY' is indeed an inner product, i.e., 
remains nondegenerate after the completion. For this, addi­
tional assumptions on JYio are needed. 

In our application of this generalized Fock space for­
malism JYio will be a quotient space of a nuclear Frechet 
space, that is, of y(2) or y(3), and therefore itself a nuclear 
Frechet space. This takes care of the joint continuity of (" .)(1) 
and is, moreover, sufficient to prove nondegeneracy. This 
proof runs as follows: 

Consider the antilinear map r from JYill into its dual 
~O/, defined by (r(u),.) = (u, -jO).1t is continuous from the 
weak topology u(JYiI), JYill/) to the weak topology u(JYill/, 
JYill). Because of the Hermitian symmetry of(·, .)(1), r can be 
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for a given Lorentz transformation A (not a pure rotation) a 
new dense domain Jt"A.A as the image of KA under U (A )-1 
identified with its adjoint r' (the adjoint of an antilinear map 

T is defined by (T' F, u) = (F, Tu) . Therefore, T is also 
continuous with respect to the strong topologies. (See Ref. 
19, Chap. IV, 7.4.) The proof of the theorem there rests on 
the f::tct that a continuous linear map carries weakly bounded 
sets into weakly bounded sets. This remains true for continu­
ous antilinear maps.) One has because the nondegeneracy of 
h ·rl), {OJ = {V~I)i(u, v)O) = 0, 'V u~l)l = (ImT)l, so 
the image of r is weakly dense in ~I),. A complete nuclear 
space is semi-reflective (see Ref. 19), Chap. IV, 5.5 and III, 
7.2, Corollary 2), a Frt!chet space is barreled (Ref. 19); Chap. 
II, 7.1, Corollary), so the nuclear Frechet space ~I is re­
flexive and its strong topology is therefore the given topology 
(Ref. 19), Chap. IV, 5.5 and 5.6). The strong topol?gy on the 
dual is the Mackey topology; this is compatible WIth the du­
ality (~I), ~I),) and hence the image of T is also stron~ly 
dense in ~I),. We have the continuous antilinear map 181 nT 

from the nuclear Frechet space ® n~1) to the nuclear space 
® np¥'il)'); because of the canonical topological isomor­
phism between ® n(~I),) and (® n~l))' ~ith respect to 
strong dual topologies (see Lemma 3.2), 181 nT is, in fact, a 
map from ® n~1) to (® n~l))' and !ts image is strongl¥ 
dense and fortiori weakly dense in (181 n~I)),. t~e map 181 nT 

defines a contmuous ermltlan 10rm ',' on "" dl . . H" ~ ()In) "" n CYdl) by 

(tPl,rP2tl = «( ® nr)tPl' tP2) and by restriction a Hermitian 
foml on ~nl = ( ® n ~ I))s' which, of course, corresponds to 
the t:xtension of h')' The symmetrization projection Ps: 
U I 181· .. 181 un-(n!)-Il:aUo{ll 181 .. ·181 uo{nl is a topological ho­
momorphism with the property (PstP .. tP2) = (tPl' Ps tP2)' 'V tPl' 
tP2E I~ n~I). Therefore, I tP2~n)l(tPl~ tP2)ln l = 0, 'V tPl~nlJ 
= I tP2~nll(PstPl' tP2)ln) = 0, 'V tPlE O! n~l)l 
= I tP2~nll(tPl' pstP2)lnl = 0, 'V tPI:: 181 n~OJ 
= {tP2EJ¥'1n)l(tPI' tP2)ln) = 0, 'VtPIE 181 n K-I)l 
= I tP2EJ¥'1n)j «( ® nT)tPl' tP2) = 0, 'VtPIE 181 n~nlJ 
= (Im( ® nTW = 10 J. This proves the nondegeneracy of 

(" .)1"1 on ~n) and this gives immediately the nondegeneracy 
of(·,·) on K. 

We are now in a position to state the basic theorem on 
Gaussian states: 

Theorem 6.1: Let 'Y be a (complex) nuclear Frt!chet 
space with continuous conjugation *; b h .) a continuous bi-

ae=e, 

a(fl 181 .. • 181/,,) =/. 181 .. • ®In 

I 

linear form on 'Y, with b (f, g) = b Ig* ,J*), 'V f, ge'Y; (c) the 
Gaussian state on d determined by b. Let ~l) be the quo­
tient space 'Y /'Y L, 'Y L: = {fE'Ylb 19,J) = 0, 'V gE'Y} , and 

CYdl) h . (X f, Xg)(I): = b (f*, g) the inner product on dl . ,were X IS 
the canonical surjection of 'Y onto 'Y / 'Y L' 

Then the GNS representation of d, associated with (c) 

is algebraically and topologically equivalent to the represen­
tation in the Fock space iJiP over ~ 1/ generated by the "field 
operators" 1T{f): = C ( xf) + A (xf*), 'V IE'Y. 

Proof 'Y L is a closed subspace of the nuclear Frechet 
space 'Y; therefore,~1) = 'Y /'YL is also a nuclear Frechet 
space and with the inner product as defined by (xf, . 
Xg)(I) = b (f*, g) is a suitable one-particle space over whIch a 
Fock space structure can be constructed. The "field opera­
tors" 1T(/) defined in the Fock space K by C ( xf) + A W*) 
depend linearly on fin 'Y, the function/-1T{f)tP is continu­
ous for every fixed tPEK and one has (1T{/)tPI' tP2) = (tPI' 
1T{1*)tP2)' 'V fE'Y, 'V tPl' tP2EiJiP. A continuous representation 
1T of d is obtained by extension of 1T{/1 181 .. • 181 In): 
= 1T{fl)'''1T{fn)' To show this, one notes that, 'V n, k the 
n + I-linear map from (Xn'Y)XiJiP1khiJiP given by (fl"'" 
In' tPk )-1T{/d"'1T{ln )tPk is not only separately continuous 
but also (jointly) continuous because 'Y and cW'k) are Fre­
chet spaces, see Ref. 16, Corollary of Theorem }4.1. It there­
fore defines a continuous bilinear map from ( 181 n 'Y) X cW'k) 
into K and because of the direct sum properties of K and 
d a separately continuous bilinear map d XK _K that 
can be written as (a, tPlt--+1T(a)tP. 

We next show that the representation 1T is strictly cy­
clic, with respect to the vacuum vector no, i.e., that the con­
tinuous linear map v: d -K defined by a-1T(a )no is surjec­
tive. For this we consider a second continuous map p: 
d -K, defined by/l 181 ••• 181 Int--+C ( xfl )· .. C ( xfn )no(togeth­
er with e-no)' This map is not only continuous but also a 
surjective (topological) homomorphism. For every n one has 
C(xfd",C(xfn)no = vn!((xfl') 181 "'®(xfn))s'Aso/l 181 .. ·®In 
t--+C ( xl. )···C ( xfn )no defines a map pIn) from 181 n'Y to cW'n), 
which is apart from the factor vn! a composition of the 
tensor product map ( ® "X ): ( ® "'Y)_( ® n ~ 0) a surjective 
homomorphism (Lemma 3.4), and the symmetrization pro­
jection P,: ® n ~1)_cW'n), also a surjective homomorphism. 
Again by the properties of direct sums,p is therefore a surjec­
tive homomorphism from d to iJiP. To connect v and p we 
consider a linear map a: d -.if defined by extension of 

+ L b (fj, .Jj, )fj, 181 .. • 181 fj" + ( - 1)2 L b (fj, ,fj,lb (fj, ,fj.lfj, 181· .. 181 fj" 
perm.ofl···n: perm. of l···n: 

1891 

[
il < 12 [~1 < 1:2.1:0. < j~;/l <}3 
h<h<-<~ h<h<-<~ 

+ ( - 1)"12 L b (fj, ,fj,J-.. b (fj", ,fjJe 

{
j, < j'·· .. jn ~ 1< jn 

11 <h < ... <in _ 1 

for n even, 

+ ( - I)ln - \)12 L b (fj, ,fj,J-.. b (fj" "fj" , )fj" for n odd. 

{
j, < j'····jn - 2 <jn - 1 

J,<h,"'<Jn - 2 
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The map a is continuous by the same arguments as before. 
One can also define a map {3 by the same expressions but 
without the factors ( - 1 Y in front of the summations. By 
straightforward and tedius manipulations one then verifies 
that (a{3 Hft ® ••• ®/,.) = (fJa)(f1 ® ... ®In) = II ® ... ®In, i.e., 
a has a continuous inverse, it is a topological linear isomor­
phism. In the same spirit one obtains p(/1 ® ... ® In) 
= C ( vtl .. ·C ( Vn )no = 1T(a(f1 ® ... ® In )) 

no = (va)(/1 ® ... ®In). Thismeansp = vaorv =pa- I, and 
consequently v is a surjective topological homomorphism 
from d onto JY. This proves the strict cyclicity of the repre­
sentation 1r of d in JY. One checks, by using 
1T(/) = C (V) + A (V*), the commutation relations for the 
creation and annihilation operators and the property 
A (u)no = 0, V u~l), that the vacuum expectation values 
(no, 1r(ftl"'1r(fn )no) are indeed the n-point functions 
(j)(fl ® ... ®In) of the given Gaussian state (j). Therefore, by 
Lemma 2.1 the representation 1r is algebraically equivalent, 
and because v is a homomorphism also topologically 
equivalent. Q.E.D. 

Corollary: A Gaussian state (j) defined by the continu­
ous linear form b is positive if and only if the Hermitian form 
h (f, g) = b (f*, g) is positive definite. 

A Gaussian state is invariant under an automorphism 
aT whenever b h,) is invariant under T. Because T* = *T, 
also h h,) is then invariant and Tinduces an isometric topo­
logical linear isomorphism Ull) in the quotient space 
JY11) = 'Y /'Y L' Extension of (u I ® ... ® un)s 
-( UII)U I ® ... ® UII)Un)s leads to an operator U in the Fock 
space JY with the same properties, and this U is, of course, 
the operator which according to the discussion of Sec. II 
implements the automorphism aT' 

For a positive state (j) the representation space JY may 
be completed with respect to the inner product norm. Weare 
then back in the Hilbert space formulation of standard 
Wightman free field theory. Creation and annihilation oper­
ators, together with the field operators, become unbounded 
with JY as a common invariant dense domain. Using Nel­
son's analytic vector theorem, it can be shown that in this 
case the field operators 1r(f), for I = 1*, are essentially self­
adjoint on JY (see Ref. 22, Chap. X.7). 

All the cases that will be considered in the next sections, 
the unique freeF"v field and the various free A" theories, are 
G NS representations of Gaussian states on d For d A. They 
therefore all have the same simple mathematical structure: a 
"many-particle" space with field operators as sums of a cre­
ation and an annihilation operator. The basic element in this 
structure is the "one-particle" space JY1t) = 'Y /'Y L' con­
sisting of equivalence classes of space-time test functions 
from y(2) or y(3). In practice these equivalence classes are 
always represented by suitably chosen multi component mo­
mentum "wavefunctions." Such representations are in gen­
eral not unique, as will become clear in the next sections; 
moreover, their use result, in complications that tend to ob­
scure the underlying simple general structure. 

VII. THE FREE FIELD: LORENTZ COVARIANT GAUGES 

In the terminology developed in the preceding section 
the standard free Maxwell F"v(x) quantum field theory is the 
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GNS representation of a Gaussian state (j)F on the Borchers 
algebra d F

, determined by a bilinear form b F on 'Y = y(2), 
written in generalized function language as 

b F(tPI' tP2) = J (j):,v,,,,v2 (XI' x2)tPt,V'(Xtlt/12"2V,(X2) dx ldx2 

(7.1) 

for tPI' tP2EY(2) and (j):,V'''2V2 the two-point function offormu­
la (5.1). 

Using Fourier transformed test functions ~"(k) 
= (21r)-2 ft/l"V(x)eikxdx, one can write b F in the more rigor­

ous form 

- 81T r g"'''2 kv, ¢t''''( - k )kv2 ~2V2(k ) d k/2k o. 
JkO~lkl 

(7.2) 

The associated Hermitian form h F(tPl> tP2) = bF(tPf, 
tP2) is positive definite; therefore the representation space 
JYF is indeed a pre-Hilbert space. (The positivity of h F can be 
seen from writing h F as 

with ¢j(k) = k" ¢/V(k), Pjl(k) = Dj/ - kjk '/ko
2. For k 2 = 0, 

k 0 > 0, the matrix Pj/(k ) is Hermitian and idempotent and 
therefore positive definite.) 

Lorentz invariance of the two-point function and there­
fore of (j)F is obvious. According to Sec. II there is then a 
representation ofthe inhomogeneous Lorentz group that ex­
tends to a strongly continuous unitary representation in the 
Hilbert space completion ~F of JYF and transforming the 
field operators in the proper way. ~F is a many-particle 
space of usual Hilbert space type. It can be described explic­
itly in terms of momentum amplitudes, involving a choice of 
two polarization vectors for each momentum. This is well 
known and will not concern us further. 

We now resume the discussion of the realizations or 
gauges of the free A,..{x) field based on the free F"vlx) field 
given by (5.1) and (7.1), (7.2). In Sec. V we already imposed 
the conditions of Gaussian form and translational invari­
ance. This led to a general form for the two-point function 
(j)~,,(Xl - x 2) given by Theorem 5.1, which can be written 
more conveniently in momentum variables as 

+ iC"vp(J>D(k)], (7.3) 

using Fourier transforms/"(x) = (21r)-2 ff"(k)e - ikxd4k 
and (j):'v(x

1 
- x

2
) = (21T)-4Sw~v(k)e - ik(x, - x,1 d 4k and with 

cPf1 (k) an arbitrary tempered vectorial distribution, C/lVP real 
constants, antisymmetric in fl, v, p. 

The most natural additional requirement for a gauge is, 
of course, Lorentz covariance. Imposing Lorentz invariance 
on (7.3), we obtain: 

Theorem 7.1: The Fourier transform of the two-point 
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function of a Lorentz covariant free Maxwell field AI' (x) has 
the general form 

~v(k) = - 21T[gl'v8+(k 2) + kl'kv<p (k)] (7.4) 

with <P (k) an arbitrary real Lorentz invariant tempered 
distribution. 

Formula (7.4) is, of course, not very surprising. It fol­
lows easily from the general relation between w~v and the 
two-point function w:,V,I"V, of the free Fl'v(x) field toget~er 
with the assumption that the general form of a Lorentz In­

variant tensor <P1',,(k ) is gl'v<Pl(k) + kl' kv<P2(k ). For this last 
assumption, however, although used almost universally, no 
straightforward and rigorous proof that takes into account 
the distribution aspects, especially those connected with the 
behavior in k = 0, is known to us (see for a characteristic 
remark Ref. 23, Sec. 3). It seems probable that a proper proof 
can as a special case be extracted from the very general work 
on invariant two-point functions ofOksak and Todorov,24 
but we prefer to give a proof of (7.4) independent of all this, 
based on our formula (7.3). 

We use the following well-known and easy to derive 
necessary and sufficient conditions for Lorentz invariance of 
distributions: 

(kaap - kpaa)<p (k) = 0, 

(kaap - kpaa)<pI'(k) 

= gl'p<Pa (k) - gl'a<Pp(k ), 

(kaap - kpaa )<pl'v(k) 

= g!'f3<Pav(k) - gl'a<Ppv(k ) 

+ gvP<Pl'a (k) - gva<P!'f3(k) 

(7.5) 

(7.6) 

(7.7) 

respectively for scalar, vectorial, and tensorial distributions 
<P (k), <PI' (k), and <Pl'v(k ) and withaa = a lak a, etc. We have 
the following lemmas: 

Lemma 7.1: If <PI' (k ) is a tempered Lorentz invariant 
vectorial distribution, then there exists a tempered Lorentz 
invariant scalar distribution <P (k) such that <PI' = kl'<P. 

Proof From (7.6) one obtains kv(kaap - kpaa )<p1' 
= gl'pkv<Pa - gl'akv<Pp. Adding to this the two expressions 

obtained by cylic permutation of v, a, {3 and taking in the 
result a and {3 arbitrary,,u = v, but,u =1= a, ,u =I={3 gives ka<pp 
- kp<Pa = O. Using an earlier result, Kerd 32 = Imd ~3' to­

gether with Fourier transformation and proper test function 
formulation, one sees that this implies the existence of a tem­
pered scalar distribution <P (k), such that <PI' = kl'<P. Substi­
tutingthisin(7.6)gives(ka ap - kpaa )kl'<P (k) = 0, whichim­
plies (kaap - kpaa }4J (k) = aap8 (k), with constants aa(3 , aa(3 
= - afJa , and subsequently al'(kaap - kpaa)<p = aa(3a .. 8. 
Adding to this the two expressions obtained by cyclic per­
mutation of a, {3,,u one gets the following for a, {3,,u all 
different: aapal'8 + apl'aa8 + al'aap8 = O. Because of the 
linear independence of the derivatives of the 8 functions this 
implies aafJ = 0, Va, {3. This proves that <P satisfies (7.5) and 
is therefore Lorentz invariant. Q.E.D. 

Lemma 7.2: If a tempered tensorial distribution <Pl'v(k) 
is Lorentz invariant and has the form <PI'V = kp,<pv - kv<P1' , 
then it vanishes identically. 

Proof (a) k 1'<pI'V is a Lorentz-invaraint vectorial distri­
bution; therefore, there exists (Lemma 7.1) a Lorentz invar-
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iant <P such that k I'<PI'V = kv<p, or k 2<pv = kvk I'<PI' + kv<p. 
This gives k 2<pI'V = kl' k 2<pv - kvk 2<p1' = 0, so <PI'V vanishes 
on I kER41 k 2 =1= 0 I. 

(b) We show next that <PI'V vanishes on I kER41k =1=01· 
Consider an arbitrary point q in I kER41k 2 = 0, k =1=01, for 
example with qO > O. Choose a sufficiently small open neigh­
borhood U of q. Introduce new coordinates s, ui V = 1,2, 3) 
on Uby s = k 2, ui = k j. This can be seen as a diffeomorphism 
of U C R4 onto U' C R4, an open neighborhood of the point 
s = 0, ui = cj. There is a 1-1 correspondence between the 
distributions on U and those on U I, given by the symbolic 
relationfF(k )f(k) d 4k = fF(s, u)l(s, U)2-I(S + U2)-1/2 dsdu, 
withl(s, u) = f(k). Using this with special testfunctionsf(k), 
such thatl(s, u) = X (s)g(u), withXE!i7(RI), supp XE[ - E, 

+ E],X (0) = l,gE!i7(U"), U" CR3
, [.:- E, + E]X U" C U', 

one deduces from k 2<p v(k) = 0 that <Pl'v(x, u) has the form 
fl',,(u)8 (s), for afl'vE!i7I1( U H). The invariance condition (7.7) 
for a = I, u = j (l,j = 1,2, 3), {3 = v = 0, (klao - krill )<pjO 
= <Pi gives, when written in the variables s, u, the relation 

/;/(U) = - lul(a laul)fjO(u). Using the antisymmetry offl'v, 
~ne has a laul)fjO + (alauiV;o = 0, sofjO(u) = aj 
+ l:;~ I bj,u

2,fjl(u) = - lulbjl' with aj, bj, constants, bj, . 
= - b'j. Combining this result with the invariance condI­

tion (7.7) fora = 1,{3 =,u =j, v = O,j=l=l, (klaj - kja/)<pjO 
= - <PIO' results in uibjl = - al - l:;~ I bl,u'V=I=I, no sum­

mation overj), oral = bljui, I =l=j, soaj = 0, bjl = 0, V j, 1= 1, 
2,3. This proves that <PI'V = ° on a neighborhood of q. 

(c) We are left with a <Pl'v having 101 as possible support. 
Then <Pl'v(k), or more conveniently <P I'''(k), has the form 

<pI'V(k) = i L a/vp""ppap, ... app8(k) 
p ~ 0 p,"'Pp 

with, V P = 0, 1, ... , n, a/vP,"·pp constants, antisymmetric in 
,u, v and symmetric in PI···Pp • For each p these constitute a 
Lorentz-invariant tensor. The finite-dimensional irreducible 
representations of the Lorentz group are characterized by 
pairs UI,j2),js = 0, !, I!, ... , such thatjl + j2 are integer. A 
tensor product U; ,j;) ® U;',j2) can be reduced according to 
the formula U; ,j;) ® U;',j2) = l: ffJ UI,j2)' with 
jl = Ij; - j;/I, U; - j;'1 + 1, ... ,j; + j;',j2 = III - j21, 
Ij; - j21 + 1, ... ,j; + j2· See, e.g., Ref. 25, Chap. 7. Using 
this, one checks that the space of tensors aI'VPI···PP, antisym­
metric in,u, v and symmetric inpI·"pp ' which forms the 
representation ((1, 0) ffJ (0, 1)) ® ((pI2,p/2) ffJ (pI2) - l,pl 
2 - 1) ffJ ••• ), does not contain, after reduction, the represen­
tation (0,0). This completes the proof that <pl'v(k ) vanishes on 
all ofR4. 

Lemma 7.3: If a tensorial tempered distribution <P1',,(k ) 
is Lorentz-invariant and has the form <PI'V = kl' <Pv + kv<P1' , 
then there exists a tempered Lorentz-invariant scalar distri­
bution <P (k) such that <P1',,(k) = kl'kv<p (k). 

Proof The condition (7.7) for Lorentz invariance gives 

kl' I (kaap - kpaa)<pv - (g,,(3<Pa -gva<Pp)} 

+ kv I (kaap - kpaa )<p1' - (g!'f3<Pa - gl'a<Ppll = 0. 

This implies the existence of constants aaPI' and b aPI'P' with 
aaPI' = - apal' and bapl'P = - bfJal'P = - bafJpl' , such that 
(kaap - kpaa) <PI' - (g!'f3<Pa - gl'a<Pp) = aafJI'8(k) 
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+ ba{3l'paPD(k). Multiplying, as in the proof of Lemma 
7.1, with k,. and combining the result with the two expres­
sions obtained by permuting v, a, [3 cyclically, one gets 
g"{3(k,, ifJ{3 - k{3ifJ,,) + gila (k{3ifJ" - k"ifJ(3) + g"{3(kvifJ,, 
-kaifJv) = -(ba{3l'v +b{3YI''' +bval'(3)D(k). Taking, as in 

Lemma 7.1 a, [3 arbitrary and,u = v,,u #-a,,u =1=[3, one ob-
tains g",.(k" ifJ{J - k

" 
ifJ,,) = - (bfil'V" + b"""(3)D (k ) or (k"ifJfi 

- kf3ifJ,,) = Caf3D (k ) with constants C,,{3' C"f3 = - Cf3". 
This can be written as k,,(ifJ{J - W{3paPD) - kf3(ifJ" 
- ~C"f>aPD) = 0, which shows the existence of a ifJ (k) such 

thatifJf3 = ~kpifJ + !Cf3p a PD. Then k"ifJ,. + k,.ifJ
" 

= k"k"ifJ. 
The invariance condition (7.7) gives k

" 
ky(k"af3 - k{3a,,)ifJ 

= 0. This implies the existence of constants D"f3' Ea/' (anti-
symmetric in a, [3) such that (k"a{3 - kf3 a,,)<b = D"f3D 
+ E"f3papD. Differentiating this with respect to k

" 
and add­

ing the two expressions obtained by cyclic permutation of a, 
[3, ,u, one gets 

Dafja"D + Dfil,a"D + DI'"af3 D 

+ Eaf3papal'D + Ef3l'
p
apaaD 

+ EI'"papafiD = 0. 

Using linear independence of the derivatives of D, one ob­
tainsD"f3 = O,E,,/' = EI'/',E,,/' = 0, Va,[3,,u all different 
(and no summation). Define af3 = Ea {3 a (no summation over 
a); then (k"af3 - kfja,,)ifJ = (af3aa - a"afj )D, and with 
a{3a"D = - kfJaa(apaPD) - gaf3apaPD one obtains (k"af3 
- kf3 aa)ifJ = (kaafJ - kf3a" )(apJ"D) or (k"af3 - kfia,,) 

(ifJ - apap{j ) = 0, so ifJ ' = ifJ - apaPD is a Lorentz invariant 
tempered distribution with k,.kvifJ ' = kit k"ifJ = kit ifJ, 
+ k"ifJ't' Q.E.D. 

The proof of Theorem 7.1 can now easily be given. The 
general translation invariant two-point function is given by 
w~y(k ) in (7.3). It consists of three terms that transform sepa­
rately under Lorentz transformations. The first term, 
- 21Tgl'yD +(k 2), is already Lorentz-invariant. The last 

part, - 21TiC"ypaPD (k), must be zero because the constants 
C"yP form a Lorentz invariant antisymmetric tensor of rank 
3 which vanishes because of the same properties of represen­
tations as mentioned in the proof of Lemma 7.2. The remain­
ing term, - 21T(k

" 
ifJv + kvfl')' has independently trans­

forming real and imaginary parts on which Lemmas 7.2 and 
7.3 can be applied separately. This gives the result (7.4) and 
finishes the proof of Theorem 7.1. 

No particular gauge has been generally adopted as the 
standard one for the description of the quantized photon 
field. The reason for this is the incompatibility between some 
of the properties that one usually considers to be natural and 
desirable for quantum field theory. The main incompatibil­
ity is that between manifest Lorentz covariance of the A" (x) 
field and positivity of the metric of the state space. This has 
been known since the early development of the Gupta­
Bleuler formalism and has since then been discussed in var­
ious degrees of generality and mathematical rigor by many 
authors. We have the following general and precise result: 

Theorem 7.2: A Lorentz covariant A" (x) theory for the 
free photon field has indefinite metric. 

Proof (a) Consider for a given Lorentz covariant gauge 
the Hermitian form h A (-,.) on ym, given as h A (fIJ2) 
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= b A (fr,n = (A (ftlfl A, A (f2)fl A). According to Theo­
rem 7.1, this form can be written as 

h A (fl>f2) = - 21T L, ~,kl gill' it(k lk'(k ) d k/dk ° 

- 21T 5 ifJ (k )kl' it(k )kj2 "(k ) d 4 k. 

(The first term is a rigorous expression; the second term is 
symbolical but has an obvious rigorous meaning.) It is suffi­
cient to prove that h A (-,.) is indefinite. 

(b) ForfEY~), 3t/JEy(2):f = d32t/J, and then (A (f)fl A, 

A (f)flA) = (A (d32t/J)fl A,A (d32t/J)flA) = (F(t/J)fl [··,F(t/J)fl F
). 

This is ;;.0 (and even> ° for suitably chosenfEy~I), because 
of the positivity property of the free ~ll' (x) field. 

(c) The slightly more difficult part is to show that, for an 
arbitrary Lorentz invariant ifJ (k ) in the second term in h A (-,.), 

there exists anfE.y(J) such that h A (J,f) < 0. For this we 
shall consider test functions!,' of the special form (P', 0, 0, 
0). For these one has 

h A (J,f) = - 21T L, ~_ Ik, It'(k W d k/2k ° 

- 21T 5 ifJ (k)(k (rlt'(k W d 4k. 

(d) Iffor givenifJ (k ) there exists a test functionfO(k ) such 
that SifJ (k)(k O)2lt'(k Wd 4k > 0, then h A (J,f) is for this test 
function < ° and we have finished. Suppose therefore that 
SifJ (k)(k O)2lr<'(k Wd 4k<;0, for allfo(k). By considering first 
functionsfO with supports not containing k ° = ° and then 
using Lorentz invariance of ifJ (k ) one shows that then 
SifJ (k )Ig(k W d 4k<;0, V gwithsuppgClR4 

- ! 01. Take an ar­
bitrary h (k ) with supph C 1R4 - ! ° I and h (k );;'0. Given this, 
one can find an open set U with supph C U C 1R4 - ! ° I and a 
test functiong(k );;.0, with UCsuppgClR4 

- !Ol. Then the 
test function hA (k ) = h (k) + Ag(k)2 is the square of a test 
function, VA> 0, and converges to h (k ) for A to. Therefore, 
SifJ (k)h (k) d 4k = limAloSifJ (k )hA (k) d 4k<;0. From 
SifJ (k)h (k) d 4k <;0 forallh;;.Ooneobtainsthewell-known fact 
that ifJ (k ) is a Radon measure. This implies that the one-di­
mensional distribution jJ (s) determined by the restriction of 
theLorentz-invariantdistributionifJ (k )tolR4 - ! kElR41 k 2;;.0, 
k °<;0 I (see Ref. 26), and for k o? ° ~iven by the symbolic 
expression SifJ (k )f(k) d 4k = SifJ (s)f(s, u)2 -l(S + U2

)-1/2, witl 
lis, u) = f(k), s = k 2, II = k j (j = 1,2,3) is also a Radon 
measure. 

(e) To show that a Radon measure ifJ (k ) leads to an in­
definite h A (J,f), it is sufficient to shown that there exist a 
fOlk ) such that 

(1) L,~ Ikllt'(k W dk/2ko>0 

and 

(2) 15 ifJ (k )(kOflfO(k W d
4
k <L,~ Ik)lr<'(k W dk/2k 0. 

Consider functionsfO(k) having the special formfO(k) 
= jOts, u) = X(s)g(u), with the supports of X and g such that 

suppfoC !kER4Iko>01. Then 
ISifJ (k)(k O)2lfO(k W d 4k = ISjJ (s)[lx(sWnlg(u)l(s + U2)1/2 du] 
dsl. Because ~ (s) is a measure, there exists an A> Osuch 
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that this expression <Asupplx (sW Hlg(uW 
X (s + u2)' /2du, for all X with supp XC {s E R'I lsi < I}. 

Choose a point (so, 110): So = 0, U6 = 2-'A -'/2, u~ = u~ = O. 
The value of the continuous function (s + U2)U2 in (so, 110) is 
(4A )-2. There exists then an open neighborhood around (so, 
lIo)suchthat2(SA )-2 < (u2 + s)u2 < 6(SA )-2,havingtheform 
lsi <8, < 1, lu -1101 <82 < 2(SA )-2. On this neighborhood U 
one has A (u2 + s)'/2 < 1I21ul. Take X (s) with 
suPPXC {sER'llsl <8d, and X (0) = sup Ix (s)1 = 1 and take 
g(u) with suppgC IUER311u -1101 <821. One then obtains 
IN (k)(kO)2tr(kWd 4k I 

<A SE(_s~~+6'1 !flg(UW(S + u2
)'/2 du 

<f Ig(uW du = i lfO(k W dk . 
21ul kO~ Ikl 2ko 

This proves (2) and (1) holds, of course, whenever g is not 
identically O. Q.E.D. 

The collection of Lorentz covariant gauges as charac­
terized by Theorem 7.1 can be restricted further by two dif­
ferent additional gauge conditions leading, as we shall see, to 
two disjoint classes of covariant gauges. 

From the point of view of classical electromagnetism a 
natural gauge condition is the Lorentz gauge condition, as 
discussed in Sec. IV. 

Theorem 7.3: The Lorentz covariant free field gauges 
that satisfy the Lorentz gauge condition have two-point 
functions, given by 

w~v(k) = - 21TIgl'v8+(k 2) + kl'kv [8(~ (k 2) + A8+(k 2) 

+ A_8_(k 2) +a~ap8(k)]1 (7.S) 

with A, ,.1,_, a arbitrary real constants. 
{The Lorentz invariant distribution 8 (~ (k 2) is most 

conveniently defined as limm,!O [81~ 
(k 2 _ m 2

) + !1T(logm2)8 (k)), where 81~ (k 2 - m 2), for 
m 2 > 0, the "derivative" of 8 + (k 2 - m 2

), is given by the con­
vergent integral 

! L>=lk'+m21>"(~:); - :0 a~~:)) 2~0 ' 

suggested by the symbolic expression 

f81~ (k 2 - m 2)f(k) d 4k 

= f8 (I)(s - m 2li(s, u) __ d_sd_u--,_ 
2(s + U2)1/2 

= _ f 8 (S - m2) ~ ( frs, u) ) duds. 
as 2(S+U2)1/2 

It is a solution of the equation (k 2 - m2)81~ 

(k 2 - m 2) = - 8+(k 2 - m 2
). In the limit the integral di­

verges but can be regularized by a term !1T(logm2)8 (k). The 
regularized limit satisfies k 28 (~ (k 2) = - 8+(k 2). See Ref. 
26, where8+(k 2 - m2)andol~ (k 2 

- m2)arecalledHm 2 and 

H~'·l 
Proof The Lorentz gauge condition on w~v(k) is 

kl'w~v(k) = 0, so for a Lorentz covariant gauge kv 
[8+(k 2) + k 2¢ (k)] = O. Thisisequivalenttotheexistenceofa 
constantasuchthatk 2¢ (k) = - 8+(k 2) + ao(k ).Thedistri-
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bution 8 (~ (k 2) is a particular solution of 
k 2¢,(k) = - 8 +(k 2); a particular solution of k 2¢2(k) = a8(k) 
is ¢2(k) = laa aaa8 (k) and the general solution of the inho­
mogeneous equation k 2¢3(k ) = 0 is 
¢3(k) = A8+(k 2) + A_8_(k 2) + ,.1,08 (k );,.1",.1,_,,.1,0 real con­
stants. All this together gives as general solution of 
k 2¢ = - 8+(k 2) + a8 (k) the distribution ¢ (k) = o(~ (k 2) 
+A8+(k 2) +A_o_(k 2) +A08(k) + Aaaaaa8(k), which 

gives the required form (7.9). 
In (7.S) the term with 8_(k 2) represents an irrelevant 

negative part in the spectrum of time translations. The term 
with a pap 8 (k ) gives a set of extra unphysical Lorentz invar­
iantstatevectors [notethatkl'kv~ap8(k) = 2gl'v8(k )]. Both 
terms may be dropped. The Gaussian states, built on the 
remaining two-point function, 

w~v(k) = - 21TI gl'y8+(k 2) + kl'ky [81~ (k 2) + A8+(k 2)] I 
(7.9) 

for arbitrary realA, can be called generalized Landau gauges. 
The case A = 0 is the standard Landau gauge. Because 
81~ (k 2) satisfies k 281~ (k 2) = - 8+(k 2) it is often given by 
the rather ambiguous expression 

w~v(k)= -21T(gl'v -kl'kJk2)8+(k2). (7.10) 

The term kl' kv81~ (k 2) can also be written in a more 
convenient and at the same time unambiguous way as !kl'ay 
8 +(k 2), which because of the Lorentz invariance of 8+(k 2) is 
also equal to l(kl'ay + kyal')o+(k 2). ITo see this, note that 

f k1'81~ (k 2)f(k) d 4k 

= ~~ f 81~ (k 2 - m2)kJ(k) d 4k 

. f a (k,J\ dk 
= -! ~~ ak 0 TO) 2k ° ' 

with k ° = (k2 + m 2)1/2. Using, for m 2 > 0, the support prop­
erties of 8 +(k 2 - m 2

) and its Lorentz invariance, which im­
plies kl'a08+(k 2 - m 2

) = koaI'8+(k 2 - m2), one writes this 
integral as 

- Ilim f af dk 
2m ,!O akl' 2ko 

= !lim faI'O+(k 2 - m2)f(k) d 4k 
m 2 10 

=!f aI'8+(k 2)f(k) d 4k, 

which proves k1'81~ (k 2) = !aI'8+(k 2). I 
The representation of a Landau gauge as operator the­

ory is in principle quite simple and straightforward. As a 
Gaussian state it has the Fock space sturcture generated in a 
unique way from a one-particle space dY'A II) that is the quo­
tient of the basic test function space Y(3) over the degener­
ation subspace of the Hermitian form h A (.,.), symbolically 
written as 

h A (f, g) = f ~v(k ) ]I'(k )t"(k ) d 4k. 

The realization of the spaces dY'A (1), dY'A, with creation, anni-
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hilation, and field operators becomes, however, quite com­
plicated in terms of the momentum functions on the forward 
light cone that can be chosen to represent the equivalence 
classes appearing as elements of yA (I). Because derivatives 
are involved in C:;~,,(k), these momentum functions have at 
least eight components. See for a description of such realiza­
tions Refs.2, 3, 27, and 28. One should in particular note in 
Ref. 3 the formidable complications due to the insistence on 
an additional, and from our point of view superfluous, Hil­
bert space structure in the locally convex state space yA. 

The two properties that characterize the generalized 
Landau gauges are Lorentz covariance and the Lorentz con­
dition JI'A'" = 0 for the field operator. In these gauges the 
free wave equation J"'JILA" = 0 does not hold. This would 
be equivalent to k 2&~,,(k) = O. From (7.8) one obtains 
immediately 

k 2&A (k) = k 2k k 8(1 ) (k 2) 
ltv J-L v + 

= - k,..k,,8+(k 2)=I=O. 

In fact, the operator equation JILJ,..A" = 0 determines a sec­
ond class of important Lorentz covariant free field gauges. 

Theorem 7.4: The Lorentz-covariant free field gauges 
for which the field operator AIL (x) satisfies the free wave 
equation, as an operator relation, have two-point functions 
given by 

&~,,(k) 
= _ 21Tlg,..,,8+(k 2) + k,..k" [A8+(k 2) + A_8_(k 2) 

+ad"Jp 8(k)]j (7.11) 

with A, ..1,_, a arbitrary real constants. 
Proof The operator relation JILJ,..A" = 0 implies (and 

is, for a translational invariant Gausian state, equivalent to) 
k 2&~,,(k) = O. Combined with (7.4) this gives k,..k v 

k 2¢J (k) = O. This isequivalentto the existence of constants a, 
b,.. suchthatk 2¢J (k) = a8(k) + b

l
,JlL8(k ).BecauseofLorentz 

invaraince of k 2¢J (k) the b,.. must vanish. One has k 2(d"Jp 8) 
= 88(k ); therefore, the general Lorentz invariant solution of 
k 2¢J (k ) = a8 (k ) is 

¢J (k) = A8+(k 2) + A_8_(k 2) + A08(k) + AaJPJp 8(k), 

which proves (7.11). 
The terms with 8_(k 2)andJPJp 8 (k )canbedroppedfor 

the same reasons as in the Landau gauges. The Gaussian 
states constructed from the remaining two-point function 

&~,.(k) = - 21T(g,.." + Ak,..kv)8+(k 2) (7.12) 

for arbitrary AER I, may be called generalized Gupta-Bleuler 
gauges. The case A = 0 is known as Feynman gauge. The 
corresponding operator field theory is the rigorous form of 
the standard Gupta-Bleuler formalism, of course without an 
auxiliary non invariant Hilbert space structure. In this case, 
contrary to that of the Landau gauges, it would be easy to 
provide such a structure; however, it would again serve no 
useful purpose. 

It is not hard to verify that the different generalized 
Gupta-Bleuler gauges, to be denoted as (iJA (A ), are connect­
ed by gauge homomorphisms aT' defined as in Sec. IV by a 
linear operator T).: y(3)--+yI3), given by (T Jr(k ) = jl'(k) 
+ 0 k "'kjV(k). One has, in fact, a;", (iJA(Ao) = (iJA (..1,0 + A ), 
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V A, AoER I. The linear maps W). between the representation 
spaces of the (iJA (A ) are therefore 1-1 isometries, with W).- I 

= W _). . One proves easily that the W). are continuous and 
therefore also topological isomorphisms. All the representa­
tion spaces can be identified with a single space, e.g., that of 
the Feynman gauge. In this space there is then a single vacu­
um vector n A, and for each generalized Gupta-Bleuler 
gauge (iJA (A ) different field operators A :: I(x), which can be 
obtained from the Feynman gauge field operator A ~)(x) by 
A ~I(x) =A ~)(x) - 0J,..J"A ~)(x). 

The Feynman gauge is the simplest gauge in terms of 
realization by momentum functions. Because h A (f, g) 

= - 21T f k" ~ k j"'(k )i
l
, (k ) d k/2k 0, vectors in the "one­

particle" space yA II), which are equivalence classes of test 
functions/from yO), have natural representations as func­
tions ¢J lL(k ) on R3, obtained by restriction of the Fourier 
transformsjlL(k) to the forward light cone, according to 
¢J1'(k) = V21TjlL(lkl, k). 

The Landau and Gupta-Bleuler gauges do not, of 
course, exhaust the possibilities for Lorentz-covariant free 
field gauges. Starting from formulas (7.8) and (7.10), for in­
stance, one may obtain others! such as the Yennie-Fried 
gauge: [J~,,(k) = - 21T[gl'v8(k 2) - 281~ (k 2)] = "- 21T(g,.." 
+ 2k,..kJk 2)8 +(k 2)". j Still other, more general, gauges can 
be chosen by specifying various Lorentz invariant distribu­
tions ¢J (k) in (7.4). 

It should finally be observed that in a Lorentz-covariant 
gauges the free Maxwell equation JILJ,..A" - J"JI'AJ' = 0 
never holds as an operator relation. This remarkable fact was 
noticed by Strocchi at an early stage. 29 According to our 
analysis of the relation between the A,.. (x) and Fl'l'(X) opera­
tor fields, this is not in contradiction with the operator equa­
tion J"'FlLv = O. Moreover, it follows immediately from our 
general expression for the invariant two-point function, 
(7.4), because (k 28"'" - k,.k")[gl',,8+(k 2) + kJ'k" 
¢J (k)] = - k"k,,8+(k 2)=1=0. 

VIII. THE FREE FIELD: THE COULOMB GAUGE 

According to Theorem 7.2 insistence on a Hilbert space 
theory means giving up Lorentz covariance of the field oper­
ator A,.. (x). Covariance under rotations (and, of course, 
space-time translations) can be retained. In fact the combi­
nation of this with the requirement that the component Ao(x) 
of the field operator should vanish identically leads to the 
Coulomb gauge: The operator condition Ao(x) = 0 is for a 
Gaussian theoryequivalentto[J~(k) = [J~j(k) = &~j(k) = 0 
(j = 1,2,3). Applying this to the formula (7.3), the expres­
sionf or the general translation invariant two-point function, 
and dropping the constants C,n.", one obtains for ¢J,• (k ) the 

equations ko[¢Jo(k) + ¢Jo(k)] = - 8 +(k 2) and ko¢Jj(k ) 

+ kj ¢Jo(k) = O. These have the obvious rotation invariant 
solutions 

¢Jo(k) = - 8+(k 2)/2k 0, 

¢Jj(k) = -(k/kO)¢Jo(k) = [kj /2(kO)2]8+(k 2
) (8.1) 

(j = 1,2, 3). 
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Both these distributions are well defined as convergent inte­
grals over k. Substituting these rpl-' (k) in the general formula 
(7.3), one obtains the well-known standard form for the 
Fourier transform of the Coulomb gauge two-point 
function: 

~(k) =&~i(k) = &~(k) = 0, 
(8.2) 

~,(k) = 21T[Dji - kik,/(k 0f]D+(k 2). 

The positivity of the Coulomb gauge follows immedi­
ately from the positivity of the Hermitian form h A h,) associ­
ated with this two-point function, and which is very similar 
to that of the free field, connected with formula (7.2). 

From this two-point function it follows also quite easily 
that in this case both the free wave equation a aaaA" = ° and 
the Lorentz condition a "A = ° hold as operator relations. 

The most important consequence of positivity for the 
Coulomb gauge is the fact that the relation between potential 
and tensor field is essentially the classical one, that is, F

"
" 

= al-'A" - a"AI-' , with FI-''' and AI-' operators in the same 
state space, after identification of the representation spaces 
/7rF and JY'A or rather their Hilbert space completions. 

To establish the precise properties of this identification, 
we need the following lemma: 

Lemma 8.1: For the Coulomb gauge the physical sub­
space JY'~h is strictly smaller than JY'A; however, the Hilbert 
space completions of JY'~h and JY'A are the same. 

Proof Let .f,u be the left null-ideal of the Coulomb 
gauge as state OJ on d A

, caf~h the closed subalgebra of d A 

generated by y~'IC YOl. Let v be the linear mapf, ® ••• ®fn 
I--+A (fd···A (fn)1l A, (see the proof of Theorem 6.1), the ca­
nonical surjection from .afA onto JY'A = .afA I,Y'", , with ,;y'A 
= V(caf~h)' To show that ,;y'~h #JY'A one must prove that 

.f", + caf~h # ,afA. Take instead of y~1 the larger and more 
convenient closed subspace called (in this proof only) y\31 

and defined as Y\31 = ! fE,yo I3I lil-'(0) = 0). Let caf; be the 
closed subalgebra of cafA generated by YI,3). It is then suffi­
cient to prove that .fru + ,af; = .afA. Use the toplogicallin­
ear isomorphism a from the proof of Theorem 6.1. It leaves 
caf; invariant and maps.f", onto the kernel of the map p 
(also introduced in the proof of Theorem 6.1). The map p is a 
direct sum L;;'~ 0 a. pin), pin): .afA In) = ( ® n.yOI)---+JY'A In); so 

Kerp = L;;' ~ ° a. Kerplnl. The subalgebra d; can also be 
written as a direct sum L;;' ~ ° a. caf; Inl, d; Inl = caf;ndA In). 
Therefore, Kerp + caf; = L;;' ~ 0 a. (Kerplnl + d; In)). It is 
then sufficient to show that Kerp(ll + Y\3)#Y(3). Now 

Kerp(l) = 'Y'L = !fEYl31 1h A (g,J) = 0, 'fI gEy'l3I) 

= VE,Yi31 1(k O)2hk) = ki,t,k 'J'(k) 

for k 2 = 0, k O;;;O,j = 1,2,3} , 

so fE Kerp(ll implies )'(0) = 0, this also holds for fE Y\31 

and therefore Kerp(!) + Y\31#YI31, which proves that JY':h 
is strictly smaller than JY'A. [Using the property that Y\3) has 
finite codimension and that yl31 therefore can be written as a 
topological direct sum y(3) = Y\31 a. y~1 for some finite di­
mensional subspace y~1 (see Ref. 16, Proposition 9.3), one 
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can in fact show that JY'~h is not even dense in JY'A, in the 
natural locally convex topology of JY'A.] 

We prove next that the Hilbert space completions of 
jf'A and (;y'~h coincide. Because of the Fock space structure 
of ,rA it is enough to show this for the one particle space, i.e., 
one should prove that (;y'~~11 = a(Y~)) and ,}7"A I') = a(y'131) 
have the same Hilbert space completions. Let ,j)/' be the Hil­
bert space offunctions rp i(k ),j = 1, 2, 3, with components in 
L 2(JR\ dk/2!kll and inner product (rpl' 
</J2) = fLj'~, rp Jdk)</J i2(k) dk/2lkl· Let P, be the orthogonal 
projection operator in .r defined by (P,rp Y(k) = rpi(k) 
- (ki IlkI2)Lt~ ,k Irp' (k) (a.e.). The corresponding subspace 
.r) consists of </JE.'h/' such that Lj'~ ) ki</Ji(k) = 0 (a.e.). By 
associating with eachfE.yl31 the functions </Ji(k) = (v21T)(fJ 
(k) - [k/(k())2]L;~, k11(k ))k"= Ik one defines a linear map 
from yO) into .r). Its kernel is just 'l'u so it induces an 
injective map from ,;y'A(J) = yUI/'J'L into .;V), which is 
obviously isometric. This means that we have realized the 
one-particle space JY'A III, a space of equivalence classes, as a 
subspace of the function space .r, C .'h/'. We have to prove 
that the (Hilbert space) closure of the image of ,W'A I') and of 
its subspace cW'~~' I are the same. For this it is enough to show 
that the image under the map y'(.1I---+.r of a subspace small­
er than y~'1 is dense in % I' % I is then the common comple­
tion of JY'A III and JY'~~'I, represented as functions rpi(k). De­
fine (again for this proof only) fiJ\31 = ! fEy~lsUpp)l-'(k) 
compact and not containing k = 0). The image of fiJ ~ in % I 
consist of all vector functions rp ilk) with each component 
C <XC, with compact support not containing k = 0, and satis­
fying Lj'~) kJrpJ(k) = 0, because for each such </JJ(k) one has 
anfE!:iJ\31, e.g., by definingjO(k ) = O,P(k) 
= (21T)~ 1/2X(k 2)rpi(k)'XEfiJ (JR') withX (0) = 1. The subspace 

of these </Ji is dense in % I' because without the condition 
Lj'~ I kirpi(k) they would be dense in .~. (An arbitrary rpE% 
can be approximated by a sequence rpn from the collection; if 
</J happens to be in .~" then it is approximated by the se-
quence P,</Jn' by continuity of PI') Q.E.D. 

After identification of JY'F with JY'~h C JY'A ,nF with 
nA 

, and Hilbert space completion, the Coulomb gauge leads 
to the following situation: There is a single state space, the 
Hilbert space ~, in which there is a dense domain JY'F on 
which field operators FI-'v(x) are defined [or F(I/J), 'fI1/JE.?121, 
in rigorous language]. A unitary representation U(u, A ), of 
the inhomogeneous Lorentz group acts in ~, leaves JY'F 
and the vacuum vector nEJY'F invariant and transforms the 
field FI-'v (x) in tensorial way. There is a second dense domain 
JY'A, containing JY'F, on which the potential field operators 
AI-' (x) [or A (f), 'fifE.? 131] are defined. Between these and the 
FI-'''(x) one has the classical relationFl-'v = al-'A" - a"AI-' [or 
F(I/J) = A (d32I/J), 'fI1/JE2'(21). The noncovariance of the AI' (x) 
field in the Coulomb gauge is now in the first place the fact 
that the domain JY'A is not invariant under the unitary oper­
ators U (A ) (unless A is a pure rotation) and that consequently 
the expressions U (A ) A (fJU ~ I (A ) and A (TA f) are defined 
on different domains and are therefore not equal. We may 
use the Lorentz transformations to obtain new gauges. De-
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fine, for a given Lorentz transformation A (not a pure rota­
tion) a new dense doman ,JYA,A as the image of,JYA under 
U (A ) - 1 and, on this, new potential field operators A (f) by 
AA (f) = U(A )-1 A (TA f)U(A ), Antisymmetric differenti­
ation of A ~ gives the same field FJlv, because FA (t/J) 
=AA(d32t/J) = U(A )-IA (TAd32t/J)U(A) = U(A )-IA 
X (d32 TA t/J)U(A) = U(A )-IF(TA t/J)U(A) = F(t/J),Vt/JE5t'(2). 
One can show by working through the formalism developed 
in Secs. II and IV and making the necessary identifications, 
that the field AA (f) is indeed the GNS representation asso­
ciated with the gauge transformed state a~ U)A, obtained 
from the Coulomb gauge state U)A by the transpose of the 
Lorentz automorphism a A , which in this special case has the 
effect of something that may be called a gauge transforma­
tion, again one more example, besides the ones given in Sec. 
IV, of the use of this term. Note that we have here a situation 
where the field operators of two equivalent gauges act in the 
same state space and are nevertheless not connected by a 
gradient term. This is because there is only a single state 
space after Hilbert space completion, the domains on which 
the field operators are defined are different, and the expres­
sion A ~(x) - AJl (x) is therefore not defined. 

This ends our discussion of the Coulomb gauge, the 
most important and typical positive-metric, noncovariant 
gauge. Other such gauges are known (see Ref. 2), but this 
should be sufficient to demonstrate how the operator field 
properties of such gauges are determined by the general 
formalism. 

IX. CONCLUDING REMARKS 

Quantum electrodynamics, up till now the most suc­
cessful theory in elementary particle physics, does not fit in 
the axiomatic scheme of standard Wightman theory as it was 
developed in the fifties and early sixties. In this respect it 
cannot be seen as an unfortunate but isolated exceptional 
case. On the contrary, its typical features appear in more 
complicated form in general nonabelian gauge theories, the 
new field theories that have become dominant in particle 
physics in recent years. It seems therefore that standard 
Wightman axiomatic field theory is, as a framework in 
which the basic concepts of quantum field theory can be 
discussed, in need of extension. 

In this paper and in a preceding one we have given a 
rigorous axiomatic formalism for the photon quantum field 
in which we derived from a few basic principles, and in a 
systematic way, the often heuristic and unrelated results on 
the subject that can be found scattered in the literature. 

The coherence and essential simplicity of the formalism 
was obtained by giving up the Hilbert space of standard 
Wightman theory as general background and relying instead 
on the under lying mathematical structures oflocally convex 
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spaces, associated with the distribution properties of the n­
point functions. 

Although a wide gap separates the Maxwell field from 
nonabelian gauge fields, or even from full quantum electro­
dynamics, this may suggest a possible direction in which a 
further development of Wightman theory may take place. 
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We prove the existence and analyticity of the second Legendre transform of the generating 
functional for Euclidean Green's functions in the weakly coupled P (t/J h model. The proofinvolves 
a bound on the partition function with a nonlocal quadratic source term. This bound also implies 
bounds on the Schwinger functions Sn (fl •... ,fn) that are optimal with respect to both topology 
and n-dependence. 

PACS numbers: 03.70. + k. 1UO.Mn. 02.30. + g 

I. INTRODUCTION 

This paper complements our series 1-4 on the higher Le­
gendre transforms r (r) [A I (r> 1) of the generating functional 
G [J I of connected Green's functions in Euclidean quantum 
field theory. The main focus of the program in Refs. 1-4 is on 
the role of r(r) in generating a variety offield-theoretic ob­
jects with r-cluster-irreducibility properties. such as (gener­
alized) vertex functions. Bethe-Salpeter kernels, and r-irre­
ducible expectations, and on its role in unifying and 
simplifying the proofs of the irreducibility properties of these 
objects. Given these goals we found it convenient (and in 
general necessary!) to view r (r) [ A I as a formal power series 
in A with coefficients its generalized vertex functions. It was 
in this framework of formal power series that we provided I a 
rigorous justification of our analysis of r (r). 

For the case r = 1 and for the weakly coupled P (t/J h 
model [hereafter denoted €P (t/J b), Glimm and Jaffe5 have 
proved the existence of r(1)[A I as a genuine (analytic) func­
tional of A, for small A in a suitable Banach space. Our con­
tribution in this paper is to extend the Glimm-Jaffe results to 
the second Legendre transform r (2) and thus to provide a 
more complete justification for the formalism of Ref. 1 for 
r = 2. Basically we do so by squeezing the cluster expansion6 

a little harder. However, we must confess that a law of di­
minishing returns seems to be operative here. Our (rather 
technical) proofs are unlikely to extend beyond r = 2 or to 
models involving fermions; on the other hand, the (easier) 
method offormal power series certainly does2•

4 and, insofar 
as the generalized vertex functions are concerned, provides 
all the required information. 

We now describe our results in more detail. All results 
stated in this paper apply to the (Euclidean) €P (t/J b model 
whose expectation we denote by ( . ). Let Z [J I be the 
Schwinger generating functional 

Z [J I = (e/") , 

where 

(1.1) 

;:- = f ~(x)J(x)dx = f(t/J(X) - (t/J(x))J(x)dx. 

(1.2) 

For the case r = 2, we let 

a) Research partially supported by the Natural Sciences and Engineering 
Research Council of Canada. 

Z[J,L 1= (eJ'+.f), 

where 

if = f f : t/J (x) t/J(y): L(x,y)dxdy 

(1.3) 

= f f (~(x) ~ (y) - (~(x) ~ (y))L (x,y) dx dy (1.4) 

and L (x, y) = L (y,x). It is important that we use physical 
Wick powers :t/J r: (see Ref. 2) in the source terms in order 
that J and L end up in the "right" Banach spaces. These 
spaces are 

JY _1(R2
) = [JIIIJII_ I = III -.1 + 1)-1/2JIIL' < 00 I 

and (1.5) 

Jr_ dR4) = [L I IlL II-I 
= III -.1 + 1)-1/2®( -.1 + 1)-1/2 L IlL. < 00; 

L (x,y) = L (y,x)j . 

We shall often omit the superscript s and shall also write 
JY -I = JY _1(Rz) eJY _1(R4

). Now the key ingredient in 
the Glimm-Jaffe analysis5 of r (~) is a bound on Z [J I for 
JE£' -1.8 = [JE£' -IIIIJII- I <51 forsome5>0. In Sec. II 
we extend their bound by removing the restriction that J be 
small. 

Theorem 11.1: There exists a constant K such that 
2 

IZ [J II.;;;eKIIJII-1 

for all JE£' _ I' 

(1.6) 

As a spinoff from this theorem, we obtain "optimal" 
bounds on the €P (t/J b Schwinger functions of the form (see 
Corollary 11.7) 

I (UI ~ (J;)) I .;;;cn
(n!)1/2 ill IIJ;II-I' (1.7) 

We regard (1.7) as optimal since one can do no better in the 
free theory. Note that the bound (1.7) is global in the sense 
that we make no assumption about the support of J;E£' -I' 
Previous bounds with the optimal JY -I norm involved an n! 
dependence,5 whereas bounds with the optimal (n!)1 12 depen­
dence involved norms on J; which were globally L 1.7-9 

Actually Theorem 11.1 is a warmup for the correspond­
ing result including quadratic source terms. 

Theorem 111.1: There are constants K, K and 5 > 0 such 
that 

IZ[J,L II.;;;exp(KIIJI1 2_ 1 +KIILI12_tl, (1.8) 
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for all JE7t' _, and LE7t" _ ,,6' 

The proof of Theorem 111.1 differs from that of 
Theorem 11.1 in one important respect: the non local qua­
dratic term.k in (1.3) prevents an immediate application of 
the cluster expansion. We are obliged to expand that part of 
eY which couples across the "decoupling" Dirichlet contour 
in the cluster expansion. The resulting terms can be con­
trolled by an analyticity argument and can be summed up for 
small L since, by our optimal bounds, (lIn!)L n contributes a 
factor (lin!) en(2n)!'/21IL 11"-, (roughly speaking). Such an 
argument clearly fails for source terms of degree i> 2 since 
the number singularity (lin!) en(in)!'/2 is not summable. 

Given the bound (1.8) it is then a simple matter to con­
struct F (rl as a genuine functional. F (21 is defined as follows. 

G {J, L l = In Z {J, L j, 

A {J, L l(x) = -{j- G {J, L l , (1.9a) 
{jJ(x) 

{j2 
B {J, L l (x, y) = G {J, L l 

M(x) {jJ(y) 

{j2 G {O Ol (1 9b) 
M(x) {jJ(y) " . 

F(21{A,B l = G {J,L J 

-f A (x)J(x)dx 

- f f(B (x, y) +A (x)A (y))L (x,y) dx dy, 

(1.10) 

wherein (1.10)J = J {A, B J andL = L {A, B J are obtained 
by inverting (1.9). (A, B) lives in the space dual to 2_" 
namely 2, = 2,(R2

) Ell ~ (R4
). Our main result is 

Theorem IV.3: There is a {j > 0 such that the map 
(J, L )-+(A, B) of (1.9) has an inverse defined and analytic on 
21.6 = 2,,6 (R2) Ell ~,5(R4). F(21{A, B J is defined and 
analytic on 2',5' 

Remark: Burnap has informed us that he has obtained 
similar results by somewhat different techniques. 10 

The various properties of analytic functions on Banach 
spaces that we use are collected in Appendix A, and various 
estimates involving covariances with Dirichlet boundary 
conditions are collected in Appendix B. 

II. GLOBAL BOUNDS ON SCHWINGER FUNCTIONS 

The main result of this section is 
Theorem 11.1: In the EP (¢J h model there exists a con­

stant K such that 
. 2 

l(e/)I<;;eKIIJII-l (2.1) 

for all JE7t' _ I' 

Remark: This estimate may be re-expressed as global 
bounds on Schwinger functions. See Corollary 11.7. 

Proof It suffices to prove (2.1) for the case JEC 0' , since 
then the analyticity of the finite volume approximations 
(e}') A and Vitali's theorem imply the analyticity and hence 
[by Theorem A.2(b)] continuity of (eJ) in the dY' _I topol­
ogy. It also suffices to consider real J since 
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1(~)I<;;(eRe;-) <;; eKIIR.f112_1<;;eKIIJII2_1 

Our strategy, following Glimm and Jaffe,5 is to take an 
arbitrary but fixed JEC 0', decompose it into localized pieces 
J = I.aez' J a and incorporate one Ja at a time into (~). 
HereJa =;a J and {;aECO'(R2)1 aEZ2J is a partition of 
unity invariant under lattice translations. Because we use the 
cluster expansion to estimate the effect of incorporating each 
Ja we are obliged to consider expectations with preassigned 
Dirichlet data on a general finite closed contour I of lattice 
bonds. We let ( . ) I be a finite volume approximation (in 
region A ) to ( . ), which has zero Dirichlet data on I, and we 
let 

/ = ¢J(J), 
(2.2) 

/1 = ¢J (J) - (¢J (J)/' 

and 

II J 11_ 1,/ = II( -..11 + 1) - 112 JilL 2 , 

where -..11 is the Laplacian with zero Dirichlet data on I. 
We also let CI = ( -..11 + m~) - 1. 

/1 
Suppose we have already estimated (e (B I) I' where 

/IB I is defined as in (2.2) with 

J(BI = IJ{3' 
{3EB 

where B is a finite subset of 1.?, and we wish to incorporate a 
newJa (i.e., aEtil) to getJ(B +1' whereB + = .Hu{a l. Wesim­
ply define J (t) = J(B I + tJa and use 

(e,riB+I)1 = (e/iB ) + l' dt(/~ e/(tI\ 

= (e/iB)1 + l' dt (/~ e/(lI)1 e - (/(11)1. (2.3) 

We will shortly estimate the second term by a cluster expan­
sion. To exploit the subtraction in /~ [see (2.2)] in that 
expansion we introduce two independent identical ( . ) I the­
ories-one red and one white. From now on (/~ e/(lI) I 
will stand for its representation 

«(/ a,red - / a,white) e/(tlred) I,red) I,white 

in terms of these duplicate theories. The cluster expansion 
(CE) of Ref. 6 says 

(/~ e/(t/) I 

i-
r, 

? = I do-(F) ar (/~ e/(tIX)~,a(T) (e xCh 
x.rElx 0 

X
ZA,Xl (/xc)r-(/(tl)/ 
---e , 

ZA,/ 
(2.4) 

where X is any finite union of closed lattice squares that is 
connected and contains the support ofJ a (of course X/I need 
not be connected), !!lJ = {lattice bonds in (Z2)* that do not 
intersect the support of;a J,Ix = I Fe !!lJ IF finite, 
FeInt X, X '\( !!lJ '\T) is connected j, 

( {
o bE!!lJ '\F or bEl) 

s(F) = S(F)b = 1 bET '\1 
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so luB"r is the set of Dirichlet bonds and r "I is the set of 
coupling bonds, (TiT) is a vector having one component 
air)b for each nonzero SiT)b [air)b is a measure of the 
strength of coupling across the bond bEF], 

7 = luaX, 

is the un-normalized expectation whose Gaussian measure 
dpq,otr )) has covariance C,(air)) with boundary conditions 

given by air ), including zero Dirichlet data on 7 and whose 
interaction Vx is in the volume X and has Wick ordering 
matched to C,(air)), 

J x = JX x (note that / c is independent of t ), 
x 

ZA,I = Ie -VAdpc[ . 

The bulk of the work in estimating each of the terms in (2.4) is 
placed in the following lemmas. We will use Cj and e j to 
denote universal constants. 

Lemma II.2: 

I ar (JI /(lIX)" I 
a e x,otr) 

<ec,IXI-K(mollrl L~+ e(a,,B)II JpIl2_1,/} 

X/," Jl t lxll
2
_ 1,7, 

where e(a, /l ) = e I e - la - 13 I andK (mo) can be made arbitrar­
ily large by choosing mo large. 

Remarks: The significant features of this lemma are 
(1) The bound involves II Jp 112_ 1,1 and not just II Jp 11_ 1,1' 

This is a consequence of ( /~ ) x, otr) = 0, which is true for 
all u(r) thanks to the implementation of the subtraction of 
(2.2) by means of duplicate theories. 

(2) Note that there is no subtraction in /(t lx, i.e., no 
-(fltlx>r· I fltlX) " factor such as e In (/ a e x, otr I . Such a factor 

is unnecessary because 

I (J (t)x h 1< Ilxx (,p (x)hll + 1,111 J(t)x 11- 1,1 
<c21 X 11/211 J(t )xll- I,' 

<c3 1 X I + c3 11 J (t)X 112_ 1,1 . (2.5) 

(3) Suppose, following Ref. 5, we define the seminorm: 
Definition II.3: 

II Jlli.B,I = I e(a,,B)1I Jp Il 2_ 1./, 
B 

where ~B means that a and/l are summed over B. Then the 
sum in Lemma I1.2 can be absorbed in this seminorm since 

I e(a,,B HI Jp11
2
_ 1,1<11 J 117.»+,1 -II J IItB,! . (2.6) 

{JEB + 

Lemma 11.4: 

I(/x c ), - (/(t)11 

<c4 1X I +Cs I I I e(a,/l)IIXy J (t)pIl2_ 1,I' 
YE'i::'Il) aEYnX {JEB + 
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where Crf (I) is the set of connected components of H2,,1. 
Remark: This estimate is basically a consequence of 

I(/ph - (/p)ll<c6 e-dlp,axlli JplI_I,1 

<c6e-dlp,xIIIJpll_I,I' 

The significant feature of this estimate is that if we define a 
second seminorm by 

Definition 11.5: 

IIJlltB,I= I I Ie(a,/l)IIXy Jp Il 2_I,I' 
YE«;' (1 J aE Y {JEB 

then the sum in Lemma 11.4 can be absorbed in this semi­
norm since 

<IIJII~'B+,I-IIJxxc"~'B,I . (2.7) 

[By an abuse of notation J (t)p means not J (t )Sp but rather 
Jp if /lEE and tJa if /l = a. Furthermore II J (t )1I2,B +,1 is de­
fined with the abused J (t)/3 ,] The last inequality is a conse­
quence of 

IIJx XC II~.B" 

I I_ I I e(a,,B)lIxz Xx c JpIl
2
_

1
, 

YE'i::'(/1 ZE'6'(/1 aEZ /lEB ' 

ZCY 

< I I_ I Ie(a,/l)IIXzxx c JpIl2_
1

, 

YE'6'(1) ZE'6'(/J aEYnXC /lEB ' 

ZCYnX C 

where we have used the decoupling property 

(2.8) 

of( -..:1, + 1)-1. 
We now continue with the proof of Theorem 11.1 using 

Lemmas 11.2 and 11.4, which we prove shortly. The proof 
will be by induction on the size of B with the Induction hy­
pothesis: "There exists a constant K (independent of B) such 
that (for all finite closed contours I oflattice bonds) 

/ 2 
( 

f(B) ./ KIIJIIB,/ 
e I,e , (2.9) 

where 

II JII~,/=" JII~,B,I + II Jlli,B,I'" (2.10) 

Theorem 11.1 will then follow thanks to the inequality 

II JII~,I<e311 JII~ 1,1' (2.11) 

This inequality is one of a number of useful properties of the 
seminorms 1I'lkB,I' 1I'lb,B,/, and II·IIB,I that are proven in 
Lemma B.S. 

The inductive hypothesis is trivially true when B = ,p. 
Assume it is true for some B. To prove that it is true for 
B + = Bu [ a J with al$B apply (2.3) followed by the cluster 
expansion (2.4). To bound the right-hand side of (2.4) we 
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apply Lemma 11.2 and (2.6) to I aT ( /~ eY(t IX)~, aiTi I ' the 
standard CE estimate (Ref. 6, Proposition 5.2) to 

<I x C>7- <Ilt»/ 
ZA "X,lIZA,1 and Lemma II.4 and (2.7) to e . 
Furthermore since X enD + C B (see Fig. 1) the factor 

7 
(e

Y 
XCh can be bounded by the induction hypothesis. This 

gives 

I < /~ e,r(t/\ I <2: ec,lxl·-KlmoIITI {II J II~,B''/ -II J IltB,t! 
X,T 

Xexp{c211 J(t)xll~,1 + K II Jxc 11:7 

+ Cs [II JII~,B+,I -II Jxc II~'B,I] J . 

Lemma II.6 below is now used to bound the exponent by 

K II J II~,B,I + tK [II J II~,B +,1 - II J II~.B,I] + K II J II~,B +,1 

(assuming K>cs) and standard CE estimates (Ref. 6, Propo­
sition 5.1) are used to bound 

2: ec,lxl- KlmoIlTl<Cg. 
X,T 

SO far we have 

I (/~ eflt)\ I <:t exp {K IIJ II~.B,I 
+ tK [II Jlli,B ',1 -II JlltB,I] 

+KIIJII~,B+,d . (2.12) 

It is of course crucial here that the universal constants e;,c i 

are independent of K so that we may choose a K for the 
inductive hypothesis that is larger than 
maxI CS,Cg,2C2e2,2c2 el- 1 J. Substituting (2.12) into (2.3) gives, 
by the inductive hypothesis (2.9), 

/ 2 t d (eI(B~)I<eKIIJIIB'/+ Jo dt dtexp\KIIJlltB,I 

+ tK [II J II~,B +.1 - II J lIi,B,d + K II J II~,B +,d 
KIIJII~ / KIIJII~ ~ I KIIJIITBI+KII JII~B ~ I <e ' + e ' - e ' , " 

KIIJIIB2~1 
<e ' 

This concludes the proof of Theorem II.l. 
Lemma 11.6: 

c2 I1J(t)xII2_ 1,1 +KIIJ cW -
X I,B,I 

<K II J II~,B,I + tK [II J Ili,B + ,I - II J IIi.B,1 ] 

if K>max\2c2eZ,2c2el- Ij and O<t< 1. 
Proof SinceJ(t)x = IJa + JXx , 

c211J(1 )xII
Z
_ 1.7 + K IIJxc 11~'B,7 

<2cz 1211 Ja 112_ 1,1 + 2cz II JXxW- 1.7 

+Kllxxc JII~'B,1 
<2cz 1211 Ja 112_ 1,1 + K IIJXx lIi,B,I 

+ K II x XC J 11~.B,1 

• 

(using K>2cze2 and Lemma B.5c) 

<2c2t 21/ Ja IIZ_ 1,1 + K II J IItB,I 

<tK [II Jlli.B +,/ -II Jlli,B,I] +K II J IItB,7, 
since t 2<t and elll Ja W- 1,/ is one term in I ). 
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[by (2.8)] 

• 

We now restate and prove Lemmas II.2 and II.4. 
Lemma 11.2: For rna sufficiently large 

if a e X,aiTI I aT «(i!1 /ltIX)u I 
<ec,/xl-KlmoIlTl{ L e(a,p)II JpIIZ_l,Ij /,IIJ!tlX I1

2
_ 1.l, 

{JEB+ 

where K (rna) tends to infinity as mo does. 

P if: W . Iitix roo: e expand the exponentIal e , 

observing that the n = 0 term is absent since 

For notational convenience we shall only consider the 
/ a.red term. The / a.white term is estimated similarly (but 
more easily) and at worst just doubles the number of terms. 
By the usual CE formula [see (8.3) of Ref. 6] 

aT (/a /;')X,aiTI 

2: f (II ~ar c.<5~) /a /;. e - Vx dflqaiTIl ' 
""""ITI )"0"-

(2.13) 

where 9 (r) is the set of partitions of r. 
Let the <5", 's act on the /'s and the Vx in (2.13). We 

classify the terms produced according to which <5", 's attack 
an interaction Vx and according to which /'s are attacked. 
Altogether there are 

(2.14) 

such classes of terms and, since the factor (2.14) may be 
harmlessly absorbed into the overall bound, we may restrict 
our attention to one such subclass from now on. 

We next localize the <5", 's and all the n l <n + I attacked 
/'s as follows. If a {j", hits a Vx it is localized by 

and if it hits a / it is localized by 

I' -- - - -, 
I B I 
I ! 
I I 

x~--~ 
support of Ca aX 

FIG. I. The cluster expansion geometry. 
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_t>_= ~fd (C_- 112 C1I2)(X )_t>_ 
t>t,6(X) 7" Y I X.4j I ,Y t>t,6(y) 

=~ f dy xf(x,y) t>t,6~y) . (2.15b) 

The /'s are localized by 

J= ~ f dy xf(x,y)J(y)=~Jj' (2.15c) 
J J 

For each attacked / we insert the sum (2.15c) into (2.13) and 
for each arC we insert the sum 

arc (x,y) = L ar Cj(x, y) 
jy 

(2.16) 

wherejr = (jr. 1 ,jr.2) runs over 'I} and where Y; = I or J 
according to whether the corresponding t>q, is localized by 
(2.15a) or (2.15b). 

Now consider an arbitrary but fixed set oflocalizations 
! jr J, ! j; J. We have arranged in (2.15) that a localized t>q, 
can hit only a Vor / with the same localization. Hence if 

v = degree of interaction, 

MI(~;) = number of t>,/s localized by xi, 
MA~j) = number of t>",'s localized by xf, 

= number of /'s localized by X f ' 
andM (~ ) = MI(~ ) + MA~ ), then the maximum number of 
terms (in our subclass) that have the given localizations is 

IT (vMA~ ))!MJ(~ )!<IT vvMj.tJ 1 M(~ )!v 
tJ tJ 

<IT eCQM(tJ I M(~ )!v (2.17) 
tJ 

where we have used the inequality (ab )!<aabb !a. This bound 
is of standard CE form and will be controlled accordingly 
(see Ref. 6, Lemma 10.2). 

Each of these terms is the integral with respect to 
dPcr.o1,r)) of a number offactors. 

(i) First, there are the constant factors in which the same 
ar~ connects two J's. These factors are estimated by 
Lemma B.2 (recall that arC has Dirichlet data on h 
IJj arCJk I = 1U'tJ; C~12 J)(C 7-

112 arCC7- 1I2)U'tJk Cp J)I 

.;;;::11 X C1I2 J II mc",-lrI /4 K (y) e-modU.k.rI/2 '" tJj I L' 0 6 

xllXtJk C~12JIIL" 
Here 

d(j,k,y) = sup !d(~j' b) + d(~k,b)J . 
hEr 

(ii) Second, there are the J 's that have been connected by 
arc's to V's. We have the structure 

f dx F(X I,X2,··) .r:IXtJ (Xi) a
r
; CJj;(X;) 

= .f: f dx F.r:I XtJ ; (Xi) CJ!2 XtJk; 
I 

(2.18) 
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where Fis a function of t,6 (which we have held fixed) as well 
as the arguments X; of some arc's. We view 

II; C 1- 1/2 ar; CC1- 1/2 as a tensor product of 

C7-
112 aY;cc7-

1I2'S and apply Lemma B.2 to bound the 
right-hand side of (2.18) by 

(iii) Third, there is everything else-namely the uncon­
tracted /'s and the interaction. We use Holder's inequality 
to separate the interaction (and bound it by eC" IX I), the F 
factor (which is essentially of standard cluster expansion 
form and is estimated as such), and the (n - n I + 1) uncon­
tracted /'s. These are estimated by 

simply by evaluation of the Gaussian integral. (One of the 
Jx's could of course be Ja .) 

We have now bounded each term in the series for 
ar ( / a /~) X.o1,F) that results from (2.13) when the t>,/s 
are applied and! jr J ! ji J localizations are introduced. We 
have also shown how to control all the sums except 
:I{j;1 :I[ jyJ and :I1T • The sum :I[ j;J over localizations of the 
n I attacked J's is controlled by 

(2.19) 

The sums:I1T :I[j J are controllea as in the standard cluster 
'Y 

expansion (see Ref. 6, Proposition 8.1 and Lemma 10.2). 
Gathering together all these estimates and recalling in 

particular that when a term has n I attacked /'s each such 
/ contributes a factor of IX 11/211 Jx 11_ 1.7 while the 
(n - n I + 1) uncontracted /'s contribute a factor of 
ec,,(n - n, + ll(n _ n l + 1)!1/211 Jxll n_-IJ, + I (or 

ec,,(n - n, + ll(n _ n l + 1)!1/211 Jxll n_-IJ, II Ja 11-1.1)' we have 

lar (/~ e',F(tIX)~.o1,F) I 
'" 1 < L ,. ec"lx 1+ c,.n - 2K(mollr III Ja 11_ 1.7 II J (t)x Iln_ 1,7 

n= I n. 

X max IX In,l2 (n - nl + 1)!112 
Q<n.<n + I 

'" < L ec"lxl+c"n-2K(mollrIIIJall_l,1 
n=l 

X{ II Jall_l.I + II J(BI,xll-I,1} 
X II J(t)xlln_-1,7 . 

(n - 1)!1/2 

In the last inequality we used 

IX In,/2 (n - n l + 1)!1/2 
«e IXl nl!)1/2(n - n l + 1)!1/2 
<e11l211xl (n + 1)!112. 
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(2.20) 

with k = n - 1 and a = eC"1I J(t )xlI- 1.7 ,we do the sum 
over n. This yields 

ar (/~ e/(t)X)~.o(r) 1 

<ec
,.IXI-2K(mo)lr) {II Ja 11 2_1,7 + II.l(BlxI1 2_,,7} 

X/,IIJ(tlxlI2_1.l 

<ec"IXI-2K(mo)lrt {J+ II Jp XxII 2_,,7} /,IIJltlxlI2_1.7 

by Lemma B.5c. (We have absorbed a number of constant 
factors into econstlxl.) Finally observe that, since there are 
nine squares in the support of ta' 

Ir I>~(IX 1- 9) by Ref. 6, Eq. (5.1) 

>cIsla - 131 - CI9 Va, 13EIX I, 
so that for mo sufficiently large 

lar (/f e/ltIX)~.o(F) I 
<ecoIxl - KlmollFl 

Lemma II.4: For mo sufficiently large 

1 (/xJ
7 

- (/(1)/1 

• 

<c4 1X I +cs L L L e(a,13l11X y J(I)pW_I,I' 
YE'i«(I) aEYnX {JEB + 

Proof 

1 (/xJ7 - (/(1)/1<1(/(1)1 - (/(I)hl + (/(t)xh· 

The second tenn is bounded in (2.5) by 

c31X 1 + c311 J(t )xI12_ 1,7 

<c3 1X 1 + C
s ') L II XY J(t)PW-I.7 (Lemma B.5c). 

2 Y~(I1 {JEB+ 

To estimate the first tenn we use the interpolation 

1(/(1)1 - (/(I)hl< ~ f dO'I! (/(I)Xy) q I, 
where ( . ) CT denotes the expectation whose covariance is 
O'CI + (1 - 0') CI . Then the change of covariance fonnula 
[Ref. 6, Eq. (1.7)] gives 

1(/(1)1 - (/(I)hl 

< L I(V'x~ > aClKy J(t )p)1 
Y.P.~ 

~CY 

~.~'CY 

where ac = C7 - CI = C!vOx - CI and (4); If/) is the con­
nected expectation (4)If/) - (4)) (If/). NowaCXy 
= (CItMXnY) - Cd Xy can supply decay between its argu-
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ments and from each argument to aXnY and (4); If/) can 
supply decay between the supports of 4> and If/ so 

1</(1)1 - (/(t)hl 

<C20 L e-dl~.PI e-d,P,axnYIIi Xy J(I)pll_,.1 
y.P.~ 

+ c20 ') e-min(dl~,PI,dl~'.PII e-dl~.~'1 

y,t1,~, 

xe-d(~,aXnYI IIXyJ(I)pll-l,I' 

[It is no problem to simultaneously get decay and a 
II X y J (t )pll_ 1.1 nonn from aq X y J (t ),8 )-see Corollary 
B.3.] Finally, we perfonn the ~~ and ~~.~, sums and ob­
serve that 

e-dIP.aXnYI< e-dIP,XnYI< L e- 1a - P1 + I 

aEXnY 
to arrive at 

1(/(1)/- (/(I)hl 

<cSL L L e(a,13l11X y J(t)plI_"/) 
Y aEYnX {JEB + 

Theorem III amounts to global bounds on the 
Schwinger functions as we show in 

Corollary II. 7: In EP(f/J h 

(a) 1 (¢ (/d .. ·¢ (In) 1 <C~I (n!)1/2 II II/; 11- I , 
;-1 

(b) 1 ( ¢ (/d'" ¢ (In) e4>(fI) 1 

<c~dn!)'/2 ( 1 + K ":I!~II-, r 
2 

X II 11/;11-1 eKIlfL 1, 
;=1 

where K is any constant for which (2.1) holds. 

• 

Remarks: (l)Thenumericalcoefficientc~1 (n!)1/2maybe 
replaced by (e6Kn)"12. 

(2) The factor (1 + K '/211/11_,/nl/2)" in part (b) can be 
thought of as a contribution from the contractions of the 
¢ (/; )'s to the exponential e4> (fl. For example, in a free theory 
of mass 1 

(f/J (n"'f/J (In) e~ (fl) 

=elIf21I1fIl2_1IC(t.,nl (Uf/J(/;)) g,(/;,C/) 

<eI1l21I1fIl2_ I ito C) (j - I)!! II/lIn_-/ i~X 11/;11-1 
j even 

<e"12lllfI12_1 IT 11/;11-1 nn/2 ± (n.) n, -n-))/211/11"_-/ 
;=1 }-O J 

= e"f21I1fIl2_1 iiI, 11/;11-1 nnl2 (1 + II~!~;,)". 
Proof Analyticity of its finite volume approximations 

Cooper, Feldman, and Rosen 1904 



                                                                                                                                    

imply the analyticity of (e~(f) via Vitali's theorem. Hence 
the corollary is a direct consequence of Theorems A.t and 
ILL • 

III. BOUNDS ON Z(J,L} 

The principal result of this section is [see (1.3) for defini­
tions] 

Theorem 111.1: There are constants K, K and tJ > 0 such 
that 

2 - 2 IZ !J, L 11..;; eKIIJII-1 +KIILII_1 

for all Je£" -I and LE:tt'" _ I, Ii' 
Proof: The proof is an extension of that of Theorem 11.1. 

Again it suffices to consider J, L real and CO'. In addition to 
the seminorms II J IIt.B,I' II J 112,B,I' and II J IIB,I of Theorem 
11.1 we use 

II L lIi,B,1 = L [e(a, r) + e(p, r)] II La ,pIl2_ 1,l , 
B 

where l:B=l:a,P,reB and La,p =;a L(;p, 

II L 11~,B,l = L L L e(a,p) 
YE'ifII) aEY p, reB 

and 

II L II~,I = II L II tB.I + II L lIi,B,1 . 
(As in Theorem 11.1 the II . 112,B,I norm is u~ed only to control 
boundary condition adjustments to the and:: sub-
tractions. ) 

Pick any fixed CO' J and L with II L IIB,I";; E (for all B 
and I). LetLIB ) = l:a,f3eB La,p·Againweprovebyinduction 
on the size of B that 

•• 2 - 2 2 
(e/(B) + Y(B) I";; e KII JIIB,L + KII + IIJIIB,IIII LIIB,I (3.1) 

for alII. (K is chosen larger than certain universal constants 
that appear in the proof. K is chosen larger than some con­
stant which depends on K. E is chosen such that c K and c K 
are both smaller than some universal constant.) The induc­
tive hypothesis is trivial for B = ¢J so we assume it true for all 
B 's of at most some given size and prove it for B + =Bu! a 1 
withaEiB. IfJ{t) = tJa + JIBpL (t) = t8L + L IBp 8L = L IB +) 

-LIB) then 

(/-(B +)+ Y(B+) I 

= (/-(B) + Y(B) I + fdt<r fa +tJY] e/lt) + Ylt)I' 

(3.2) 

Again the subtractions inherent in [ fa + tJY] are imple­
mented through the use of duplicate fields. We introduce five 
independentcopiesoftheP(¢J h theory labelled ¢J" ¢Jy, ¢Jg,¢Jb' 
¢Jo' respectively. Then 

q fa +tJL ]!(¢J)I 

= (J(¢Jr - ¢Jy)!,)1 +!( !(¢Jr - ¢Jy) tJL (¢Jr - ¢Jg) 

-(¢>b -¢Jy)tJL(¢Jb -¢Jg)} {fr -!b)/' (3.3) 

where J¢J = f J (x) ¢J (x) dx, etc. The net effect of these sub-
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tractions in the cluster expansion is to require in the first 
term that f be connected to f and in the second term that 
both legs of tJY be connected to! (We will continue using 
the notation ( [ fa + tJY] J»). By the cluster expansion 
[using the same notation as (2.4)] 

([ fa + tJL] e/lt)+Ylt)1 = L L rsrr,ur')_l_ 
X r,C1x Jo ZA,I 

r2 finite 

X ar,ur, ( [ ~ + tJL ] efld + f1d)u 
c/ a A, ajr,ur,) 

X du(r,ur2) • (3.4) 

In the /1 and ifl terms of the exponential, we do not 
make the A subtractions u(r I-dependent (r = r lUr2), but 
we do introduce a u(r) dependence in the bare Wick order­
ing in if, Le., 

/1 = / _ J (¢J ) I = J (¢J - (¢J ) tl- J¢ I , 

if = :¢J L¢J:C(ajOril ' 

ifl = if - 2(¢J)1 L¢J + (¢J)I L (¢J)I - tr LSI' 

where 

SI = (¢J; ¢J ) I - CI . 

The fact that the subtractions are appropriate to the ex­
pectation ( ) I rather than ( h causes no problem for those 
parts of /1 and ifl supported in X: we easily absorb the 
errors which are proportional to IX I. However, as we shall 
see, we must have the correct (Le., ( h) subtractions inXc in 
order to apply the inductive hypothesis there. Accordingly, 
we rewrite /1 and if I as follows. First we decompose L as a 
sum of three pieces with arguments in X X X, 
X XxcuxcXX, andXcXXc, respectively, 

Lx(x,y) = Xx (x) L (x,y)Xx(Y) , 

LM(x,y) =Xx(x)L(x,y)X c(y) + X c{x)L(x,y)Xx(Y)' x x 

Lxc(x,y) = X xc(x)L (x,y)x xc(y), 

and similarly for tJL x and tJL M' We then replace each ¢J I in 
XCby 

¢JI=¢J!_(¢J)I- (¢Jh)=¢JI-tJ(¢J). 

The resulting straightforward calculation yields 

rrl + ifl =~! + if! + A.L * A. 7 
,/ c/ XC XC 'I' M'I' 

+ 7 x + if x + c(J,L ) , 

where 

] c{x)=J c(X)-fdY [2L c(x,y)tJ(¢J(y) x x x 

+ L t,(x,y)(¢J (Y)d ' 

]x(x) = Jx(x) 

- f dy [2Lx{x, y)(¢> {Y)I + Lt,{x,y)<5(¢>{y)] , 

c(J, L) = (I' XC>7 - (/)1 + tJ(¢J) Lxc tJ(¢J) 

- (¢J)ILt,8(¢J) - (¢J)ILx (¢J)I 

+ tr [ Lx ~ + L (S! - SI)] , 
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and 

Lt(x,y) = 2Xx(x)L(x,y)X ely). 
X 

The constant terms are bounded in 
Lemma III.2: 

Ic(J,L )1<cdX 1+ c23 ! II JII~,B+.1 -llJx XC 11~'B,7J ' 
For future reference we also observe that 77 e' 2'(t)7 e' and 

x x 
rpL t rp 7 have precisely the right subtractions in X c and obey 

Lemma III.3: 

II Ixe 1I!,7 

< II J e 112 - + C24 K L L L elY, fil) 
x B,I YE'G"(I) YEYnX {3,EB + 

XIIJxcll!,7IIXyL{3,,{3,112-I,/+C25 I~I , 

II I x ll_I,7 

<II Jxll_ 1,7 + c261X 11/2 ! IIC112 XX L (t) C )I2I1L' 

+ IIL(t)xll-I.7J· 

We are now confronted with the one substantial differ­
ence between Theorems 11,1 and 111,1. We cannot, at this 
stage, apply the cluster expansion (2.4) since the integral 
< . )~, o(r,ur,l does not factor even though the covariance 

Q(a(rlur2)) decouples X and Xc. The culprit is /L Jt¢>I, 

which does couple X and Xc. We will expand /LJt¢>I, for 
then each resulting term does factor. However, the factor in 
Xc will not be just a partition function as in Ref. 6, but will 
contain a product of fields as well-the fields of (rpL t rp 7 r 
that live in Xc. This factor will be estimated by applying the 
analyticity argument of Theorem A.1 to the bound (3.1) of 
the inductive hypothesis much as was done in Corollary 11.7. 

Let us start by expanding the exponentials e ¢>L Jt ¢> I, e/ x, 

and e 2"(1 Ix. Each resulting term factors and the o.Y M contri­
bution to (3.4) becomes 

(o.Y M e/(t/ + 2"(t/) I 
ec(J,LI is(r) 

= L L -- da(r) 
x,rE1xn,p,kn!p!k! 0 

Xa
r (7; 2'(t)k X( rp(X;)):,o(r) oLt(xl,yd 

k + I { k + I _ /1 e + 2"1 c) 
X 112 L t(x;,y;) JJI rp I (y;) e x x A" X'/ 

Z -
X A" X,I . (3.5) 

ZA,I 

The contributions from / a and o.Y x are similar (but easier 
to handle) and will not be considered explicitly. Thanks to 
the (color coded) subtractions in Va + o.Y] the 
n = p = k = 0 term is zero. We have suppressed the integral 
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signs f 11 dx; dy; under the convention that repeated argu­
ments are integrated over. 

The expansion (3.5) is controlled in several stages. In 
stage 1 the ar is evaluated and localizations are introduced. 
We then consider a single resulting term. In stage 2 analytic­
ity and the inductive hypothesis are used to bound that por­
tion of the term that lives in A \ X. In stage 3 those J 's and 
L 's whose rp 's have been destroyed by 0 /orp 's are separated 
off and estimated. In stage 4 we finish bounding that portion 
of the term that lives in X. Finally, in stage 5 the remaining 
sums are controlled. 

Stage /, As in Lemma 11.2 we apply ar 

= ~1TE&,(r1 ~YE1T ! ar co~, we classify the resulting terms ac­
cording to which o¢> 's attack interaction vertices and accord­
ing to which /'s and 2' legs are attacked (the two rp 's in 
each 2' are referred to as 2' legs), and we localize these 0 ¢> , s, 
/'s, and 2' legs. Let 

n I = number of /'s attacked, 

Pj = number of 2' x's that have hadj legs attacked, 

k I = number of L t's that had their one X leg attacked, 
and 

M (..:1 ) = number of interaction legs, /'s, and 2' legs 
localized in ..:1. 

Then the number of classes is at most e3
(1r) + n + p + k I 

and the number of terms in a class that have any given fixed 
set of localizations is 11.<1 eC.,M (.<1 1M (..:1 ltv. These bounds are 
controlled as in Lemma 11.2. The sum over localizations will 
be controlled later and until then we generally suppress the 
notation specifying the localization. 

Stage 2. We now estimate anyone of these terms. We 
first focus our attention on the L t's, We have the following 
structure: 

so that each L t must occur in one of the following configu­
rations: 

f dx rp (x) L t(x, y), 

f dx dx' X.<1a (C7- 112 ar CC7- I(2)(X, x') X.<1/3 

X(Cr2 L t)(x,y)(Cr2 L t)(x',y'), 

f dx(ar CC 7-
112

)(., x)X.<1a (C1 12 L t)(x,y) , 

where in the last case the other end of the arc is not hooked 
toanLt· 

Apply analyticity in / e and the inductive hypothesis 
x 

in the form of the following lemma (which will be proven 
later). 
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Lemma III.4: For the constants K and K in the induc­
tive hypothesis (3.1) 

1 
( IT ~ 7(x XC .t;,B) e/~c + 2'~c) _I ec(J,L) ZA" x,7 

i = I A " X,I Z A,I 

( 
II J ell -)"" «n!)1/2 K'" 1 + X 1/2- 1,1 II II x c .t;,B 11 __ 

n i=1 x 1,1 

X exp{C27 IX 1+ K(IIJxc 1I~'B,7 + II JIIi.B+,/) 

+ K(1 + IIJxc 11~,7)(IILxc 11~'B,7 + II L IIi.r'/)}' 

where K' depends on K but not on K. 
This estimate is applied with the.t;'s being the 

L t,(x, y)'s or C f2 L t,(x, y)'s with x [and the ~ in the 
df-lq.o(r)) integral] held fixed. The II X XC .t;,B 11_ 1,7 norms 

that result for our three configurations are 

II L t,(~, ·)11- 1,7 = II f dx ~ (x) L t,(x, ')11 _ 1,7 ' 

f dx dx'II(C1 12 L t,)(x, ·)11-1,7 

X (x.4
a 

C 7- 112 ar CC r 112 X.4,8 )(x, x') 

X II (Cf2 L t,)(x, ·)11-1,7 , 

f dx (ar CC7-
112 X.4a )(-, x) II(Cf2 L t,)(X, ·)11-1,7 . 

The notation Ilf(x, ·)11- 1,7 indicates that the II 11-1,7 norm 
has been applied tof(x, y) viewed as a function of the variable 
y with x held fixed. 

Stage 3. Now that we have estimated the L t, 's we ana­
lyze the other factors in the term we started to consider in 
stage 2. It is an integral with respect to df-lq(o(r)) of the inter­

action e - V(t,6) multiplied by a function of~, the J's, Lx's, 
L t,'s, and the arc's. For notational convenience think of 
this function as a graph having one vertex for each position 
space integration variable Xi or Ui (the u's being the position 
of the interaction vertices downstairs) and one edge for each 
8Lx , Lx (denotedrvv) or arc (denoted --I. In addi­
tion, some ofthe vertices may be multiplied by a J xIx) or 
:~ "(x): . We are now primarily interested in the dependence 
on J and L. Each connected component of the graph contain­
ing a J or L must be of the following types (just classify all 
strings of Lx's according to what their ends look like): 

Type I: L--="':=J (there must be at least 

2 Lx's by Wick ordering). 

Type II:!I --••• --- f2 (there must be at 

least one a r C), where.t;(x) is one of Ja(x), Jx(x), 

C 7-
11211(CP L t,)(x, ·)11-1,7> and 

C 7-
112 11 (Cf2 8L t,)(x, ')11-1,7 . 

Type III (a): fIx) '--••• ---- ~. 

Here there are one or more Lx's with the ~ belonging to 
the last one.f(x) is as in Type II. 

Type III (b): ,7 x' II L t,(~, ')11_ 1,7, or II ~L t,(~, ')11- 1,7 • 
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Type IV: ~ --••• - ~. 
Here there may be one or more Lx's. 

Type V: 

. 
• 

f 
~ , 

where I contains interaction vertices and arc's only andfis 
as in Type II (i.e., a J or LM vertex). 

They are dealt with as follows. We emphasize that this 
is all done inside the df-l(~) integral so that ~ is fixed. We 
lump all the usual cluster expansion decay factors into a 
factor that we denote D. Also recall that we have suppresed 
localization notations. 

TypeI: { I 
= tr(Lx arC)2 = tr(C112 Lx Cf2 C 7- 112 ar CC7-

112)2 

<D II LxI1 2_1,7 (by Lemma B.2). 

Longer loops are handled similarly using 

II Cj12 LC1/211L'_L' <II Cf2LC112I1H.s. <II L 11-1,7 . 

Type II: (fl' arCLx arC···ar Cf2)<D II C112 f11lL'11 Lxll-l,7 
• .. 11 Cf2 f211L' . Whenf(x) = C 7-

112 11 C112 L t,(x")lI_I,7we 
have II C1

12 
filL' <II L t,1I- 1,7<211 L M II- I,7 ; when 

f=Jx IICf2fIIL,<IIJx ll_ I,7' 

Type III (a): l.tar CLx .. ·ar CLx~ I 
<D II C 1/2 filL' II Lxll_I,r .. 11 Lx(~' ·)11-1,7' 

Type III (b ): These are, for the time being, left in peace. 

Type IV: Except for ~ L x~, which is left in peace, type IV 
components are estimated in the same manner as type III(b) 
components. 

Type V: Each connected component of type V is dealt with 
by using Cauchy-Schwarz to separate off the interaction 
vertices as follows: . . 

. . . 

Those connected components in the second set of brackets 
that do not have any ~ dependence have the structure of type 
lor II components and are estimated as such. All other com­
ponents in the second set of brackets are of the form 

[~Lx arc··· Lx ~ ] 112 

<D II Lx(~' ,)11-1.7 II II Lxll_I,7, 

where the n contains precisely one factor for each Lx in the 
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interior of the original type V string. 
Stage 4. Let us now stop to reorient ourselves. We first 

used the inductive hypothesis and analyticity to bound that 
part of our term localized in A '\ X. This yielded an exponen­
tial factor 

eC28lxl exp [ K(II Jxcll~'B.7 + II JII~,B+,1) 

+K(l+IIJ cII2J(liL cll
2 

-+IILlltB+.7)] , x B.I x I.B,I 
a combinatoric factor (k + l)!IIZ, and a factor of 
K '(1 + II J c II jk 1/2) for each factor L ft and 8L ft. The 

x -1.1 
dJ.L(t/J )qojrj) integrand then consisted of the interaction, 

some interaction vertices, some}' x vertices, some 

II L r((t/J, ')11_ 1.7 [and 118L ft(t,6, '1I1- 1,7] vertices, some!f x 's 
aswellasarC's,J's,andL 'swhoset,6 's had been attacked by 
8/8t,6 'so Some of the latter have now been estimated out of 
existence. Each arc that has been estimated has been re­
placed by its usual cluster expansion decay factors. Each J 
and L that has been estimated has been replaced by II J 11_ 1.7 
or II L 11_ 1.7' The rest of the term has been bounded by 

f dJ.L(t,6) IFt1t,6 )IIFM)I, 

where FI(t,6) contains the interaction e - vx, interaction ver­
tices, and C jlz X.:1 C V2 and arC propagators but no L 's, 

a 
J's,ort,6 'sbelongingtoL 's orJ's (it is what is left of the type V 
components) and Fz(t,6 ) contains 

II Lx(t,6. '1I1- d s (from type III (a), IV, and V 

components), 

I xt,6's (type II1(b) components), 

11(8) L ft(t,6, ·1I1- t/s (type II1(b) components), 

(type IV components). 

We simply use the Schwarz inequality to separate FI and F2• 

The FI factor is of classic CE form and is estimated as such. 
The F2 factor is simply integrated as the Gaussian integral of 
a polynomial. 

It may be bounded by 

( 'Ilk ,)1/2( ,)IIZ cN(p+k+n} p.. n. 
e lIZ 

(PI + 2pz + kl + nl)! 
times a product containing one II J II _ 1.1 for each Jt,6 in Fz 
and one II L 11_ 1.7 for each II Lx(t,6, ')11- 1.7, 
11(8) L ft(t,6, ·)11_ 1.1' and :t,6Lt,6: in Fz. Note that we obtainL z_ 
type norms on L because Wick ordering rules out graphs 
containing the factor Tr CL. 

Stage 5. We have now bounded each term in the series 
that results w hen the ar of (3.4) is evaluated and localizations 
are introduced. We have also shown how to control all sums 
with the exceptions of those over x,r,n, p,k, 'IT and over the 
arC, /, and .5t' localizations. The sums over 'IT and arC 
localizations are controlled as in the standard CE (see Ref. 6, 
Proposition 8.1 and Lemma 10.2). The sum over / and .5t' 
localizations are controlled by 

1908 

I IIX.:1J' CV2JIIL,<IXI1IZIIJxll_I.7, 
jEX 

I IIx.:1J, c-f!2 Lcvzll Hs < IX IIIZ II XxL 11- 1.7, 
jEX 

I II X.:1; Cj12 LCj12 X.:1; ilKS. <IX III Lxii-I} . 
i.jEX 
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In effect we get a factor of IX 11/2 for each of the 
nl + kl + PI + 2pz / and!f localizations we introduced. 

Altogether we have 

I ([ fa +82'] e/"(t}i+y(d)11 

<I I _l_ ec,ollrl+lx l+n+p+k}-X(mo}lrl 
x.r n +p+ k #0 nIp! k! 

P'k ,1IZn,llz 
X ... IX I (IIZ)(n, + k, + p, + 2p,) 

(nl + kl + PI + 2PZ)!I/Z 

x{IIJall_I.7 + 118Lx ll_ I.7 + 118LMII- I.7 

XK'(l+ IIJxc ll_ I.7)} 
(1 + k )I/Z 

X (k !)1IZI1 Ix 11"- 1.7 II L (t)x II ~ 1.7 

X{IILM(t)II_I.7 K '(l+ IIJ~cII~z_I.7 )}k 
xexp{ K!II Jxc II~.B.I + II J IItB +.1) 

+ K (1 + II Jxc 11:.7)(11 L Xcll~.B.7 + II L II~.B +.I)} 
<I ec"IX 1- l/2K(mo}1T1 {II Ja 11_ 1.7 + 118Lx 11_ I} 

x.r 

+K'1I8LMII_ I,7(1 + II JXC Il_ I.7)} 

X{IIIxll_l.I + II L (t)xll_I.7 + K'II LM(t)[I_I} 

X(l + II Jxcll_I.7)} 

{ 

&0 1 _ } 
X ,,~o (n!)IIZ (A I II Jx 11- 1.7 r 

xL~o (A zIIL(t)xll_I.7)p} 

{ 

&0 [ ( IIJ cll _)]k} 
X k~O A3K'1I LM(t ))1- 1.1 1 + ~ 1{2- 1.1 

xexp{ ... j 

<I ecdXI-IIZK(mo)lrl {II Ja 11-1.7 + 118Lx ll-1.7 
x.r 

+ K '1I8LMII- 1.7(1 + II XC 11_1.7)} 

X {II J(t )xll- 1.7 + II Ci 12 Xx L (t) C112 I1L' 

+ II L (t)x 11- 1,1 +K 'II L (t)M 11- 1.1(1 + ilJxcll_ I.I)} 

xexp{ A ill J(t)x 112_1.1 

+ 4A ~ K,zl! L (t )MII 2
_1} II Jxc 11 2

_
1
•
7 

+ K(II JXcll~.B.7 + II JII~.B+.Il 
+K(1 + II Jxcll~.7)(11 Lxcll~.B.7 + II L IItB+,I)}' 

where we have used 
Lemma III.3(b) and IX 1112<e1l21xl on the first 

II I xll_I.7, _ 
Lemma III.3(b) and IL I < E on the other II J x 11_ 1.7, 
(2.20) to perform the sum over n, 
A z E < ~ to perform the sum over P, 
Lemma 111.5 and A 3K' E < ! to perform the sum 
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overp, 

<I ec"IXI-(1I2)K("'olir l {II Ja I1 2
_ 1.7 + II J(t)xII2_1.7 

x.r 

+ IIC~/2XxL(t)CV2I1i, +K,2(l + II JxcIl2_1.7) 

xIII l)LM 112_ 1.7 + ilL (t)M 1[2_ 1.7)} 

xexp{K [II JII~.B,I + t (II JlltB+.1 -II JlltB.I) 

+ II J IItB +.1 ] 

+ K(1 + II Jxc ll!.7) [II L IIi.B.I + t(ll L IItB+.I 

- IILII~.B.I) 

+ II L IItB+,1]}' 

where we have used 

Lemma 11.6 since we require 

K>max{2A~ e2,2A~ e l-
I}, 

Lemma 111.6 since we require K>2e~ (4A i K '2), 

<L,ec'4IXI-(I/2)K(mo)IFI { I II Jp II 2
_ 1•1 

x.r (JeB+nX 

+ b II Lp,•p,1I 2
_ 1.1 

PjEB nX 

+ K,2(l + II Jxc 11 2
_ 1•7) P, o~, in II L p,•p,1I

2
_1.1} 

B+nX 

X exp{ ... J 

<I ec"IXI-(1I4)K("'o)lr l { I e(a,p)1I Jp II 2
_ 1•1 

x.r (JeB + 

+ era, P2)) IILp,•p, II~ 1.1 } 

xexp{···J 

as in Lemma 11.2, 

<! exp {K [II JII~.B.I + till JlltB+.1 -II JII~.B,I) 

+ II JII~.B+,1] 

+K(1 + II JII1,1) [II L IItB.I + t(II L IItB+.I 

- II L IItB.I) + II L II~.B+.I]} 

as in (2.6) if K>~x.r ec"lxl- (1I4)K("'o)lrl and 

K>K'2 ~x.r e c"IXI-(1I4)K("'ollrl. 
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(3.6) 

Substituting (3.6) into (3.2) and applying the inductive hy­
pothesis (3.1) gives 

I (/-(B+'+Y(B+')II 

<;;exp[ K II JII1.1 + K(1 + II JII1,1) II L 111.1] 

+ f dt ! exp {K [ II JlltB,I + t(ll JlltB+.1 

-II JII~.B,I) + II JII~.B+.I] 

+K(l + II JII1,1) [II L IItB.I + till L IItr,l 

-II L IltB,/) + II L IltB+.I J} 

<;;exp[Kil JII1+,1 +K(1 + II JII1+,1) II L 111+,/] 

= exp [(K + K II L IIi +,/ )11 J 111 +.1 + KilL 111 +.1] . 

The theorem follows. 

Lemma III.2: 

Proof We already know 

<c41X 1+ Cs [II JII~.B+,1 -II Jxc 1I~.B.7] 

by (2.7) and Lemma 11.4. The terms l)(t/J ) L (t) c l)(t/J ), 
x 

(t/J ) I L t l)(t/J ), and (t/J ) I L (t)x (t/J ) I are all the form 

f dx dy L (t )(x, y)fl(X)f2( y) with 

II/;II+I<;;d~2IXIII2 

so that 

• 

I J dx dy L (t )(x, y)fl(x)h( y) I <c36 11 L (t )II-IIX I <c37 1X I . 

The remaining terms are 

tr L(t)x ~ 

= (L (t);Xx ~ XX)L'(R4 ) <II L (t)II_I.7 II XX ~ Xxii + 1.7 

< II L (t)II _ 1.7 c381X 11/2 (by Corollarj B.4b) 

<C39 IX I, 

tr L(t)(~ -Sf) = (L(t),~ -SI)L'(R4) 

<;; II L (t )11- 1.1 II ~ - Sill + 1,1 

<c391X I (by Corollary B.4c). 

Lemma III.3: 

(a) IIJxc II~.7 

Cooper, Feldman, and Rosen 
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x II JXc 11:7 11 XY L{3,,{3, 112_ 1,/ + c25 1X 11K, 

(b) lI]xll-I,7<11 Jx (t)II_I,7 +c26IXII/2 

x {II CjI2Xx L (t) CJI2IIL' + II L(t)xll_ t,7}. 

Proof (a)] (x) = J (x) - 1 (x) 
XC XC ' 

where 

1 (x) = f dy 28(qS (y) Lxc(Y'x) + (qS (y), L ~ tv ,x) 

= f dy 28(qS (y) L (y,x) X XC + (qS (y)7 L ~ (y,x), 

so 

II Jxc 11: 7 

<II Jxc 11:,7 + 211 Jxc IIB,7I1/I1B,7 + 11/111,7 

by Lemma B.5(a). 

But applying 

/ f dY 8(qS(Y)f(Y)/ 

«c '" '" e - d ({3" aXnYj II X I' II 
"" 40 ~ ~ YJ{3, -1,/ 

YEIC (II {3,EB + 

(see Lemma 11.4) withf( y) = L (y,x) CV2 gives 

II f dy 8(qS (y) L(x,y)xxcli
B

,7 

<e3 11 f dy 8(qS y) L (y,x) X XC II _ 17 

<e3 11 f dy 8(qS (y) L (y,x) C112 II
L

, 

<C4I I I e-dl{3"axnYIIIXyL{3"B+II_I,I 
Y {3,EB + 

Similarly 

and 

IlL dy (qS(Y)h L ~ (y,x) I I B,7 
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<e3 11 Ix dy (qS(y)>tL~(Y'X)II_17 

<e3 1/ L dy dz(P'(qS (z))>t C7(z,y) L ~(y,z) 11_ 1,7 

<C43 I I I e( /11' (12)11 XY L ~{3 B+ 11_ 17 
Y !3.EYnX /32EB + 2', 

This gives 

211 Jxc IIB,711/118,7 

<C44 I e(/1I,/12)IIJxcliB,71IXyL{3"B' 11-1,1 
Y, (3; 

<C44K I e( /11> (12) II XY L{3"B + 112_ 1,1 II J XC 11:,7 
y, {3" {3, 

+c45 IXIIK. 

Similarly, by Corollary B.4 and (2.5) 1I/IIB,7<c46 IX 11/21K 1/2 
since we choose IlL 11< €< 11K 1/2. 

(b)]x =Jx -/(x), 

where 

1 (x) = f dy{L~(x,y)8(qS(y) +2(qS(y)>t L (t)x(x,y)} 

= f dy{L~ (x ,y) + 2L(t)x(x,y)}8(qS(y) 

+ 2(qS (y)h L (t )x(x,y) 

so 

II ]xll-l,7 

<IIJx ll-1,7 + 11/11-1,7 

<II Jx ll- I,7 + c26 1X 11/2 

{II CV2Xx L (t)CJ 12 IIL' + IIL(t)xll-I,7} 

by Corollary B.4 and (2.5). 
Lemma IIl.4: 

I
I IT qS7(X C/;'B)e}'~c+Y~c) _I eC1J,LI

Z
A,X,7 

\i~1 X A,X,l ZA,' 

. ( IIJxcll_17)n n 
<nnl2 K n 1 + nl/2 ' JJI II X XC /;,B 11_ 1,7 

xexp{c27lXI +K (IIJ cl1
2 

_ + IIJ\I~'B+") 
X I,B,I 

+ K (1 + II Jxc 11:,7) (II Lxc 11~'B,7 + II L II~,B ',I)}' 
where K' depends on K but not on K. 

Proof By the inductive hypothesis (3.1) 

I ( I~c+ Y~c) I 
e A ,x,7 

<exp[KII] cI12_+K(I+II] cl1
2
JIIL cI1

2
_] X B,I X B,I X B,I 

<exp{ (K + K II L XC 11:,7) [1 + C24 K (II L II~,B +,7 

- II L XC 1I~'B,7)] II Jxc 11:,7 + K II L XC 11:,7 + 2C25 IX I} 
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by Lemma 111.3 and (2.6) since we choose € such that 
cK<I«K), 

<exp[(K +K II LxclI~'B,7 +KII L IIi.B+,7) II Jxcll~.7 

+ K II L XC 11~,7 + 2c2s 1X Il 

since we choose K such that (K + 1) KC24 <K. Hence by Vita­
,ii +.i"l 

li's theorem (e XC Xc) is analytic in X C ~B) and the 
x 

lemma follows from Theorem A.l [with K' = e3(K + 2) e~ 
depending on Kbut not on K], ZA ,x,7/Z A,1 < eC" IX I and the 
estimate on c(J,L ) given in Lemma 11.2. • 

Lemma 1//.5: 

~ ak (1 + _b_)k <~e4a'b' if a<!. 
k.?::O k 1/2 1 - 2a 

Proof 

00 k ( b)k 00 k k (k) ( b )P 
k~O a 1 + k 1/2 = ~op~o a p k 1/2 

(binomial expansion) 

.;;: ~ ~ ak2k~ 
"'" £.. £.. pl2 k=Op=O k 

[since (1 + l)k> (;) IP l k - p
] 

00 k k b P 

\~o p~o (2a) (p!)1/2 

00 00 n (2ab JP 
= n~op~o (2a) (p!)1/2' where k = n + p, 

_ 1 ~ (2ab JP 2P/ 2 1 
- 1 - 2a p.?::o (p!)1/2 2P/2 

1 (00 (8a2b 2JP)1I2 ( 00 1 )112 <- I I-
I - 2a P = 0 p! P = 0 2P 

v1 4a'b' =--e . 
1- 2a • 

Lemma 1//.6: KilL C 112 _ + A411 L (t )MI12_ 1,7 
X I,B.I 

- 2 2 12 <K [II L III,B,I + t(ll L 1II,B+,1 -II L II,B,I)] 
if K>2A4 e1. 

Proof A411 L (t)M 112_ 1,7 + K II L C 112 _ 
X I,B,I 

<2A4(t
2
118LMII2_1,7 + II L(B),MII

2
_1,7) + K II Lxc 1I~'B,7 

<2A4 e1 (t at least~e Pi=a II Lp"p, 112_1,7 + II LMlltB.7) 

+KII Lxcll~'B,7 
(as in Lemma B.5c) 
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<K (t at least t.;. Pi = a (e( PI' r) + e(r, P2)) II Lp"p,1I
2_1,l) 

+KII L IItB,7 
(if K>2A4 e~) 

"K { II L IItB.7 + t [II L IItB+,1 -II L IItB,I]}' 

IV. EXISTENCE OF THE SECOND LEGENDRE 
TRANSFORM Ii2) 

Our principal concern in this section is the inversion of 
the map 

defined in (1.9). We have 

[
A [J,L }(x) ] 

d {J, L 1== B {J, L }(y,z) 

[ 
(~(x) J,L ] 

= <: 1,6 (y) 1,6 (Z);)J,L - (~(Y)J,L (~(Z)J,L ' 
(4.1) 

where (. )J,L= (.ef+1)/(ef+1). Thelinearapproxi­
mation to d near J = L = 0 is (note that d [ 0,0 I = [0,0]) 

- [ (~(/ + 2') ] 
d[J,L I = (;1,61,6; (/ + 2') . (4.2) 

It follows from the definition (1.4) of; ; that the kernel of 
the integral operator mapping (J, L ) to .9/ (J,L I is 

.9/(x,y, Z; x',y', z') 

[ 
(1,6 (x); 1,6 (x') 

= (1,6 (y); 1,6 (z); 1,6 (x') 
(1,6 (x); 1,6 (y') 1,6 (z') ] 

(~(y) ~ (z); ~ (y') ~ (z') . 
(4.3) 

(Here the semicolons refer to connected expectations. ) We 
will prove in Lemma IV.l that (4.3) defines a bounded linear 
operator from K _I==K _1(R2

) Ell J¥'" _ I (R4) onto 
K + I = JYI(R

2
) Ell ~ (R4) with bounded inverse and in 

Lemma IV.2 that d maps K _ 1,6 into K + I and that d is 
analytic inJ andL. In Theorem IV.3 we use the Contraction 
Mapping Theorem to prove the invertibility of d and the 
existence of r(2). 

Lemma IV.}: In €P(1,6 h . .9/ of (4.3) defines a bounded 
linear operator from K _I to K + I with a bounded inverse. 

Proof Since 

(~',) . .9/{J,L I = «(f' + 2")(/ + 2') 
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it is a trivial consequence of Theorems IlL I and A.I that if 
is bounded as an operator from K -I to K + I' When the 
coupling constant A. = 0, 

.r;f-I -_ [C- I 0 ] 
- 0 2C- 1 ®C- 1 

is a bounded operator from K + I to K _ I' Hence, to prove 
the boundedness of if - I it suffices to prove that the matrix 
elements of(d IdA. )if, viewed as bilinear forms onK -I' are 
bounded uniformly in A. for A. sufficiently small. If [ ta J is 
the partition of unity of Sec. II the cluster expansion implies 

I d~ (2"2') I 

< L c48 11 L~,a,II_1 
ajP,€Z 

X{e -dla,.p,) -d(a,.p,) + e - d(a"p,) -d(a,.p.l} II L 11_ 
P,.P, I 

since e - d(a,. P,) - d(a,.p,) + e - dla,. P,) - d(a,. P,) defines a 

bounded operator on [2(T). The other matrix elements are 
handled similarly. • 

Lemma IV 2: In EP (¢ 12, .r;f [J,L J of (4.1) is defined on 
K _ 1.05 =Jf' _ 1.05 (R2) Ell K" _ 1.5 (R4) (for 8> 0 sufficiently 
small) with range in Jf' + I' .r;f is analytic in J and L. 

Proof This is a simple consequence of Theorem 111.1. 
The bounds 

1(/1 ef +Y) I «/1 JI)1/2 (ef +!f +} +2')112 

2 - 2 
/IIJII KIIJII_I+KIILII_1 
'Cso I _Ie 

and 

1(2' l ef+.Y)I« 2'1 ;'1)112 (ef+ Y +J +Y )1I2 
2 - 2 

<csoll LIII_I eKIIJII - 1 +KII LII_1 

imply that «(J (x) ef +!f) is defined on 
Jf' _IIR2) Ell ~_llo5(R4) with image in Jf' +1(R2) and that 
(: ¢ (y) ¢ (z):e!'" + 2") is defined on Jf' _1(R2) EIlK"_1 5(R4) 
with image in K" + I (R4). Since (ef + .Y) is continuo~s in J 
and L it is bounded away from zero on Jf' _ 1.5' Hence 
.r;f(J,L ) is defined on Jf' _ 1.5 with image a bounded subset of 
Jf' + I • Hence analyticity in a suitably cutoff theory implies 
the analyticity of.r;f by Vitali's theorem. • 

Theorem IV.3: In EP (¢ lz, .r;f has an inverse defined and 
analyticonJf' + 1.6' for some 8 ' >0.r(2) [A,B I is defined and 
analytic on Jf' + 1.5" 

Proof This a direct application of Theorem A.4 with 

VI = K _ I , 

V2 = Jf' + I, 

Y=d\J,L I, 
F=if[J,L J, • 
Properties of G, d, and r (2) established in Ref. I in the 

the sense of formal power series can now be simply estab­
lished in the sense of genuine functionals. For example, it is 
no problem to introduce Dirichlet boundary conditions and 
prove preservation of decoupling for quadratic sources [see 
Eq. (4.3) of the first reference in Ref. I and Lemma II.II of 
the second] . 
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Theorem IV.4: In an EP (¢ 12 theory with zero Dirichlet 
data on ax (where X is a union of lattice squares in R2) .r;f 
maps VS•5 into Ws and d- I maps WS•o5· into Vs for some 
8,8 ' > 0 where 

Vs = [(J,L )E H _ l.ax(R2) 

Ell HS_ I •ax(R4 )1 suptLC,X X'xu'xcX,XcJ , 

Ws = {(A,B)ED + l.ax(R2
) 

Ell H S
+ I.ax (R4) I suptBC'x X'xu,XcX,XcJ . 

(Here supt means support in the sense of distributions.) 
Proof This a direct application of Theorem A.5 with 

V M = [(J,L )E H _ l.ax(R2) 

Ell HS_I.ax(R4)1 J = 0, suptLC,X X,Xcu'xcX'x J , 

W M = [(A,B)ED + l.ax(R2) 
Ell H S+ I.ax (R4)1 A = O. suptBC,X X,Xcu'xcXX I .• 

APPENDIX A: ANALYTICITY BOUNDS 

We gather together here those properties of analytic 
functions on Banach spaces that we use. The basic tool is the 
Cauchy integral formula, which is valid in a Banach space 
setting. (See Ref. 11). 

Theorem A.l: Let Y be a complex valued function on a 
vector space Vand let II . II be a seminorm on V. If 

(a) Y is analytic in the sense that YU + t g) is analytic 
in t for any f, gE V and 

(b) I YU) 1< eK II III' for all IE V, then 

I IT dd Y (1+ i ad i ) laj=o I 
,=1 a i ,=1 

n 

<e3n(KI/2nl/2+Kll/llteKII/II'II 1I.t:1I· 
;=1 

Proof Integrating ai over the circle lail =Pi (Pi to be 
determined later) we have 

I iUI d~i Y (I + itl a;.t:) laj=O I 
=_1 I r IT da; Y(/+ i a . .t:) I 

(21T)n Jlajl=pj;=1 a; ;=1 ' , 

<[ ITP;]-I sup .exp(KII/+i a;.t:1I2) 
, = I la,l - P, ,= I 

« ,UI 1I.t:II)p- n exp[K(1I/1I2 + 2npII/II + n
2p2)] 

( choosing Pi = ~) 
n 1I.t: II «VI IIJ;II) [(Kn)I/2+KII/IWeKII/II'+3n 

(choosing P = [(Kn)I/2 + K 11/11]-1). 

Theorem A.2: Suppose Vi are Banach spaces with 
norms II II; and V;.6 = [vEV;11I vII; <8 J. Suppose (a) Y: 

• 
VI •r + V2 is analyticin the sense that Y(v + zw) is analytic in 
z for all v + ZWEVI •5 • 

(b) Y is uniformly bounded on VI •6 with 

II YII= sup IIY(vlIlz < 00. Let 
vevl.8 

n-I 1 d) 
Yn(v) = Y(v) - L --. Y(zv) I z=O for n = 1.2 ... ·. 

)=0 11 dz i 
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Then there exists a constant Cl) such that 

(a) II .7,,(v)lb<C:~11 .71111 vll~, for all VEVI ,.5/3' 

(b) II .7(v) - .7(w)lb<cl) II YII II v - will' for all V,WE VI ,c5/9' 

(c) II .7,,(v) - Y,,(w)1I2<csll YIIOlvll1 + Ilwlll),,-1 Ilv - will' for all V,WEVI,c5/9 and n = 1,2,···. 

Proof: For any r with 0 < r < Mil viii 

.7(v) = - ~i .7(sv) ds, 
2m 151 = r S - 1 

~.7(zv)lz=o = ~i .7(s~) ds, 
dz' 2m 151 = r S' + 

1 i [1 n-I 1 ] .7n(v) = -. Y(sv) -- - L J+l ds 
2m Isl=r s-1 j=O s 

=_1 i .7(sv) ds. 
2m' IsI=r sn(s-l) 

Choosing r = j Mil viii' we have (since II VIII <1513) 

II .7n(vllb< _1 211'r 11.711 = 1 II .711 
211' r"(r - 1) 1 - 1/r r" 

<2( ~ r II .7l1l1vll~ 
establishing (a). Similarly, part (b) follows from the represen­
tation 

Sa
l d 

Y(v) - Y(w) = da - Y (w + a(v - w)) 
o da 

=_1_ (I dai ds Y(w+s(v-w)) 
211'; Jo Is I = r ( S - a)2 

with r = ~8/11v - will' and part (c) follows from part (b) and 
the representation 

Y (v)-Y (w)=_l i .7(sv)-Y(sw) ds 
n n 211'; Is I = r S n( S - 1) 

with r = A8lmaxOlvlll' IIwll'). • 
Remark: It follows from Theorem A.2 that if Y satis­

fies the hypotheses of that theorem then the linear approxi­
mation defined by 

d 
Fv = dz Y(zv)lz=o (AI) 

is a bounded linear operator from VI to V2• 

Corollary A.3: Under the hypotheses of Theorem A.2, 
.7 is also analytic in the sense of composition, i.e., if b (z): 
n-VI.l) is analytic (where D is an open subset of q then 
Y(b (z)): D--+V2 is analytic. 

Proof: Fix any zoED. 
1 

- { Y(b (zo + .az)) - Y(b (zo)) 1 
.az 

1 
= - { Y(b (zo) + .azb '(zo)) - Y(b (zo)) 1 

.az 

1 
+ - { Y(b (zo + .az)) - ..r(b (zo) + .azb , (zo)) 1 . 

.az 
The first term converges as .az-o by hypothesis so it suffices 
to prove that the second converges to zero. However, by 
Theorem A.2(b) the second term is bounded (for .az small 
enough) by 
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0(1) _1_11 b (zo + .az) - b (zo) - .azb '(zolill . 
l.azl 

However, b (zo + .az) - b (zo) - .azb '(zo) = Y 2(.aZ) for 
[j (z) = b (zo + z) so that 
lib (zo +.a ) + b (zo) - .azb , (zoll I 1<0 (1)I.azI 2 by Theorem 
A.2(c). 

Theorem A.4: Let Y, VI' V2 satisfy the hypotheses of 
Theorem A.2 and define Fby (AI). IfF has a bounded in­
verse from V2 to VI then Y has an inverse defined on 
Y(O) + V 2,£ for some € > 0 and this inverse is analytic and 
uniformly bounded. 

Proof We may without loss of generality consider the 
case Y(O) = O. To reformulate this problem as a standard 
Contraction Mapping Theorem problem we write 

w = Y(v) = Fv + Y 2(V) 

and then 

v = F-Iw - F- I Y 2(v)= [j w(v). (A2) 

We wish to show that, for a suitable choice of 8' and €, Eq. 

(A2) has, for each WEW2, a unique solution VE VI.l)" We first 

note that Y w maps V I,l)' into itself if €<8' 1211 F -III and 

8'<min{~ '2c~IIYI~ IIF-III}' 

since then 

II [jw(v)III<IIF-III [llwlb+c~IIYllllvlln <8' 

by Theorem A.2. To verify that [j w (v) is a strict contraction 
we observe that for any V,V'E~\c5' 

II [j w(v) - f# w(v'lII2 
= II F- I(y2(V) - Y 2(v'))112 
<II F-III dllYll!l!vll 1 + Ilv'III)l!v - v'lll 
<!llv - v'lIl , 

provided we choose 

u.;;:mm - . ~" . { 8 1 } 
'" 10 ' 4c~ IIYII F-III 

The Contraction Mapping Theorem now implies that 
the sequence of functions 

/(O)(w) =F-Iw, 

/(n)(w) = Y w(/(n-I)(w)) 

converges (uniformly for WE V 2,£ ) as n tends to 00 and that 
the limit is an inverse for Y. Since / (0) and Y ware both 
analytic (in the sense of Corollary A.3) so are all the/(n)'s and 
hence, by the Weierstrass Limit Theorem, so is the limit. 
Since the range of Y w is contained in V I,l)' , the inverse is 
clearly uniformly bounded. • 

The final theorem of this section determines conditions 
which ensure that if a mapping between Hilbert spaces maps 
one subspace into a second subspace then the inverse maps 
the second back into the first. We apply this theorem to the 
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question of decoupling quadratic sources in Theorem IVA 
This decoupling is crucial for the analysis of irreducibility 
properties. See Refs. t and 3. 

Theorem A.S: Let Vs , VM , Ws ' and WM be Hilbert 
spaces. If 

(a) Y: (VS Ell VM)s---+-WS Ell WM is analytic, 
(b) Y is uniformly bounded on (Vs Ell V M)S and F de­

fined by (AI) has a bounded inverseF- I: Ws Ell WM 
---+-Vs Ell VM, 

(c) Y: Vs,s---+-Ws and F t Vs has a bounded inverse 
from Ws to Vs, then the inverse function Y-I maps 
Y(O) + Ws, £ into Vs for some E> O. 

Proof Choose {j , sufficiently small that 
F - I Y 2 t (Vs Ell V M )s· is a strict contraction (see Theorem 
A.4). Then by Theorem A.4 '!! = Y t Vs.s' has an inverse on 
Y(O) + Ws, £, with range in Vs and Y t (Vs Ell V M )s' has an 
inverse on Y(O) + (Ws Ell WM )£" Choose E = min(EI' E2)' 

Then'!! - I t (Y(O) + Ws, £) = 7- I t (Y(O) + Ws, £) since 
7 is one-to-one on (Vs Ell V M )s' . 
[Y(v) = Y(O) + F(v + F- I Y 2(v)withF -IY2 astrictcon­
traction.] Hence Y- I maps 7(0) + Ws, £ into VS' • 

APPENDIX B: ESTIMATES INVOLVING DIRICHLET B.C. 

In this Appendix we collect together various facts and 
estimates about Dirichlet B.C. that we have used in the main 
part of the paper. As in Secs. II and III we consider the 
Laplacian .d I with Dirichlet B. C. on a finite set / of lattice 
bonds and we let C I = ( - .d I + m~) - I be the corresponding 
covariance and IIfll ± 1,1 = II( -.d l + 1) ± 112 filL" Bydefin­
ition(seeRef.12), (J, C I-I g) is theform closure of the form 

(J, C -I g) = f [( Vf)(Vg) + m~Jg] dx 

restricted to C o(R2,,/). We state this as 
Lemma B.1 : Iff and g belong to the form domain 

Q(C I-I) thenJ, gEQ(C -I) and (J, C 1- I g) = (J, C -I g). 

Let orc be a multiple difference covariance arising in 
the cluster expansion. [See (S.l) of Ref. 6; here ris a finite set 
of bonds.] orc can be written as a convex combination of 
Cr's. IfalloftheseF'scontain/, we say thatorC has Dirich­
let B.C. on /. In Lemma 2.3 of Ref. 5 Glimm and Jaffe estab­
lished the operator bound 

II C -1/2 arc C -1/2I1L2(.da}--+L2(.dp) 
<m~,o-lrIl4 K

6
(r) e-(1I2)"'od(a,P,r), 

where .d a and.d p are two unit squares, 

(Bt) 

d (a, P,r) = sUPber {d (.d a, b) + d (b, .dp )}, and K 6(r) is the 
usual CE quantity defined in Proposition S.l of Ref. 6. We 
now extend this bound to the case of Dirichlet B.C.: 

Lemma B.2: If arc has Dirichlet B.c. on /, then 

II C]l2 arc C ]l211L'(.:!a}--+L'(.:!P) 

<m~,o-lrIl4 K6(r) e-(1I4)mo d(a,P,r). 

Proof Since C 1- 112 orc C 1- 112 is a bounded operator, 
arcc l-

1/2 mapsL 2 into Q(C I-I) and so by Lemma B.l 

1914 

(J, C 1- 112 orc C 1- 1/2 g) = (C:12 J, C 1- I orc C 1- 112 g) 
= (C]l2J,c- l arcC I-

1I2 g). 
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Similarly (C -1/2 arC). mapsL 2 into Q(C I-I) so that 

(J, C 1- 112 arc C 1- 112 g) 
= (C- J12 C:12J, (C -1/2 arc C -1/2)(C -1/2 C]12) g) . 

(B2) 

The lemma now follows from (Bt), (B2), and the bound 

II C -1/2 CII211 -3"'ola-1J1/4 (B3) 
1 L 2(.da)~L '(.:!p) <c 51 e . 

To establish (B3) it suffices to consider a andp far apart since 
C - I 12 C;12 is a bounded operator on L 1- Now for x =I y 

(C- 1/2 C)/2)(X,y) 

= (C 1/2( -.d + m~) C J12)(x,y) 

= m~ (C 1/2 
CJ

12
)(x,y) - (a~i C

1I2
) (a~i c;n) (.t,y). 

(B3) now follows from the representation 

CJ/2= fa (-.d/+m~+t)-lt-l/2dt/ 
LX> (1 +t)-lt- 1/2dt 

and kernel estimates such as (Ref. 13 Lemma VIS) 

II~( -..11 +m~ +t)-III 
aXi L'(.:!aX.da,) 

<C52 e 
- (1I2)(~ + ;)'/'Ja - a'i 

(valid when.d a and ..1 a' are not adjacent.) 
Corollary B.3: If supt/; C.d i and/;ED (C ]12) 

(fl> Cl f2) <C53 e-(1I2)d(.d".d,) Ilflll-l,I Ilf211-1,1' 

Proof It suffices to consider/;EC o(.d i ) with 
d (.d I' .d 2» 1. Then 

(fl' Clh) 
= (fl' { CI - CWA-, - Cw .:!, + CW.d,ua.d,} f2) 
= (C]l2 fl , C 1- 112 a2c C 1- 112 C II2 f2) , 

• 

where azC=CI - CW.d, - CW.d, + CW.d,ua.d,. In the path 
integral representation of a2c the integral is over paths that 
avoid / but pass through both a.d I and a..1 2• Hence as in 
Lemma B.2 C 1- 112 azc C 1- 112 is a bounded operator from 
L 2 to L 2 with norm at most C

S3 
e - (112) d(a.d" a.d,) . • 

Corollary B.4: In the notation of Sec. II (in particular 
1= luaX) 

(a) II (¢ (x) I - (¢ (x)hll + 1,1 <c38 1X 11/2 ; 

(b) IIXy(x)(¢(x);¢(y)tl-Cz(x,y))II+I,1 <c381Y11/2 

if Yis a finite union oflattice squares with ayc/; 

(c) II(¢ (x); ¢ (y)1 - C/(x,y) - (¢ (x); ¢ (y)h 
+ C7(x, y)1I + 1,1 <C38 IX 11/2 . 

Proof Let C (u) = uCl + (1 - u)Ct and ac 
=(d / du)C (u) = CI - Ct. Let ( . ) u denote the correspond­
ing interpolating expectation [with the Wick ordering of the 
interaction matched to C (u)). 
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(a) As in Lemma 11.4 

(l/J (x) I - (l/J (x)h 

Sa
l d 

= du- (l/J(x)" 
o du 

Sa
l d 

= du-C(u)(x,y)(V'(y)" 
o du 

(repeated arguments are integrated over) 

= f duaC(x,y)(V'(y)" 

+ C(u)(x,y)( V"(y) aC(y,z) V'(z)" 

+ C(u)(x,y)(V'(y); V'(z) aC(z,z') V'(z')". 

Now 

II J aC(., y) (V'( y)" dy 112+ 1,/ 

= (V')" ac C I-I ac (V')" 

< L II (V'(')"IIL21~J) 
1:'1 1, ""2' A..\ 

X II ac C 1- II2I1L 2(~J)_L '(~,) II C 1- 112 ac ilL 2(~2)~L 2(~,) 

xlI(V'H)"IIL2(~,) 

<C
20 

L e - d(~J' ~2) e - d(~2' ~,) e - d(~" ax) 
.d •• .d2 • .:13 

<C
S4 

L e-d(~,,~) <CSS L 1 = csslX I· 
~,.~cX ~cx 

The remaining terms are estimated similarly. In the last term 
observe that the cluster expansion implies a decay in min­
(d (y, z), d (y, z')). 

(b) The crucial point here is that the singular term in the 
perturbation theory expansion of (l/J (x); l/J (y) I [namely 
CI (x, y), which is not locally in H + I] is cancelled explicitly: 
By integration by parts 

(l/J (x); l/J (Y)I - C/(x,y) 

= C/(x,z)(V"(Z)1 C/(z,y) 

+ C/(x,z)(V'(z); V'(Z')I C/(z',y) , 

which obeys the desired bound by standard arguments. 
(c) The proof is similar to that of (a) and (b) and is based 

on the formula 

(l/J (x); l/J (Y)I - C/(x,y) - (l/J (x); l/J (y)h + C7(x,y) 

i l d 
= dU-{(l/J(x);l/J(y),,-C(u)} 

o du 

i l d 
= du-{C(u)(x,z)(V"(z)" C(u)(z,y) 

o du 

+ C(u)(x,z) (V'(z); V'(ZI)" C(u)(z',y)}. 

As in Sec. II we let { ;p I /3EZ} J be a CO' partition of 
unity invariant under lattice translations, Jp =;p J, JB 
= ~fJeB Jp, eta, /3) = e l e - la - P I; we define II J III,B,I' 

II J 112.B,I' and II J liB., by Definitions 11.3, 11.5, and (2.10), 
respectively. 

• 

LemmaB.5:Let IJIB" by any one of II JIII,p", II JI12,B,I, 
or II J IIB,I . Then 

(a) I IB,I is a seminorm, 
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(b) I JB IB" <I JB,IB'., if BeB I, 
I JBIB" <I JBIB.,' if/~/', 

(c) II JB 11_ 1,1 <e21 JB IB.I for some universal constant 
ez>l, 

(d) I JB IB.I <e3 11 J 11_ I,' for some universal constant 

Proof (a) is obvious. 
(b) The first inequality is obvious since the sum defining 

the right-hand side contains the sum defining the left-hand 
side. The second inequality is a consequence of 

/I Jpll_1,/ <II Jp/l_ I ,,' 

and the decoupling property (2.8). 

(c) II JB 112_ 1,1 
2 

=11 LJpll = L (Jp,C1J/J') 
fJeB - 1,1 /J, P 'ElJ 

(with mo replaced by 1) 

<CS7 L II Jp 112_ 1,1 
/JEB 

(Corollary B.3) 

[since e -1112) d (/J, /J ') is a bounded operation on F(1;2)] 

<e~ I JBI~,1' 
(d) The inequality I JB I~" < CS8 ~/J II J/Jllz_ 1,1 follows 

directly from the definitions. We now claim that (see Ref. 5) 

L II J/J 112_ 1.1 <CS9 II J 112_ 1.1 • 
/J 

We offer a more complete proof than that given for the case 
1= l/J in Ref. 5, 

= L ( ;p J, C,;p J) (with mo replaced by 1) 
p 

= L ( C}12 J, C ,- 112 ;/J C, ;/J C 1- 112 C}12 J) 
p 

< L Ilx~ C)l2JIIL'II(x,j C,-I12;p C}/2x~,) 
~,,j',,j • 

/J 
X(x~, C}12;/J CI-1I2x~·lIlop 

xllx~' C}
12

JIIL" 

It suffices to show 

II X,j C 1- 112 ;p C}12 X,j' Ilop 
<C

60 
e - d I~, ~ ') (e - d (~, P) + e - d (P, ~ ')) • 

But 

C - 112 r C 112 C 1/2 C - I r C 1/2 
X~ I '!;p I X,j' =X.<1 I I '!;p I X~, 

= X ~ C V2( -.:i + l);p C V2 X ~' 
(by Lemma B.l) 
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~ C 112 [I- a ] a C 112 +.~ Xod / ':J1l' -a -a / Xod" 
1=0 ~i ~i 

The desired bound now follows from standard estimates on 
C]12 and (a/aYi) C ]12(x,y) (for x andy separated). (See 
Lemma B.2.) • 

The same results hold for the analogous seminorms on 
L(x,y): 

Lemma B.6: Let I L IB,I by anyone of 
IlL III,B,I' II L Ib,B,/, or II L IIB,/ as defined in the first para­
graph of Theorem II!. I. Then 

(a) I IB,/ is a seminorm, 

(b) ILB IB./ < ILB' IB',/ if BCB', 
ILB IB,/ <ILB IB,/' if l:Ji', 

(e) II LB 11_ 1,/ < ei ILB IB,/ , 

(d) ILBIB,/ <e3 I1 L BII_I,/. 
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Nonperturbative confinement in quantum chromodynamics.ll. Mandelstam's 
gluon propagator 

D. Atkinson, P. W. Johnson,a) and K. Starn 
Institute for Theoretical Physics, University of Groningen, P. 0. Box 800, 9700 A V Groningen, The 
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It is shown that Mandelstam's approximate equation for the gluon propagator has a solution with 
very singular infrared behavior. At the origin in the squared momentum variable.there are a 
double pole, a branch-point, and an accumulation of complex first-sheet branch-~Olnts. ~~though 
the double pole is suggestive of confinement, the existence of acausal complex smgulantles 
indicates a deficiency in this first step of the approximation scheme. 

PACS numbers: 11.10.Np 

1. INTRODUCTION 

This paper is an extension of a previous studyi of non­
perturbative confinement in quarkless quantum chromo­
dynamics, to which we shall refer as I. We continue to ex­
plore the hypotheses that (I) it is an indication of 
confinement for the gluon propagator to be more singular 
than k -3 at small k 2, where k is the gluon four-momentum, 
and (2) its infrared singularity structure can be properly un­
derstood in truncated Dyson-Schwinger (OS) equations. In I 
we considered a truncated OS equation for the gluon propa­
gator proposed by Mandelstam.2 Mandelstam worked in the 
Landau gauge, ignored four-gluon coupling altogether, and 
moreover he replaced the three-gluon vertex and one of the 
two internal gluon propagators by bare values. He asserted 
that the propagator from such a truncated system would 
behave as k -4 at small k 2. We analyzed a somewhat simpli­
fied version of Mandelstam's equation and demonstrated (1) 
that the gluon propagator did have that infrared behavior, 
and (2) that it also acquired branch-points at complex k 2 in 
the vicinity of the origin. In fact, such complex branch­
points are inconsistent with causality, and causality was 
used to justify Wick rotation of the internal momentum vari­
able in the truncated OS equation. 

It was not clear from I whether the occurrence of un­
physical branch-points in the simplified Mandelstam equa­
tion was an artifact of additional, somewhat unmotivated 
assumptions, or whether the full Mandelstam equation [Eq. 
(2.1) below] would have similar behavior. Here it is shown 
that solutions of the full Mandelstam equation (however 
without ghost propagators) have both features of the ap­
proximate equation. Namely, the gluon propagator behaves 
as k -4 at asymptotically small k 2, except near the negative 
real axis, along which complex branch-points seem to 
accumulate. 

Mandelstam justified replacement of the three-gluon 
vertex function, r (p,q,r) with p + q + r = 0, and one gluon 
propagator,..::1 (q), by their bare values through the Slavnov-

-) Permanent address: Illinois Institute of Technology, Chicago, Illinois 
60616. 

Taylor identity for the longitudinal part ofthe triple-gluon 
vertex. However, that identity does not require the longitu­
dinal part of r to vanish as q and r separately approach zero, 3 

so that the cancellation described by Mandelstam is incom­
plete. Since exact cancellation of propagator and vertex 
function does not follow from basic principles, the equation 
obtained by Mandelstam might be expected to be somewhat 
unphysical. 

In contrast to the situation in quantum electrodynam­
ics, the vacuum polarization tensor in quantum chromodyn­
amics is a gauge-dependent entity. Consequently, the behav­
ior of the gluon propagator at small k 2 does not provide 
direct evidence of confinement. Indeed, a second-order pole 
in the gluon propagator can be removed by a singular gauge 
transformation. Our expectation is that the gauge transfor­
mation, while removing the pole, will preserve the general 
feature that propagation of low-frequency modes of the 
gluon field is suppressed, as is indicative of confinement. 

An alternative treatment of OS esquations in QCD has 
Peen proposed and examined by Baker et al.,4 and further 
simplified by Schoenmaker.5 In this work, an axial gauge is 
used, so that ghost fields are uncoupled, and may thus be 
neglected. The basic idea is an ansatz for the longitudinal 
part of the three-gluon vertex, in terms of the full propaga­
tor, such that the vertex Slavnov-Taylor identity is satisfied. 
Within this framework, it is possible to project out the four­
gluon terms, so that a closed equation for the propagator 
results. This has a more complicated nonlinear structure 
than that ofMandelstam's equation; but there is some reason 
to hope that the approximation of Baker et al. is better than 
that of Mandelstam. 

Baker et al. demonstrate that a double pole is a consis­
tent infrared ansatz; and they obtain an approximate nu­
merical solution at all energies. However, this work by no 
means demonstrates that a solution actually exists, much 
less that it has the required infrared behavior. The point is 
not merely academic, for Delbourgo has shown that his ele­
gant spectral ansatz yields a nonconfining infrared behav­
ior,6 a result that has been confirmed by Khelashvili.7 Del­
bourgo also used an axial gauge, and the spectral ansatz for 
the three-gluon vertex is motivated by means of the Slavnov­
Taylor (ST) identity. Since it is not expected that a transverse 

1917 J. Math. Phys. 23(10), October 1982 0022-2488/82/101917-08$02.50 @) 1982 American Institute of Physics 1917 



                                                                                                                                    

part of the gluon vertex dominates the infrared, the conflict­
ing claims regarding the behavior of the two approxima­
tions, which have the same longitudinal part (in the sense 
that they are both consistent with the vertex ST identity), is 
suspect. A careful mathematical treatment of both equations 
is required, and we hope to provide this in the future. 

In Sec. 2 we describe a consistent regularization proce­
dure for Mandelstam's equation [Eq. (2.1) below]. It is re­
duced to a nonlinear integral equation suitable for analysis 
[Eq. (2.16)]. The existence of a solution of (2.16), which is 
analytic in k 2 in a heart-shaped region not including the neg­
ative real axis, is established in Sec. 3. A numerical solution 
for the gluon propagator and procedures for stable analytic 
continuation are described in Sec. 4. In particular, the exis­
tence of unphysical complex branch-points is established, 
and they are located with precision. The numerical work 
includes an expansion of the gluon propagator at small spa­
celike momenta, which is described in Sec. 4 and shown in 
the Appendix to be an asymptotic expansion. 

2. MANDELSTAM'S GLUON EQUATION 

In I, we sketched Mandelstam's derivation of an inte­
gral equation for the unknown function, FI(x). Now Eq. (2.9) 
of I, with the pole term removed, can be rewritten 

x = 1 _ C + Dx + g2 
A +xFI(x) 

X f dY{25(1-~:)- ~ (; -~:)} F~Y) , 

(2.1) 

where g is proportional to the SU(3) coupling constant, and 
where 

and 

C = 25t (00 dy F
I
( Y), 

Jo Y 

7 21 00 
dY F ( ) D=-g 2" I y. 

2 0 Y 

(2.2) 

(2.3) 

In I, the further approximation was made of dropping the ~ 
terms above, and it was possible then to prove the existence 
of a solution, FI(x), that behaves like x as x-o (except along 
the negative real direction). In this paper we improve the 
treatment by retaining all the above terms. 

The first constraint is that, for consistency, C must be 
equal to unity; but the integral in (2.2) is ultraviolet diver­
gent, and we may regard C = 1 as part of the renormaliza­
tion prescription, as we did in I. Theansatz FI(x)-x asx-o 
is no longer consistent, because of the ~ terms, and must be 
replaced by FI(x)_xa

, a> 1. However, the left-hand side of 
(2.1) still goes linearly to zero, and this imposes the con­
straint D = 11 A. In fact, having removed 1 - C, we can also 
scale A and g away by the transformations 

x-+Agx, y-+Agy, FI(X)-+g-IFI(x), (2.4) 

so that 

1 LX {( y2) 7 (x y3)} F\(y) G(x)= -- dy 25 1-- -- --- --, 
x 3 

0 x2 2 Y x 3 Y 
(2.5) 
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where 

(2.6) 

is a new unknown function, as in Sec. 3 of I. To this equation 
must be added the global constraint, corresponding to 
D = 1IA, viz., 

(2.7) 

It is remarkable that this integral will turn out to be ultravio­
let and infrared convergent. This is a constraint that was 
missing in the more approximate equation of I; but we shall 
find that it can be met. 

For infrared convergence in (2.5), we would like 

F I(x)-yxf3 - I, (2.8) 

asx-o, with{l> 2. Then G(x), on the left-hand side of(2.5), 
behaves like xf3 - 2, while the right-hand side behaves in gen­
erallike xf3 - 4 + 0 (xf3 - 2). This is inconsistent unless the co­
efficient of x f3 - 4 vanishes; fortunately this happens if 

{l = (3116)112:::::2.273 ... , (2.9) 

a result found by Mandelstam. The value of the coefficient y 
in (2.8) can only be obtained numerically, with the help ofthe 
global condition (2.7), as we shall see in Sec. 4. 

The integral equation (2.5) can be reduced to the nonlin­
ear differential equation 

6X2F;' + 18xF; - 25FI = - L [X5(X3G)"]", (2.10) 

with 

(2.11) 

The independent solutions of the homogeneous equation 
(the left-hand side equal to zero), are x - I ± f3; so (2.10) can be 
resolved in terms of them by the method of variation of para­
meters. The result is 

FI(x) = yxf3- 1 __ 1_ 
72fJx 

X f ;[ (; r -(~ r] [y5(y
3
G(y))"J", 

(2.12) 

where the correct boundary condition (2.8) is assured by the 
first term. The differentiations under the integral in (2.12) 
can be removed by four partial integrations, and we find 

x 4G" + 9x3G I + (36 + ¥x2)G = I, (2.13) 

where 

I (x) = 36yxf3 - 2 _ 36x
2
G 2(X) __ 5_ x 2G (x) 

1 - x 2G(x) 12 

-7~!2 f dy [ (; r -(~ rl y3
G(y). (2.14) 

Here FI has been eliminated in favor of G, by means of (2.1I); 
this gives rise to the nonlinear term in (2.14). The left-hand 
side of{2.13) comes from the boundary terms in the partial 
integrations, except that part of the term proportional to x 2G 
has been transferred to the right-hand side [namely the term 
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- fzx2G (x) in (2.14)]. The reason for this transposition is as 
in I, namely that (2.13) can now be resolved in terms of ele­
mentary functions, and the linear term in (2.14) will cause no 
trouble for small x, thanks to the factor x2

• 

The homogeneous equation (2.13) (i.e., with the right­
hand side equal to zero) is solved by the functions 

x- 7 /
2exp[ ± 6i/x]; (2.15) 

so (2.13) can be resolved by variation of parameters, the re­
sult being 

G (x) = - ix-7/21x dy y3/2sin(! - ; )2' (y). (2.16) 

No homogeneous terms may be added. In the next section, 
we will show that a locally unique solution of (2.16) exists, 
that is analytic in a certain domain of the x plane, much as in 
I. 

3. EXISTENCE PROOF 

To show that Eq. (2.16) has a solution, it is convenient to 
make these transformations of variables: 

s=~; G(s)=G(x); t=~-~. (3.1) 
x y x 

Equation (2.16) takes the form 

G(s) =P(G,s) f(s) 

e 12 ("" dt sint ii (e- t) - Jo (s + t ) 11 /2 ~ + , (3.2) 

where 

(3.3) 

and 

(3.4) 

We shall establish that (3.2) has a solution G (S) which is ana­
lytic in S in the domain fj), where 

{
Is / >p-I, Ret>O } 

fj)(p,8)= /Ims/-p-I tan8 RAe- 0 . 
/Retl > , ~< 

(3.5) 

The positive parameters p and 8 are to be fixed later. The 
domain fj) is the same as that considered in I in connection 
with proof of existence of a solution of an equation very simi­
lar to (3.2). The analysis here is quite parallel to that present­
ed in I. 

Let f!lj be the Banach space of functions analytic in fj), 
with the supremum norm 

11/11 = sup/I(s)/· 
sE9 

(3.6) 

Define the ball Y in the Banach space f!lj by 

Y = I G /GEf!lj and /lG /I<b). (3.7) 

The domain ,q; has the feature that if S lies in fj), then so 

1919 J. Math. Phys., Vol. 23, No. 10, October 1982 

does S + t, for t>O. Furthermore, if the constraint 

36p2b < 1 (3.8) 

is satisfied, the function ii IS + t ) is analytic in t throughout 
fj) when t>O, and the integral in (3.2) converges uniformly 
to a function analytic in fj). The inhomogeneous term in 
(3.2),J1S), can be shown by an analysis similar to that of 
Appendix B of I to be analytic in the S plane cut along the 
negative real axis. Consequently, P (G,s ) is analytic for sin fj) 
if (3.8) is met. 

We shall show that P maps the ball into itself and is a 
contraction mapping, if suitable constraints are placed upon 
p, 8, and b. The Banach contraction mapping theorem may 
then be applied to give a solution of the equation 

GIS) = P(G,s), (3.9) 

which is unique in the ball Y of f!lj . 
By using condition (3.8), one obtains the following 

bound upon n (t ) for tEfj) : 

/n(t)/«~+ 175 )b 36b
z 

==J1rob) 
12 36(16 - /3 2) + 1 - 36p2b '1'" 

(3.10) 

One may obtain the following bound directly from (3.3): 

/IIS)I 

<.L (6p1fJ- 2 {I (/3 ~) ("" dw }=C 
""'36 r + + 2 Jo /w_ei'IP+S12 - E' 

(3.11) 

where /argS 1<11" - E. Using (3.10) and (3.11) in (3.2), we 
obtain 

/P(G,s)/<C, + pJ(b,p)D" 

where 

D _ ("" __ dw __ 
E - Jo Iw _ ei'III/2 . 

Consequently, the ball Y is mapped into itself by Pif 

(3.12) 

(3.13) 

C, <b, (3.14) 

and 

b-C, 
p<--­

J(b,pJD, 

The contractivity condition is 

IIP(GI ) - P(G2)/I<K /lG I - G2 /1, 

(3.15) 

(3.16) 

withK less than 1, for any functions GI and G2 in the ball Y. 
To obtain an estimate on the difference of the nonlinear 

terms in P, it is convenient to introduce 

(3.17) 

The derivative of this algebraic function with respect to Gis 
well-defined, and for G in Y and t in fj) it is subject to the 
bound 

I 
d.I I < 108b 
dG (1 - 36bp2f 

L(b,p). (3.18) 

One may then use this constraint, along with the mean value 
theorem, to obtain 
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.6 

-6 -.4 -2 .2 .4 

FIG. 1. The cardioid region to which the Banach theorem applies. The 
points outside this region are the locations of branch-points determined as 
described in Sec. 4. 

Using (3.19) and making more direct estimates of the other 
terms in P, one obtains an estimate of the form (3.16), with 

K = [L (b) ~ 175] D 
P ,p + 12 + 36(16-p2) .. 

Consequently, the mapping is contractive if 

K<1. 

(3.20) 

(3.21) 

The conditions for a contraction mapping, (3.8), (3.15), 
and (3.21), may simultaneously be met for any number E 

between 0 and 11'/2. Because the integrals C .. and D .. depend 
upon E,the maximal values of the parametersp, 5, and b also 
depend upon it. The function G (5 ), obtained as the locally 
unique fixed point ofEq. (3.2) in each of the domains .@VJ,E), 
is analytic in 5 in the union of these domains. We have ex­
tended this fixed-point proof to a set of domains in the right­
half x plane, which are sectors of varying radius and opening 
angle that are symmetric about the real axis. The full domain 
of analyticity in the variable x, which is obtained numerical­
ly as the union of the regions in which conditions (3.8), (3.15), 
and (3.21) are met, is shown in Fig. 1. The parameter r is 
chosen so that condition (2.7) is met [see Eq. (4.10) beloW]. 

4. NUMERICAL ANALYSIS 

We have shown that the integral equation (2.16) has a 
solution G (x) which is bounded and analytic in the heart­
shaped domain .@, with the asymptote rxP - 2 as x ap­
proaches zero within.@. We wish to obtain this solution 
numerically, and thereby determine the behaviorofG (x) out­
side the domain .@. Equation (2.16) is a well-behaved func­
tional equation for G-at least so long as x is in .@-but it 
seems impractical to attempt a direct global solution of 
(2.16). Instead, we have chosen to determine G (x) in some 
domain of small x from (2.16), and then to get G elsewhere by 
solving a differential equation such as (2.10), which is equiva­
lent to (2.16). 

We obtain G (x) at small x within .@ by developing an 
asymptotic series for x in that region. Although we justify 
the asymptotic series by analysis ofEq. (2.16), the series itself 
is most easily developed from the integro-differential system 
(2.13) and (2.14). One may make a consistent expansion in 
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powers of both x 2 and xfJ as follows: 
00 00 

G(x) = L L ajnxjfJ+2n-4. (4.1) 
j= I n= I 

The coefficient of the leading term is a II = r, and the higher­
order terms may be determined recursively from these 
formulas: 

aj,l = - raj_I,1 forj> 1; 

al,n = -cl,n_1 forn>l; 

aj,n = - raj-I,n - Cj,n_1 

j-I n-I 

(4.2) 

(4.3) 

+ L L a/n·Cj_/,n_n' forj,n> 1. (4.4) 
/= I n'= I 

We have used the array cjn : 

a jn [(2 'f3 f 1 175 1 ] 
cjn =36" n+J, +"6+'"36 (2n+jpf-p2 .(4.5) 

We show in the Appendix that (4.1) is indeed an asymptotic 
series for G (x) by truncating it to include only powers of x not 
greater than M. Our estimate for the difference between G (x) 
and the truncated series depends upon M, as well as the loca­
tion of the point x (its amplitude and phase) in the domain 
.@. In practice, for a given Xo we truncate the series (4.1) so 
that the computed values of G (xo) and its first four deriva­
tives give least discrepancy in the fourth-order differential 
equation (2.10). We can achieve single-precision accuracy 
for G (x) (order 10- 12

) on the CDC Cyber 160/170 computer 
in Groningen at small x in .@ with M of order 20; for 
r = 0.0608 we can use the series on the real x axis out to 
about 0.13, and less far in complex directions. The values of 
G and its first three derivatives are used as a starting point for 
solution of (2.10). 

Let us consider the solution of the fourth-order nonlin­
ear differential equation (2.10) from starting values of G and 
its first three derivatives at a point Xo =!- o. If the values are 
such that x~G (xo)=!- I, the fourth derivative can be deter­
mined from (2.10). Furthermore, from the general theory of 
differential equations involving analytic functions of both 
the dependent and independent variables,8,9 one expects 
there to be a locally unique solution G (x) corresponding to 
these initial data, which is analytic inx in some neighbor­
hood of Xo' Of course, the solutions that develop from differ­
ent initial data bear no simple relation to one another, be­
cause of the nonlinearity in G. The singularities of a solution 
of (2.10) may be of two types: (1) "fixed singularities" at 
x = 0 and x = 00, and (2) "movable singularities" at points 
for which 

(4.6) 

The point x = 0 is an irregular singular point of the differen­
tial equation, and one expects G (x) to have an essential singu­
larity at that point, with possibly nontrivial Riemann sheet 
structure as well. The locations of the movable singularities 
depend upon the initial data. There is no simple prescription 
to determine the locations of these movable singularities 
from the initial data; in general one must resort to numerical 
analysis. 

It is consistent with the integro-differential system 
(2.13) and (2.14), and therefore with (2.10), for G (x) to have 
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the following asymptotic form near a branch point at x = d, 
at which (4.6) is satisfied: 

1 6 [(X - d) ] 112 G(x)--±--(x-d) In , 
d 2 21/2d 4 do 

(4.7) 

where do is a constant. With this asymptotic form, for which 
G '(x) diverges logarithmically as x approaches d, the most 
singular terms in the system cancel near x = d. This diver­
gence of G' and the higher derivatives in the vicinity of the 
branch points makes it difficult to locate them numerically 
by direct solution of (4.6). 

The solution of (2.16) described in Sec. 3 is one of an 
infinite number of solutions of the differential equation 
(2.10). Furthermore, we expect from the general theory of 
analytic differential equations that it is the only solution of 
(2.10) with the asymptote rxP - 2 at small positive x, so that 
all other solutions are so singular as to be inconsistent with 
the original integral equation (2.5) in that region. In the 
fixed-point prooffor existence of a solution G (x), analytic in 
~, it was important to ensure that condition (4.6) was not 
met anywhere in ~, so that the movable singularities are 
avoided in that domain. 

We shall construct the function G (x) and effect its ana­
lytic continuation outside ~ by numerical means. One 
would hope for physical reasons that G (x), being related to 
the full gluon propagator in Mandelstam's truncation ofDy­
son-Schwinger equations in quantum chromodynamics, 
would turn out to be analytic on the physical sheet of the cut 
x plane, with a branch-cut lying only along the negative real 
x axis, and bounded at infinity in that plane. However, we 
have no analytical control over the behavior of G outside ~, 
and must resort to numerical procedures to determine its 
analytic structure. The real constant r must be chosen so 
that the integral condition (2.7) is met by FI(x,r,G). Strictly 
speaking, since G is not guaranteed by our analysis to have a 
continuation to the full positive real axis, the integral (2.7) 
need not even exist. Our procedure for choosing r requires 
numerical work for its justification. 

With initial data obtained from the asymptotic series 
(4.1), the differential equation (2.10) is integrated from a 
starting point Xo by an explicit fourth-order Runge-Kutta 
routine, in which it is considered as four coupled first-order 
differential equations forG, G', G /', andG '". Fora discussion 
of this standard procedure, see Refs. 10 and 11. The step 
length..:1x is changed with changing x to maintain accuracy. 
In particular, it is necessary to take rather small steps when x 
is small, or when x 2G (x) is close to + 1. When one is near 
x = 0, or near a movable singularity, or both, instabilities are 
apt to creep in. There may be no immediate suggestion of 
inaccuracy, since cumulative errors are equivalent to 
changes in the values of G and its first three derivatives at the 
starting point. We have tested the integration routine to be 
certain that the values of G (x) are indeed path-independent 
and stable away from the fixed and movable singularities. 

The integral (2.7) is computed over small x, O<x<O.l, 
by using the asymptotic series (4.1). For x>O.1 we determine 
the integral 

/ (x) = 2- rx dy G (y) , (4.8) 
2 Jo y 1 - y 2G (y) 
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by solving the equivalent differential equation 

M_~ G~ ~ 
dx 2x l-x2G(x) 

The differential equation (4.9) for / (x) is incorporated in the 
Runge-Kutta integration procedure to determine G (x). The 
constraint (2.7), / ( 00 ) = 1, is satisfied by choosing the param­
eter rto be 

r = 0.060 870 966 1 ± 0.000 000 000 1. (4.10) 

As an independent check of the accuracy of this result, we 
have verified that the ratio of the change in / ( 00 ) to the 
change in r, 

..:1/ (00 )1..:1 r::::: 20. 17, (4.11) 

is numerically stable down to..:1rof 10- 10. It is important for 
the asymptotic series to give an accurate representations of 
/ (x) at small x, since more than 40% of the integral comes 
from x below 0.1. 

With the choice (4.10) for r, the function x 2G (x) is ana­
lytic in the right half x plane, approaches + 1 at infinity in 
the right half-plane, and is monotonically increasing in x for 
real positive x. The behavior of the corresponding function 
FI(x) is shown in Fig. 2. This function has the following as­
ymptote at large real x: 

F (x) - 1 (4.12) 
I - [50In(x/xo)j1/2 ' 

as required for consistency with (2.5). 
For exploring the behavior of G (x) in the left half x 

plane, expecially at small x, it is quite useful to be able to 
integrate the differential equation (2.1 0) along implicitly de­
fined contours that are determined as we go along. For ex­
ample, to keep the magnitude of G (x) constant to first order 
in step size ..:1x, one must require 

..:1 [G *(x)G (x)] = 0 (..:1X)2 (4.13) 
or 

Re[G *(x)G '(x)..:ix] = O. (4.14) 

At each step of the Runge-Kutta routine we choose the 
phase of..:1x so that (4.14) is met, using values of G and G' at 
the current position. Actually, it is advantageous to keep 

F,IX) 

12 

: lIX 
I 
I 
I 
I 

10 X 

FIG. 2. Graph of F.(x) versusx. The other term in (4.21), lIx, is shown for 
reference. 
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I G (x) I constant only to first order in step size, since the slight, 
gradual changes in G provide a good monitor on the level of 
accuracy with which the function G (x) is being determined. 
It is even more useful to integrate along a contour on which 
Ix2G (x) I is held roughly constant, to keep a safe distance 
away from the movable singularities of (2.10). The corre­
sponding condition on the phase of .Jx is 

Re{G*(X)[G'(X) + ~ G(X)].Jx} =0. (4.15) 

With thorough analysis and testing, we have made a 
stable extrapolation of G (x) into the left half x plane. We find 
that, when y is given by (4.10), there are branch-points at 
locations given in Table 1. 

It is consistent to suppose that there is an infinite num­
ber of branch-points on the physical sheet, accumulating at 
x = 0 near the negative real axis, but such a hypothesis can­
not be tested numerically. Of course, it is reasonable to ex­
pect that x 2G (x) takes on the value + 1 at an infinite number 
of points near the essential singularity at x = 0, but we have 
found no general argument to indicate that such points must 
lie on the physical Riemann sheet. We have no information 
on the asymptotic behavior of G (x) as x approaches zero, 
except when x is in ~. 

Since it is essentially a numerical problem to prove the 
existence of branch-points of G (x) and to locate them, it is 
appropriate to give the following information concerning the 
accuracy with which G is determined: 

1). At Xo = ( - 0.5,0.75), the function G (x) is reliably 
determined to be (0.324361 86288,0.14287447938), with 
the error in the last digit. 

2). When Eq. (2.10) is started from Xo and integrated 
counterclockwise around a square contour with sides 
- 0.25, and 0.25 i, respectively, the total change in the real 

and imaginary parts of G is less than 10- II. 

3). By contrast, when Eq. (2.10) is started from Xo and 
integrated counterclockwise around a square contour of 
sides - 0.25 and - 0.25 i, respectively, the new value of Gis 
( + 6.145 867784 1, - 0.386 126067 6), with the error in 
the last digit. 

4). The results in 2). and 3). are valid for 1000,2000, and 
4000 steps per side in the Runge-Kutta integration. 
This information is our basis for concluding that a branch­
point lies inside the second square, but not in the first; see 
Table I. 

TABLE I. Location of first nine branch-points of G (x). 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1922 

Rex 

- 0.60122 
- 0.40317 
- 0.28955 
- 0.224 28 
-.0.18257 
- 0.153 76 
- 0.132 71 
- 0.116 71 
-0.10411 

Irnx 

± 0.53525 
± 0.19120 
± 0.098 45 
± 0.06043 
±0.04108 
± 0.02986 
± 0.022 74 
± 0.017 94 
± 0.014 54 
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It is a nontrivial numerical problem to maintain accura­
cy while getting close enough to branch-points to be able to 
find and isolate them, especially at small x, where the 
branch-points themselves are close together and other singu­
larities are nearby. We have found it rather efficient to inte­
grate (2.10) along a curve for which Ix2G (x) I is fixed at a value 
somewhat less than 1. The phase of x 2G (x) changes continu­
ously along such a curve, and one is fairly close to a branch­
point whenever x 2G (x) becomes real and positive. The 
branch-points are located more precisely by integrating 
along closed paths enclosing successively smaller regions. 
The branch-points can be determined quite accurately by 
using steps determined by solving (4.6) through Newton iter­
ation. Even though G '(x) diverges logarithmically at the 
branch-point, according to (4.7), the method works rather 
well. 

A direct numerical solution of (2.10) is subject to criti­
cism on the grounds that is has solutions which are very 
singular at small x, but reasonably well-behaved elsewhere, 
and cumulative errors will, in effect, switch us over to one of 
the unacceptable solutions as we change x. We avoid this 
problem to a great extent by starting at small x in ~ using 
the asymptotic series (4.1), thereby assuring that at the outset 
there is very little contamination of the solution. Corre­
spondingly, we expect a substantial loss in precision when we 
attempt to integrate from large to small Ix I. 

An alternate procedure is to solve the integro-differen­
tial equations (2.13) and (2.14). We can write them as a cou­
pled system of equations for G (x), ill(x), and il2(X); ill and 
il2 being defined as 

ill (x) = :2iXdyy3(~rG(Y), (4.16) 

il2(X) = :2 f dy y3 (; r G (y). 

The coupled system is 

G"(x) = _i.G,(x) - 22. G (x) 
x 6x2 

+ ..!.[~ill(X) - il2(X)) 
X4 72/3 

+ 36(yxP- 2- G(x) )], 
l-x2G(x) 

2+fJ il; (x) = xG(x) - --ill(x), 
x 

(4.17) 

(4.18) 

(4.19) 

il 2 (x) = xG (x) - 2 - fJ il2(x). (4.20) 
x 

The leading asymptotic term for G (x),yxP - 2, appears expli­
citly in this system of equations. 

We have used a fourth-order Runge-Kutta routine to 
solve the system (4.18)-(4.20), which we treat as coupled 
first-order equations for G, G', il I' and il2. The results are 
virtually identical with those obtained by solving (2.10) for x 
not near zero, and the coupled system has virtually the same 
degree of instability at small x as (2.10). Although there is 
one solution of this system of equations which is well-be­
haved in ~ , there is an infinite class of other solutions that 
are not, and cumulative uncertainties will surely lead to nu-
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.8 

merical instabilities here, just as they did with (2.10). In fact, 
one might expect that any replacement of (2.16) by a system 
of differential equations would behave in a similar fashion. 

In Fig. 3 we have shown the contours in the upper half x 
plane along which x 2G (x) is of constant magnitude, with r 
given by (4.10). These contours are determined numerically 
from points that begin on the positive real axis. The contours 
become closer together in the vicinity of the branch-points in 
the second quadrant, and they all seem to approach the ori­
gin from the negative real direction. The large region 
between contours near ( - 0.3,0.4) occurs because the deri­
vative of x 2G (x) has a zero in that region. The contours in 
Fig. 3 are numerically stable. 

In Fig. 2 the function F 1(x), which is given in terms of 
G (x) by (2.11), is plotted for real x. The function has the 
asymptote (2.8) at small x, and the asymptote (4.12) at large 
x. The function 

F(q2) = q-2 + FJ!q2) (4.21) 

is the factor multiplying the free-gluon propagator to give 
the full propagator in Mandelstam's equation. The physical 
scale for the momentum q2 cannot be determined from the 
DS equation itself, but must be fixed by additional informa­
tion, such as locations of gluonium states. 

The solution of the full Mandelstarn equation (2.1) is 
seen to have behavior similar to that obtained in I for the 
approximate case, and to suffer from the same deficiency, 
namely the appearance of branch-points at complex q2. They 
must be regarded as an intrinsic deficiency of the Mandel­
starn equation, which one would hope to be able to eliminate 
by making a less drastic truncation of Dyson-Schwinger 
equations. 
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APPENDIX 

Let us truncate the series (4.1) in such a way that only 
those terms are included for which the powers of x are less 
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FIG. 3. Contours of constant magnitude ofx2G (x) are shown. 
The values of Ix2G I on successively larger contours are: 
0.0003,0.0015,0.0025,0.0034, 0.0070,0.0112,0.0161, 
0.0282, 0.0423. The points give the locations of branch­
points, at which x 2G (x) = 1. 

than, say, M; we call this truncated expression GM(x). We 
shall show that 

lim Ixl-MIG(x) - GM(x)1 = 0 (AI) 
Ixl---+O 

for XE~ ~,E). This is the natural generalization of the con­
cept of an asymptotic series12 to the case in which noninte­
gral powers occur. Set 

RM(X) = x4G ~ + 9x3G M + (36 + ~)GM - ~ (x,GM), (A2) 

where ~ was defined in (2.14). For a given M, GM(x) is 
bounded for XE~ (p,l) ), and we can certainly find a subdo­
main, Y M C ~(p,l»), for which say, 

IX2GM(X)I<!· (A3) 

Now [1 - X2GM(X)]RM can be written as a finite number of 
terms, involving powers between x M and X 2M + 2 and hence, 
in view of (A3), 

IRM(x)I<KMlxI M (A4) 

for xEY M' where K M depends on M. One may integrate 
(A2) to obtain an equation for GM which is similar to (2.16), 
with an extra inhomogeneous term from R M: 

GM(x) = - iX-7/2 LX dy y3/2 

XSin(! - ;) (~(y,GM)+RM(Y))' (A5) 

Let us subtract (A5) from (2.16), and express the result in 
terms of the function 

h (x) = G (x) - GM(x) (A6) 

as 

h (x) = - iX-7/2 LX dy y3/2Sin(! - ;) 

X[~(y,G)-~(y,G-h)+RM(Y)]' (A7) 

Equation (A 7) is treated as a nonlinear integral equation for 
h, with the function G taken as the solution of (2.16) de­
scribed in Sec. 3. The term 36rx fJ - 2 cancels out of (A 7), so 
that RM provides the only inhomogeneity. By an analysis 
similar to that described in Sec. 3, it is a simple exercise to 
establish the existence of a solution, h (x), which is analytic in 
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the domain .r M' and in that region subject to the bound 

Ih(x)I<K~lxIM, (AS) 

with the constant K ~ dependent upon M. The result, which 
may also be written as 

IG(x) - GM(xH<K~lxIM, (A9) 

guarantees that (4.1) is indeed an asymptotic series for G. For 
the simplified case considered in I, the corresponding series 
was not strongly asymptotic, and one would not expect that 
property of(4.1). 
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Local conformal-invariance of the wave equation for finite-component fields. 
I. The conditions for invariance, and fully-reducible fields 
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The conditions for local conformal-in variance of the wave equation are obtained for finite­
component fields, of Types Ia and Ib [in the terminology of Mack and Salam, Ann. Phys. 53, 174 
(1969).] These conditions generate a set of locally invariant free massless field equations and 
restrict the relevant representation of the Lie algebra [(k4t> d )i>'sI(2,C)] in the index space of the 
field to belong to a certain class. Those fully-reducible representations which are in this class are 
described in full. The corresponding Type Ia field equations include only the massless scalar field 
equation, neutrino equations, Maxwell's equations, and the Bargmann-Wigner equations for 
massless fields of arbitrary helicity, and no others. In particular, it is confirmed [Bracken, Lett. 
Nuovo Cimento 2,574 (1971)] that not all Poincare-invariant sets of massless Type Ia field 
equations are conformal-invariant, contrary to some often-quoted results of McLennan [Nuovo 
Cimento 3, 1360 (1956)], which are shown to be invalid. It is also shown that in the case of a 
potential, the wave equation is never conformal-invariant in the strong sense (excluding gauge 
transformations). 

PACS numbers: 1l.10.Qr, 11.30.Ly 

1. INTRODUCTION 

Much has been written on the theory and possible appli­
cations to particle physics of the conformal group of space­
time transformations: for reviews, see Kastrup, I Fulton, 
Rohrlich, and Witten,2 Barut,3 Ferrara, Gatto, and Grillo,4 
and Bayen.5 These ideas were largely stimulated by observa­
tions that the wave equations satisfied by certain free, mass­
less fields are locally6 conformal-invariant. 

Bateman7 and Cunningham8 (see also Dirac9) showed 
that this is so for the free-field Maxwell equations; and ac­
cording to Cunningham, Bateman knew then of the invari­
ance of the wave equation 

ot/J(x) =0 

x = (ct,x) = (xP) J.l = 0,1,2,3 (Ll) 
in the case of a scalar field ",. We do not know who first 
proved the invariance of the two- and four-component neu­
trino equations. (See, however, Schouten and Haantjes,1O 
Pauli, II and Bludman.12) McLennan 13 claimed to prove the 
invariance of each of Girding's 14 "irreducible sets" of wave 
equations for massless multi-spinor fields (at least, of each 
set which admits plane-wave solutions, the remainder being 
unsuitable as free-field equations.) These sets of first-order 
equations are rather general and include ones described ear­
lier by Dirac 15 and Fierz. 16 Gross 17 showed the invariance of 
the Bargmann-Wigner l8 equations for massless fields of ar­
bitrary spin. The invariance of particular sets of massless 
field equations has also been argued by Lomont, 19 Penrose, 20 

'Permanent address: Department of Mathematics, University of Queens­
land, St. Lucia, 4067, Queensland, Australia. 

bPresent address: Department of Mathematics, University of Toronto, To­
ronto, Ontario, M5S lA7 Canada. 

Kursunoglu,21 Mack and Todorov,22 Bayen,23 Barut and 
Haugen,24 Lopuszanski and Oziewicz,25 Post,26 Fegan,27 Ja­
kobsen and Vergne,28 and Budini.29 Kotecky and NiederIe30 

have found the conditions for conformal invariance of a Lo­
rentz-invariant equation of the form 

L/ti1't/J(x) = 0, 

i1' = a/ax/t' (1.2) 

where the L/t are matrices (not necessarily square), and", is a 
multicomponent field. However, they did not specifically re­
quire that", be massless in the sense of Eq. (1.1). 

It is clear that a body of opinion has developed to the 
effect that wave equations for free, massless fields are confor­
mal-invariant in all possible cases [at least, in all cases where 
the fields have (manifestly) Lorentz-invariant helicity31-
there are known subtleties in the case of equations satisfied 
by potentials22,32,33]. In the introductory remarks to many 
papers on the conformal group and its applications, one can 
find passing reference to "the well known fact that massless 
wave equations are conformal-invariant." 

This opinion has no doubt been reinforced by the obser­
vation22,34,35 that every zero-mass, discrete spin, unitary, ir­
reducible representation of the Poincare group ISL(2,C) can 
be extended to a unitary, irreducible representation of 
SU(2,2), a group locally isomorphic to the conformal group. 
Given a consistent set of field equations for a free, massless, 
classical field with Lorentz-invariant helicity, one should be 
able to exhibit a Hilbert space of solutions carrying a repre­
sentation of ISL(2,C) of this type. This solution space will 
then be invariant under the action of an SU(2,2) group. 

One might be forgiven for thinking that there is little 
more to be said on this subject, at least in the case of fields 
having Lorentz-invariant helicity. On the other hand, it is 
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clear that the conformal invariance of the wave equation 
(1.1), which is evidently scale- and Poincare-invariant, will in 
general require further, non-trivial, conditions to be satisfied 
when t,b(x) is a multicomponent field. After all, the Poincare 
group extended by dilatations is a proper subgroup of the 
conformal group, and we recall that in the case of Lagran­
gian field equations,32.36-40 scale- and Poincare-in variance 
does not guarantee conformal-in variance. We assert that, 
contrary to the body of opinion mentioned above, the wave 
equations satisfied by free massless fields are not in general 
locally conformal-invariant, even for fields having Lorentz­
invariant helicity. 

Some years ago, one of us showed41 that if the index 
space of a field t,b(x) carries an irreducible, finite-dimensional 
representation of sl(2,C) labeled (m,n) (in the familiar 
scheme, where 2m and 2n are non-negative integers, as de­
scribed in the next section), then if mn =1= 0 the wave equation 
(1.1) is not locally conformal-invariant. If this be so, then 
some of the results of McLennan 13 in particular must be 
false. Indeed, it is not immediately clear that this result of 
Ref. 41 can be reconciled with the invariance of the Barg­
mann-Wigner equations, 18 though it turns out that there is 
no contradiction there, as we show in Sec. 4, where we dis­
cuss the results of earlier works in relation to ours. There 
also we point out some errors in McLennan's work, invali­
dating some of his conclusions. 

What of the second argument suggested above, con­
cerning the extendability of massless representations of 
ISL(2,e) to representations ofSU(2,2)? The reconciliation of 
this fact with the non in variance (in some cases) of the equa­
tion (Ll), has been discussed earlier.41 Essentially, the point 
is that the group SU(2,2) which arises in this way cannot 
always be associated even locally with the conformal group. 
Suppose, for example, we construct a realization of the zero­
mass, discrete spin, helicity A, positive energy, unitary repre­
sentation oflSL(2,e) in a Hilbert space of multicomponent 
fields t,b(x), which have Lorentz-invariant helicity and whose 
index space carries a single representation (m,n) of sl(2,e). 
According to a result ofWeinberg,42 (see also Lemma 3.2 
below), it must be true that m - n = A, though not necessar­
ily that mn = O. According to the results of Ref. 22, we can 
find in addition to the ISL(2,e) generators P/L and M/Lv' oper­
ators D / and K ~ acting on this space. Together these opera­
tors generate a unitary irreducible representation ofSU(2,2) 
in the so-called "ladder series." Now what happens is this: If 
mn =1=0, then K ~ can not be identified with the generators of 
special conformal transformations of the fields t,b(x). Those 
generators have rather specific forms, as described by Mack 
and Salam.43 (See Sec. 2.) In particular, the operatorsK;, are 
not local in space-time when mn =1=0. What is more, in those 
cases they only satisfy the appropriate commutation rela­
tions within the representation space-this is, only weakly 
on the fields, as a consequence of the free-field equations. In 
contrast, in the cases when mn = 0, K ~ (and D /) are identifi­
able with generators of conformal transformations.22

.
35 

They are local operators, and they can be defined on all (suf­
ficiently smooth) fields of the given type, in such a way that 
the appropriate commutation relations are satisfied, wheth­
er or not the fields satisfy the free-field equations. These 
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properties are crucial if one is to be able to talk meaningfully 
about conformal-in variance being preserved in the presence 
of interactions, when the free-field equations cease to hold. 

In short, when mn = 0, the conformal group is a space­
time symmetry group of the field equations, while when 
mn =1=0, SU(2,2) is only a dynamical symmetry group of the 
one-particular Hilbert space. The difference between these 
two concepts is quite fundamental, but in the present context 
it has not generally been fully appreciated. 

In view of the fact that not all possible Poincare-invar­
iant massless field theories are conformal-invariant, the in­
variance of the equations governing the electromagnetic and 
neutrino fields assumes, perhaps, a greater significance. Un­
fortunately, Ref. 41 seems to have been largely unno­
ticed,44-46 and passing remarks persist to "the well known 
fact that.. .. " Indeed, after this work41 appeared, a proof of 
the conformal-invariance of the field equations in the cases 
mn #- 0 was presented by Post. 26 This proof is deficient, as we 
show in Sec. 4, and Post's conclusions in this regard are false. 

Recently there has been renewed interest in massless, 
higher-spin fields,47-5o and fields of spin ~ and ~ in particular 
have been discussed in connection with "supergravity." The 
question nOw arises as to whether or not the theories pro­
posed are conformal-invariant. While we do not examine 
this question specifically, it seems timely to investigate in 
detail the conditions under which the wave equation (1.1) is 
locally conformal-invariant when t,b is a finite-component 
field, and that is our main object here. We do not restrict 
ourselves to the cases where the index space carries an irre­
ducible representation of sl(2,e), but rather consider the 
most general possible situation, according to Mack et al.,4.1 
where the field may be of Type Ib in their notation. (See Sec. 
2.) Such fields have received comparatively little attention in 
the literature.9 •24,25,29.43,51-53 As free fields, their main inter­
est lies in the possibility that one might be able to use them to 
describe spin multiplets of massless particles,43 There are 
discouraging difficulties in attempting to describe such fields 
in any generality, because of the nature of the finite-dimen­
sional index-space representations of the Lie algebra 7/', 

'I-I" = (k4 -8 d) -8 sl(2,e), (1.3) 

which are involved, (See Sec. 2,) These representations are 
not in general completely reducible, and no classification of 
them is available, However, we find that only a certain class 
of representations is directly involved in the case of free 
massless fields obeying conformal-invariant equations, 

Our main results are summarized in Theorems 3.1,3.2, 
3,3,2,1,3.4,3,5,4,1, and 4.2 below, In particular, we find 
that when Eq. (1.1) is locally conformal-invariant, then the 
field t,b must satisfy certain other equations. For example, if t,b 
is an anti symmetric tensor field F/Lv(x), then conformal-in­
variance ofEq, (1.1) requires that F/Lv satisfy all of Maxwell's 
free-field equations, Thus the imposition of conformal-in­
variance of the "mass condition" (1.1) can be a means of 
defining complete sets of conformal-invariant free-field 
equations. This fact leads us not only to well-known sets of 
wave equations, but also to new sets of locally conformal­
invariant equations for massless fields of Type Ib with arbi­
trary helicity, 
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In general the extra equations which rf; must satisfy 
place severe restrictions on the representation of 'fr carried 
by the index space of rf;. Furthermore, they imply that in 
every case rf; is a direct sum of fields having Lorentz-invar­
iant helicity. Thus when rf; is a potential, the wave equation 
(l.I) is never conformal-invariant in the strong sense (i.e., 
excluding the possibility of gauge transformations to supple­
ment the conformal transformations). This generalizes a 
well-known result22.32.38 for the electromagnetic potential 
AI' (x). We do not address the problem of classifying for po­
tentials those equations which are conformal-invariant in 
the weak sense, i.e., up to a change of gauge. 

Notation: We adopt the diagonal metric tensor 
g"v =gI'v, with goo = - gil = - gn = - g33 = 1. The al-

. . d fi d . h 0123 1 ternatlOg tensor £"vpa IS e ne wIt £ = - £0123 = . 

2. Preliminaries. Index space representations of sl{2,C) 
and 'fr 

Consider infinitesmal conformal transformations of 
space-time, 

x'" = x" + EX" + £" + EV"Xv + (28 vXvxl' - 8 "XVxv) 

(symbolically, 

x' =X +ogx), (2.1) 

where E, £",Evl'( = - £"V) and 8 v are real infinitesimal pa­
rameters characterizing dilatations, translations, homogen­
eous Lorentz transformations, and special conformal trans­
formations, respectively. Suppose we are given classical 
fields rf;(x), with a fixed finite number of complex-valued 
components rf;a (x), and a cotransformation law ofthe general 
form 

rf;'a(x') = rf;a(x) + IOS(og,X)abrf;b(X). (2.2) 
b 

Mack et al.43 (see also Flato et al. 38 and Kotecky and Nie­
derle54

) have shown that there is no loss of generality if the 
following statements are assumed to follow: 

(1) The index space of the fields carries a finite-dimen­
sional representation of the II-dimensional Lie algebra55 'fr 
of Eq. (1.3), with basis ..!'"l'( = - ..!'v,,)4 and KI" satisfying 

i[..!'"v,..!'pa] =g"p..!'l'u +gl'u..!',.,p -gvp..!'"u -g"u..!'vp' 
(2.3a) 

i[K",..!'l'p] =g"pKv -g"vKp' (2.3b) 

[KI',Kv] = 0, 

[.1,..!'IlV 1 = 0, 

i[K/t'.1 ] = K/t' 

(2.3c) 

(2.3d) 

(2.3e) 

(2) The infinitesimal field transformation (2.2) corre­
sponding to (2.1) can be written in the form 

rf;'(x) = rf;(x) + i[ED + £"PIl + !£"VMllv + 8/tKIl ]rf;(x), 
(2.4) 

where 

PIl = ia/axll, Mill' = xllPV - XVPIl + ..!'IlV' 

D = XIlPIl +.1, KIl = 2xIlD - xVXVPIl + 2..Ellvxv + KI1' 
(2.5) 
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These statements (1) and (2) form the starting point of 
our analysis. 

When we refer to "the field rf;(x)" we always have in 
mind the general element of the complex vector space pj) of 
smooth fields of a given type, i.e., fields whose components 
have partial derivatives of all orders, and which correspond 
to a given finite-dimensional representation of 'fr. This 
space pj) is the tensor product of the index space, with opera­
tors..!'llv '.1, etc., and the space of smooth functions/Ix), with 
operators xll,a" etc. In Eqs. (2.5) the operators.1 and xI', for 
example, really denote the extensions in the obvious way to 
the tensor product space, of the index-space operator.1 and 
the function -space operator Xll. We abuse the notation in this 
way and rely on context to make precise what we mean in 
any given case. We remark also that a complex numerical 
multiple of the identity operator on any of these spaces will 
be denoted by the appropriate complex number; again we 
rely on context to make the meaning precise. 

It can be seen that pj) is a common, invariant domain 
for the operators PIl ,Mllv,D, and KIl . On this space, the fol­
lowing commutation relations hold43

: 

i[D,Pll l =PIl , 

i[KIl,D] =KIl , 

[D,M/tv] = 0, 

i[PIl,Mvp ] =gllPPv -gllvPp' 

i[ KIl ,Mvp] = gllpKl' - gllvKp' 

i[ M/tv,Mpu 1 = gllpMvu + gvuMIlP 

[PIl,PV ] = 0, 

[KIl.Kv ] = 0, 

- gvpMllu - g"uMvP' 

i[PIl .Kv l =2Mllv -2gllvD. 

(2.6a) 

(2.6b) 

(2.6c) 

(2.6d) 

(2.6e) 

(2.6f) 

(2.6g) 

(2.6h) 

(2.6i) 

It follows that the operators D, PIl ,KIl , and Mill' (of which 15 
are linearly independent) span a Lie algebra .xl, which pro­
vides a representation in pj) of the Lie algebra of the confor­
mal group. 

The representation of 'fr in the index space may also be 
regarded as a representation of the sl(2,C) subalgebra of 'fr, 
with basis ..!'"l" As such it will not in general be irreducible, 
but like any other finite-dimensional representation of 
sl(2,C) it will be fully reducible to a direct sum of irreducible 
representations. In any representation of sl(2,C), with basis 
..!'''l'' we can introduce the two Casimir operators56 

C1 = !.Illl'..!' Ill' 

(2.7) 

Let (m,n) denote the irreducible representation, of dimen­
sion (2m + 1) (2n + 1), in which these Casimir operators 
have the form 

C1 = 2m(m + 1) + 2n(n + 1) 

C2 = m(m + 1) - n(n + 1). (2.8) 

Here 2m and 2n are non-negative integers. Any given finite­
dimensional representation f!lt ofsl(2,C), with representation 
space cr, will be a direct sum of such irreducible representa­
tions, for various distinct ordered pairs (m,n) in a finite set S 
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determined by fYI, and with various positive integral multi­
plicites r mn' determined by fYI. Symbolically, 

(2.9) 

Let P mn denote the projector onto that subspace r mn 

of r which carries all the r mn multiples of the irreducible 
representation (m,n). Then 

2. Pmn = 1, 
(m.n)ES 

P mnPkl = P mn8mk8nl' (m,n),(k,I)ES 

[P mn ,Ipv] = 0. (2.10) 

The space r is a direct sum of the subspaces r mn' Now 
define the operators 

M = 2. mPmn,N = 2. nPmn , 
(m,n)ES (m,n)ES 

and note from Eqs. (2.10) that 

[M,Ipv] = ° = [N,Ipv] 

[M,N] =0. 

(2.11) 

(2.12) 

Thus M and N are commuting sl(2,C) scalars. We note also 
from Eqs. (2.S) and (2.11) that on all of r, 

C I = 2M(M + 1) + 2N(N + I), 
C2 =M(M + 1) -N(N + 1). (2.13) 

These operators M and N are more convenient than C I 
and C2 as labeling operators for the subspace r mn of r. 
While M and N by definition are functions of the projectors 
P mn' it is important to see that, because the eigenvalues (m,n) 
of the pair (M,N) distinguish the subspaces r mn onto which 
the P mn project, these projectors can be regarded as func­
tions of M and N. Any operator which commutes with M 
and N must commute with all the P mn' and vice versa. A basis 
in r can be adopted, in which (the matrices of) all the opera­
tors I pv have the same block diagonal structure, each block 
corresponding to an irreducible representation of sl(2,C). In 
such a basis, the operators M, N, and P mn are diagonal. 
Within anyone of the blocks mentioned, M and N are multi­
ples of the identity by the approporiate m and n values. We 
shall call such a basis an sl(2,C) basis, although it must be 
noted that M and N do not form a complete set of commuting 
operators on r if some of the r mn are greater than unity. 

In the case ofinterest, where r is the index space of the 
field ,p, and we have therein a representation of 'lr which is 
being regarded as a representation .91 of sl(2,C), we see from 
Eqs. (2.3d) and (2.13) that 

[.d,M(M + 1)] = ° = [.d,N(N + I)]. (2.14) 

It follows that.d commutes with the positive, diagonalizable 
operators (M + !)2 and (N + !)2. But if a matrix A commutes 
with a diagonal, positive matrix B, then A commutes also 
with the positive, diagonal, square root of B. Thus.d com­
mutes with (M + !) and (N + !), and we have 

[.d,M] = ° = [.d,N], (2.15) 

and hence 

(2.16) 
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It is not possible to prove that.d can be taken to be 
diagonal in an sl{2,C) basis, as Mack et al.43 claim to do in 
their Lemma 1, using Schur's lemma. The possible occur­
rence of repeated irreducible represenations ofsl(2,C) causes 
the difficulty. A simple example counter to their result is 
provided by the representation of 'lr on two-component 
fields ,p with57 

I =(0 0) _(0 0) _(0 0) 
pv ° 0' Kp - ° 0' .d - 8 0' (2.17) 

which shows, indeed, that we cannot a priori assume the 
diagonalizability of .d, and also that representations of 'lr 
exist, more complicated than those described in Ref. 43. 

A complete description of all finite-dimensional repre­
sentations of 'lr is not available. However, we shall see that 
only a subclass of such representations arises in connection 
with massless fields obeying locally conformal-invariant 
field equations. In particular, only representations58 of Class 
!!2 (though not even all representations of this class) will 
arise: 

Definition 2.1: A representation of 'lr will be called of 
Class !!2 if it is finite-dimensional and its basis operators K 

1" 

.J and Ipv satisfy 

KpK' = 0, 

Il'yKY = (.d + i)Kp 

.d 4 + (CI + 1).12 + (C2)2 = ° 

(2.1Sa) 

(2.1Sb) 

(2.ISc) 

where CI and C2 are the sl(2,C) invariants defined in terms of 
the Ipv as in Eqs. (2.7). 0 

The representation defined by Eqs. (2.17) provides a 
rather simple example of a Class !!2 representation, although 
it is not one which arises in connection with locally confor­
mal-invariant massless field equations, as we shall see. 

It is important to show that this definition is a sensible 
one, to the extent that Eqs. (2.1S) form a 'lr-invariant set. 
These equations are evidently invariant under transforma­
tions generated by Ipv and.d. For transformations generat­
ed by KI" the invariance ofEq. (2.1Sa) follows because 
[Kp,K,,] = 0. Consider Eq. (2.1Sb) and the commutator 

[Kp ,Ivp x4' - {.d + i)Kv] 

= i(gpyKp - gppKy)x4' + iK"Kv 

= igpyKpx4'. (2.19) 

When Eq. (2.1Sa) holds, this commutator vanishes, and the 
in variance of Eq. (2.1Sb) follows. Now consider Eq. (2.1Sc) 
and the commutator 

(2.20) 

It can be deduced, using the commutation relations (2.3), 
that 

[Kp,.J 4
] = (_ 4i.d 3 _ 6L1 2 + 4i.d + I)KI" (2.21) 

[KI',(C I + 1).d 2] 
= (.d - i)2[Kp'CI + 1] + (CI + l)[K",.d 2] 
= (.d - i)2(2iIl'vK" + 3KI') + (CI + 1)( - 2i.d - l)Kp' 

[KI',(C2 f] = 2iIpyIVPIpTKT + 7IpvIvPKp (2.22) 

+ (2iC I - 6iJIpvKv + 3C1KW (2.23) 

(In deriving the last of these equations, we found it helpful to 
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use the identity 

(Cz)z = !CdC, + 1) - !II'1'I 1'PIpTI TI', (2.24) 

which follows from Eqs. (2.72) and (2.74) in Lemma 2.5 be­
low.) When Eq. (2.18b) holds, Eqs. (2.22) and (2.23) reduce to 

[KI',(C I + l)..::1Z] 

= !(..::1 - i)z(2i..::1 + 1) - (C I + 1)(2i..::1 + l)jKI' (2.22') 

[KI'(Cz)Z] = [Zi(..::1 + i)3 + 7(..::1 + i)z 
+ (2iC, - 6i)(..::1 + i) + 3CdKI' , (2.23') 

and, when combined with Eq. (2.21), enable us to see that the 
commutator (2.20) vanishes, so that Eq. (2.18c) is indeed '7r­
invariant. 

Let us investigate something of the structure of an arbi­
trary representation Y of class !!2 , with representation space 
r. Regarded as a representation f!lI ofsl(2,C), it will have the 
form (2.9), for a finite set S and positive integers r mn deter­
mined by Y. We introduce the projectors P mn and the oper­
ators M and N as in the general discussion above. We first use 
the P mn to write r as a direct sum of subs paces in two differ­
ent ways: 

(1) Let S I denote the set of distinct values () of 1m - n I 
obtained as (m,n) runs over S. Every such number () is a non­
negative integer or semi-integer. For each () in SI' define the 
projector 

(m.n)ES 

1m - nl = e 

It follows that 

L Pie = 1, PlePle · = PleOee ·, (),() 'sS .... 
IJES, 

(2.25) 

(2.26) 

Then r is a direct sum of the subspaces rle,()eS
" 

where 

r Ie = Pie r. (2.27) 

It can be seen that on r,e the operator (M - N)z has the 
value () 2. 

(2) Let Sz denote the set of distinct values v of 
(m + n + 1) obtained as (m,n) runs over S. Every such num­
ber v is an integer or semi-integer, greater than or equal to 1. 
For each v in S2' define the projector 

P2v = L Pmn • 
(m,n)ES 

m+n+l=v 

It follows that 

(2.28) 

L PZ1' = 1, Pz1'P21', = P21'Ovv' , v,v'eS2. (2.29) 
\€S, 

Then r is a direct sum of the subspaces r 21' ,veS2, where 

(2.30) 

On r 21' the operator (M + N + 1) has the value v. 
We are not concerned with possible orthogonality or 

identity relations among the various Pie and P21' . However, 
we note that as functions of the P mn' they all commute with 
each other, and with..::1, II'1" M, and N. Now consider Eq. 
(2.18c) which by definition holds in Y. Since the operators 
M and N satisfy Eqs. (2.13), we can write Eq. (2.18c) as 

[..::1 2 + (M - N)2][..::1 2 + (M + N + 1)2] = O. (2.31) 
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Define the operators 

Pa = - [..::1 2+(M-N)2][4MN+2M+2N+ 1]-1 

Pb = [..::1 2 + (M +N + 1)Z][4MN + 2M + 2N + 1]-1, 
(2.32) 

noting that (4MN + 2M + 2N + 1) 
[==(M + N + 1)2 - (M - N )2] has a well-defined inverse be­
cause M and N are commuting and non-negative. It follows 
from Eq. (2.31) that 

Pa +Pb = 1, PaPb =PbPa =0, 

PaPa = Pa, PbPb = Pb. (2.33) 

Thus Pa and Pb are projectors, and with their help we can 
write ras a direct sum of two subspaces ra and r b, where 

ra =Par,rb =Pbr. (2.34) 

It follows from Eq. (2.31) that on r a , [..::1 2 + (M + N + l)Z] 
vanishes, while on r b , [..::1 2 + (M - N)2] vanishes. We note 
that Pa and Pb as defined commute with all P mn' and hence 
with..::1, II'1" M, N, Pie, and P21' . 

Finally, we define the projectors 

Pae = PaPle = PlePa, ()eS1 

Pb1' = PbP21' = P21'Pb, veS2· 

Since it follows that 

we have 

L (PaO + Pb1' ) = 1. 
IJES, 
\€S, 

Furthermore, it is easily seen that 

PaePae · = PaOoee ·, (),() 'eS l 

Pb1'Pb1', = Pb1'ovv" v,v'eS2 

(2.35) 

(2.36) 

(2.37) 

PaePbv = Pb1'Pae = 0, ()eS1'veS2. (2.38) 

We can therefore write r as a direct sum of subspaces 
rae,rb1'(()eS"veS2) with 

rae =PaOr,rb1' =Pb1'r. (2.39) 

Note that some of the projectors P ae ,P bv could vanish identi­
cally. (Indeed, this could even be true of Pa or P b') Then the 
corresponding raO or r bv is the trivial subspace of r. 

It follows from what we have said above that on any 
vector in r aO , 

[..::1 2 + (M + N + W] = 0 

(M _N)2 = ()2 

and hence, in particular, 

(()2 _ 1) = [..::1 2 + 2M(M + 1) + 2N(N + 1)] 

= (..::1
2 + Cd· 

Similarly, on any vector in r bv 

(..::1 2 + (M - N )2] = 0, 

(M+N+ l)=v, 

and so 

(..::1 2 + C I ) = (v - 1). 
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(2.40b) 

(2.41) 

(2.42a) 

(2.42b) 

(2.43) 
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We shall now show that each ofthe subspaces rae, r bv 
is Jr-invariant. The operator (Ll 2 + Cd commutes with Ll 
and ~ I"V' Consider the commutator 

[Ll 2 + C1,Kp ] = 2i(Ll + i)Kp - 2i~pvKv. (2.44) 

In the representation Y, the right-hand side vanishes by 
virtue ofEq. (2.18b). It follows that in Y, the operator 
(Ll 2 + C I ) is a Jr-scalar. Since the subspaces rae corre­
spond to distinct eigenvalues of this operator, they are not 
mixed together under the action of Jr. Similarly, the sub­
spaces r bv are not mixed together, nor are the subspaces 
rae and r bv ' with 0 ;fv. It remains to show that in a case 
with 0 = v = p, say, the subspaces rap and r bf are not 
mixed together. Now on 'Y'ap we have (M - N) = p2, so 
that any vaErap can only have components belonging to 
irreducible representations (m,n) ofsl(2,C) with 
1m - n I = p, i.e., the representations (P,O), (p + !,~),. .. and 
(O,p), (!,p + !),. ... Similarly, any VbErbp can only have com­
ponents in representations (m,n) with (m + n + 1) = p, i.e., 
the representations (p - 1,0), (p - M), ... , (O,p - 1). But these 
two sets of sl(2,C) representations are disjoint, and moreover 
cannot be linked by the operators Ll, ~I"V and KI": the opera­
tors Ll and ~I"V cannot link inequivalent representations of 
sl(2,C) since they commute with M and N; and the four­
vector operator KI" can link56 a representation (m,n) only 
with (m + !, n + !), (m + !, n - !), (m - !, n + !) and (m - !, 
n - !). Thus, Ll, ~ I"V and K I' cannot link the subspaces rap 
and r bp which are therefore separately invariant under the 
action of Jr. Thus we see that the decomposition 

(2.45) 

is a decomposition of r into Jr-invariant subspaces. It de­
fines a decompositions of Y into a direct sum of subrepre­
sentations of Jr. 

It follows that if the given representation Y is indecom­
posable, only one of the subspaces rae,rbv is nontrivial. 

Definition 2.2: A representation of Jr of Class !!2 will 
be called a (0 )-representation, where 0 is a non-negative 
integer or semi-integer, if its basis operators Ll, KI"' ~p.v and 
the non-negative operators M,N defined by Eqs. (2.11), sa­
tisfy Eqs. (2.40). It will be called a I v I-representation, where 
v(v> 1) is an integer or semi-integer, if Eqs. (2.42) are satis-
fied. 0 

Then we have proved the following: 
Lemma 2.1: Any indecomposable representation of Jr 

of Class !!2 is either a (0 ) -representation for some 0, or a 
I v I-representation for some v. 0 

In the context ofthis work, we find that [vI-representa­
tions are not of interest. This is fortunate, because we shall 
see that in every (0 )-representation Ll is diagonalizable, 
while the same cannot be said of every [ v I-representation, as 
the example of a [ II-representation defined by Eqs. (2.17) 
shows. The structure of (0 ) -representations is comparative­
ly simple. Let us look at this structure a little more closely, 
for an arbitrary (0 ) -representation Y, with representation 
space r. Noting that Eq. (2.40a) holds by definition, we 
define the projectors 
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P + = - V[Ll + i(M + N + I)][M + N + 1] - I, 

P _ = + !i[Ll - i(M + N + I)][M + N + 1]-1, (2.46) 

which satisfy 

P + + P _ = 1, P +P + = P +, P _P _ = p_, 

(2.47) 

Then 'Y is a direct sum of the corresponding subs paces r + 

and ,//'_, 

r + =P+//', r _ =p_r. 

On r + we have 

Ll = + i(M + N + 1), 

and on r _ we have 

Ll = -i(M+N+ 1). 

(2.48) 

(2.49) 

(2.50) 

Because P + and P _ commute with ~I"V' the subspaces r + 

and 'Y' _ are separately sl(2,C )-invariant. It follows that we 
can choose bases in these subs paces such M and N, and hence 
Ll, are diagonal. This justifies our assertion above that Ll is 
always diagonalizable in a (0 )-representation. Now on r 
we also have, by definition of a (0 )-representation, 

(M - N)2 = 0 2, (2.51) 

and it then follows from Eq. (2.49) that on r +, - iLl has 
eigenvalues belonging to the series (0 + 1), (0 + 2), 
(0 + 3), ... , while on r _ it has eigenvalues belonging to the 
series - (0 + 1), - (0 + 2), - (0 + 3),..·. Considertheef­
fect of Ll, ~p.v' and KI" on a basis vector in r _. Since Ll and 
~I'V commute with - iLl, and so cannot change its eigenval­
ue, they must carry such a vector back into r _. Now Eq. 
(2.3c) says that Kp. converts an eigenvector of - iLl with ei­
genvalueS, into one with eigenvalue (S + 1). Sinceanyeigen­
value from the first series above is greater by at least two 
units than any eigenvalue from the second series, it follows 
that KI" carries no basis vector from r _ into r +. In this 
way we see that r _ is invariant under the action of the 
operators of Jr. By a similar argument we deduce that r + 

is Jr-invariant, and we conclude that the decomposition 
(2.48) defines a decomposition of Y into a direct sum of 
subrepresentations. If Y is indecomposable, one or the oth­
er of //' +, r _ must be trivial. 

Definition 2.3: A (0 ) -represen tation of Jr will be called 
a (0, + )-representation [respectively, a (0, - )-representa­
tion] if, with the same notation as before, 

Ll = + i(M + N + 1) 

[respectively 

Ll = - i(M + N + 1)]. 

Then we have proved: 

(2.52) 

(2.53) 

o 
Lemma2.2: Any indecomposable (e ) -representation is 

either a (0, + )-representation or a (0, - )-representa-
tion. 0 

Comment: A similar analysis cannot be performed for 
an arbitrary [v I-representation. In place of the operator 
(M + N + I) in Eq. (2.46) above we would have (M - N), 
which is not always invertible. [See again the example de-
fined by Eqs. (2.17), for whichM = N = 0.1 0 
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We can carry our investigation of (8 )-representations 
still further. Consider a (8, + )-representation.'7, with re­
presentation space r, which has 8> 0 but is otherwise arbi­
trary. As for the general case of a Class I!) representation 
described above, introduce the projectors P mn' (m,n )eS. In 
the present case, (m - n)2 = 8 2 for every (mn )eS. Let us split 
the set S of ordered pairs (m,n) into two subsets Sa and Sp 
according as (m - n) = + 8 or - 8, and define the corre­
sponding projectors 

(2.54) 

Then 

Pa +Pp = 1, PaPa =Pa, PpPp =Pp, 

PaPp = PPPa = 0, (2.55) 

and we can write r as a direct sum of the corresponding 
subspaces r a and r f3' 

ra =Par, rp =ppr. (2.56) 

Then, on ra 

M-N= +8, 

while on r p, 

M-N= -8. 

(2.57) 

(2.58) 

It follows that vectors in r a belong to certain representa­
tions (m,n) ofsl(2,C) from the series (8,0), (8 + ~,~), 
(8 + 1,1 )"'" while those in r p belong to certain representa­
tions (m,n) from the series (0,8), (~,8 + ~), (1,8 + 1) .... It is at 
once clear that A and ~I-'V' which commute with M and N, 
leave the two subs paces r a and r p separately invariant. 
As we remarked before, KI-' can only link the representation 
(m,n) with (m ± ~,n + ~) and (m ± ~, n - ~). Then it follows 
at once that, at least for 8> !, KI-' leaves r a and r p separa­
tely invariant. In the case 8 = ~, it is at first glance conceiv­
able that KI-' could link a vector in r a belonging to H,O) with 
one in r p belonging to (O,~), and one in r a belonging to (q) 
with one in rp belonging to (P) etc. However, we recall 
that on r, by definition of a (8, + )-representation, 

A = i(M + N + 1) (2.59) 

so that.d has the same value 3i/2 on the first two vectors 
mentioned, and the same value 5i/2 on the second two, etc. 
But Eq. (2.3e) shows that KI-' cannot transform one eigenvec­
tor of.d into another with the same eigenValue. In this way 
we see that for every 8, 8> 0, the two subspaces r a' r pare 
separately ?'r-invariant, and the decomposition of r de­
fines a decomposition of.'7 into a direct sum of subrepresen­
tation. If.'7 is indecomposable. one of r a ,r fJ must be tri­
vial. (The case 8 = 0 is special: there is just one subspace, on 
which M = N.) A completely analogous analysis can be giv­
en in the case of a (8, - )-representation, with 8> O. 

Definition 2.4: A (8, + )-representation of ?'r (with 
8> 0 or e = 0) will be called a [ + e, + ]-representation if, 
with the same notation as before, Eq. (2.57) holds: 

M-N= +e. 

It will be called a (- 0, + ]-representation ifEq. (2.58) 
holds: 

M-N= -e. 
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Similarly, we define [ + 8, - ]-representation as a (8, - )­
representation in which Eq. (2.57) holds; and a [ - 8, - ]-
representation as one in which Eq. (2.58) holds. 0 
Then we have proved 

Lemma 2.3: Any indecomposable (8, + )-representa­
tion is either a [ + 8, + ]-representation, or a [ - 8, + ]-re­
presentation. 0 

Rather than refer [ + 8, + ]-, [0, + ]-, and [ - 8, + ]­
representations, where 2e is a positive integer, we can hence­
forth refer simply to [A., + ]-representations, with U an in­
teger, positive, negative or zero. Such a representation is 
characterized by Eqs. (2.18), and in additionS9 

M -N=A., 
.d= +i(M+N+I). 

(2.6Oa) 
(2.6Ob) 

Similarly, a [A., - ]-representation is characterized by Eqs. 
(2.18) and 

M -N=A., 
.d = -i(M+N+ I). 

(2.61a) 
(2.6Ib) 

We shall give one further result concerning the structure of 
such representations. Recall that A is diagonalizable in these 
cases. 

Definition 2.5: A [A., + ]-representation will be called a 
[A., + ;l,u ]-representation, where I and u are non-negative 
integers with u>l, if the eigenvalues oft - i.d ) are 

IA.I + 1 + 1,1A.1 + 1 + 2, ... ,1A.1 + u + 1. (2.62) 

Similarly, a [A., - ]-representation will be called a [A., - ;I,u]­
representation if the eigenvalues of ( - i.d ) are 

- (iA. I + 1 + 1), - (IA.I + 1+2), ... , 
- (IA.I + u + 1). (2.63) 

o 
Lemma 2.4: An indecomposable [A., + ]-representation 

is a [A., + ;I,u]-representation for some I and u; and an inde­
composable [A., - ]-representation is a [A., - ;1,uJ-represen­
tation for some I and u. 

Proof Consider an indecomposable [A., + ]-representa­
tion, with representation space r. Then Eqs. (2.60) hold, so 
that 

- i.d = (2M + 1 - A. ) = (2N + 1 + A. ). (2.64) 

Because 2M and 2N have non-negative integral eigenvalues, 
we see that every eigenvalue ~ of ( - iA ) in this representa­
tion is of the form 

~ = IA.I + t+ 1 (2.65) 

with t a non-negative integer. If there is only one such t, we 
set I = t = u and the proof is complete. If there are more 
than one, we order them thus: 

(2.66) 

Then we have to show that t" t 2• .. t n comprise all the integers 
from I to u. Suppose this is not the case, so that for some 
integral value of i between 1 and n - 1, 

t i +' > ti + 1. (2.67) 

Since ( - i:d ) is diagonalizable. r is the direct sum of the 
eigenspacesof( - i.d ). Let r i be the direct sum oftheeigen­
spaces corresponding to values of t not greater than ti , and 
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r; the direct sum of those corresponding to values of t not 
less than ti + I . Then 

r = r i Ell r;. (2.68) 

Since.1 and ~JL1' commute with ( - i.1 ), they leave r i and 
r; separately invariant. According to Eq. (2.3e), 

.1KJL = KJL (.1 + i), 
so the action of KJL is to increase the eigenvalue of ( - i.1 ) by 
one unit. Because of the inequality (2.67), it follows then that 
KJL cannot carry a vector from r i into r;, nor from r; into 
r i : these spaces are also separately invariant under the ac­
tion of KJL' In this way we see that Eq. (2.68) defines a decom­
position of r into a direct sum of Jr-invariant subspaces. 
Since the given representation is indecomposable, we have a 
contradication, and the inequality (2.67) cannot hold. An 
analogous proof applies in the case of an indecomposable 
[A, - )-representation. 0 

Combining Lemmas 2.1, 2.2, 2.3, and 2.4 we have 
Theorem 2.1:An indecomposable representation of Jr 

of Class f!2 must be one of the following types: 
(i) [A, + ;i,u) or [A, - ;i,u), for some integer or semi­

integer A (positive, negative or zero) and some non-negative 
integers i and u (u;;>/). 

(ii) [vJ, for some integer or semi-integer v(v> 1). 0 
Comments: 
1. Weare not concerned at this stage with proving the 

existence of any of these representation types. The only Class 
f!2 representation we have exhibited so far is the [ I)-repre­
sentation defined by Eqs. (2.17). 

2. It is, of course, not true that a given representation of 
anyone of these types need be indecomposable. Moreover, 
we have not proved that any two given representations of the 
same type (for example, any two [A, + ;i,u]-representations 
having the same values of A, i, and u) are necessarily equiva­
lent, even if they are both indecomposable. 

3. We shall refer to ¢'(x) as an (indecomposable) Class f!2 
field if its index space carries an (indecomposable) represen­
tation of 'If'' of Class f!2 . Similarly, we shall refer to (inde-
composable) [A, + ;i,u )-fields, [v )-fields, etc. 0 

We complete this section by presenting some results 
valid for any representation of the Lie algebra sl(2,C) 
(whether or not finite-dimensional, and whether or not con­
tained in a representation of Jr). These results will be re­
quired below. 

Lemma 2.5: Let~JLv (= -~JLv)belinearoperatorsde­
fined everywhere on a vector space, and satisfying there the 
commutation relations (2.3a) ofsl(2,C). Define the Casimir 
operators C I and C2 as in Eqs. (2.7). Then the following iden­
tities hold on that vector space: 

(
.) ~ ~ VA ~ ~ w\ 'C Ie A .~ A 
1 ~llV~ = ~JLV~ = I 2uJL + I~JL ' (2.69) 

where 

(iii) ~JLV~ vP~pa~ aT - 4i~JLv~ vP~p T + (CI - 5).IJLv~ VT 

- 2i(C1 - I).IJL T - [CI - (C2f ]OJL T = 0; (2.72) 

(iv)~ ~vp1 1 aT _ (C + II\" 1vT + (C )20 T = O' /.LV pO' 1 ~ ltv 2 p. , 

(2.73) 
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(2.74) 

If, in addition, the vector space is finite-dimensional, so that 
the operators M and N can be introduced as in Eqs. (2.11) 
and (2.13) above, then the following identities also hold: 

(vi) [ - i~JL1' - (M - N + I)gJLv] 
X [- i~1'P + (M -N _I)gvP] 

X [ - i~pa - (M + N + 2)gpa] 
X[ _i~aT+(M+N~T] =0; (2.75) 

(vii) [1JL1' -(M-N)gJLv] 
X [~VP + (M _ N)g1'P] 

X[~pa -(M+N+ I)gpa] 

X[1aT+(M+N+I~]=O. (2.76) 

Proof (i) This result is obtained by substitution of var­
ious values for p and A, and use ofthe commutation relations 
(2.3a). For example, withp = 0, A = 1 we have 

~ ~vA =~ ~21 +1 ~31 JLV 02 O~ , 

= _~31~21 +~21~31, 

= i~23, 
.- I = l~o , (2.77) 

as required. 
(ii) We note that 

€ €1'Aa/3 = (Aaf3\ _ (Aaf3\ + (AaP) 
JLvpa ppu} pup} \pup 

- ~:~ + e:~ -e;~, (2.78) 

where, for example, 

(AaP) = 0 AO ao /3. 
ppu I' p a 

(2.79) 

Then we have 

4~ ~ vA _ 1'Aa/3 ~ pa ~ 
~JL1'~ - €JL1'pa€ ~ ~a/3' 

= OJL A (~a/3~a/3 - ~ /3a ~a/3) 

+ ~ Aa ~aJL - ~ A/3~I'/3 

+ ~/3A~JL/3 - ~aA~aJL' (2.80) 

which yields the result (2.71), with the help of the commuta­
tion relations (2.3a). 

(iii) Define 

All" = - i~JL v - 01' v, 

BJLv=1JL1', (2.81) 

and, suppressing tensor indices for the moment, write 

A for AJL v, 1 for oJL v, B for Bl'v, 

AoA for AJL AAA V, AoB for AJL ABA ", (2.82) 

and so forth. Then Eqs. (2.69) and (2.71), respectively, read as 

AoB = BoA = C2, (2.83) 

(2.84) 

It follows from the second of these, multiplying on the left or 
right by AoA, that 

AoAoAoA = - AoAoBoB + (CI + I)AoA. (2.85) 

Using Eq. (2.83) twice in succession we see that Eq. (2.85) 
reduces to 
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AoAoAoA - (C I + l)AoA + (C2)2 = 0, (2.86) 

which is equivalent to Eq. (2.72). 
(vi) On substituting for C I and C2 in Eq. (2.72), in terms 

of M and N from Eqs. (2.13), we get 

[A - (M - N)]o[A + (M - N)]o 

[A - (M + N + I)]O[A + (M + N + 1)] = 0, (2.87) 

which is equivalent to Eq. (2.75). 
(iv) Multiplying Eq. (2.84) on the left or right by BoB, we 

get 

BoBoBoB = - BoBoAoA + (CI + l)BoB. (2.88) 

Again using Eq. (2.83) twice, we get 

BoBoBoB - (CI + l)BoB + (C2f = 0, (2.89) 

which is equivalent to Eq. (2.73). 
(vii) On substituting for C I and C2 in Eq. (2.73) in terms 

of M and N from Eqs. (2.13), we get 

[B - (M - N)]O[B + (M - N)]o 

[B - (M + N + l)]o[B + (M + N + 1)] = 0, (2.90) 

which is equivalent to Eq. (2.76). 
(v) Using the commutation relations (2.3a), it is straight­

forward to show that if 

rl"v = ~I"a~oP~pv - 3i~I" a~av - iClgl"v, (2.91) 

then 

rl"v = - rVl"' (2.92) 

It follows that rl"I" = 0, whence 

~I"a~aP~pl" - 3i~I"a~al" - 4iCI = 0, 

which is equivalent to Eq. (2.74). 
Comment: 

(2.93) 

o 
1. Some of the identities given here were presented ear­

lier by Bracken and Green60 in the general context of identi­
ties for the generators of representations ofSO(n). 0 

3. CONDITIONS TO BE SATISFIED FOR LOCAL 
CONFORMAL-INVARIANCE OF THE WAVE EQUATION 

We are concerned with massless fields, and we shall 
take that to mean that they satisfy61 the wave equation 

(3.1) 

Definition 3. J: This equation will be said to be locally 
conformal-invariant on a vector space C1f ( ~ g;) consisting of 
solutions, if C1f is d -invariant; that is to say, if !/IE all implies 
X!/IE all, where X is any element of the Lie algebra d spanned 
by D, PI" ,KI" , and MI"l" 0 

Comments: 
1. We do not require that all must consist of all the 

solutions ofEq. (3.1) which lie in g;. Nor do we require that 
if !/lEg; is a solution, then so is XI/!, where X is any element of 
d. As we shall see, such requirements would rule out of 
further consideration such interesting cases as the free elec­
tromagnetic field FI"l'(x), where conformal invariance of the 
wave equation holds not on the space of all smooth solutions 
of that equation, but only on the subspace of fields satisfying 
certain extra equations, viz., Maxwell's equations. 

2. If I/! is to be a potential for a massless field X of a 
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different type [e.g., with index space carrying a different fin­
ite-dimensional representation of sl(2,C I], then it may not be 
appropriate to require that I/! satisfy the wave equation; nor, 
when it does, to require local conformal-invariance of this 
equation in the manner defined. One might only expect these 
requirements to be met, roughtly speaking, "up to a change 
of gauge" of I/!. Our results are relevant to a potential I/! only 
in the restricted situation where one chooses a gauge such 
that I/! satisfies the wave equation, and asks ifthis equation is 
locally conformal-invariant when I/! transforms as in Eqs. 
(2.4) and (2.5), supplementary gauge transformations being 
suppressed. It is known that in the case of the four-vector 
potential of the free electromagnetic field, the equation 
OAI" = ° is not conformal-invariant in this sense.22.32.38 We 
shall see that this result generalizes to all potentials. The only 
fields for which the wave equation is locally conformal-in-
variant are fields "having invariant helicity." 0 

In order to prove our first result, we exploit the isomor­
phism of d and the Lie algebra so (4,2). Following Mack et 
01.,43 we define JAB ( = - JBA ), A,B = 0,1,2,3,5,6 by 

Jill' = MI"Y' J65 = D, 

JSI" = !(PI" - KI")' J61" = !(PI" + KI")' 
(3.2) 

Then the commutation relations (2.6) can be written as 

i [JAB ,JCD ] = gACJBD + gBDJAC - gBCJAD - gADJBC' 
(3.3) 

where the extended metric tensor is diagonal, with 
g55 = - 1, g66 = + 1. 

Theorem 3.1: (1) The wave equation (3.1) is locally con­
formal invariant on a vector space all ~!iJ if and only if all is 
d invariant and every field I/! in all satisfies 

WABI/! = 0, A,B = 0,1,2,3,5,6, 

where 

(3.4) 

WAB = JACJ C
B + JBCJ C

A + 't$ABJCDJCD. (3.5) 

(2) Anyone solution in!iJ ofEqs. (3.4) generates under 
the action of d an d -invariant space of such solutions, on 
which the wave equation is locally conformal invariant. 

Proof (1) Suppose that the wave equation is locally con­
formal invariant on all, and 1/IEC1f. It follows from Definition 
3.1 that 

(3.6) 

for any finite set of operators XI' X 2, ... ,x" in d. Now from 
Eqs. (3.2), 

PI"PI" = (JSI" + J61" )(J51" + J61") 

= - JSAJ\ - J6A J A
6 - JSA J A

6 -J6A J A
S 

= - !W55 - !W66 - W56· (3.7) 

Since WAB by construction is an so (4.2)-tensor operator, we 
have (on !iJ) 

i[WAB,JCD ] =gADWCB -gACWDB 
+ gBD WAC - gBC WAD' (3.8) 

and so 

i[PI"PI",Jsv ] = - WSY - W6v 

[[PI"PI",Jsv ],Jsp ] = Wpv + gyP W55 + gyP W65· (3.9) 
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It then follows from Eq. (3.6) that 

Wpl' ¢ = o. p=l-v 

and 

(Woo + W,;s + W6S )¢ = O. 

(WI I - W,;s - W6S )¢ = o. 
(Wn - W';5 - W(5 )¢ = o. 
( W33 - W" - Wos)¢ = O. 

Similarly. from the commutator 

[[PI"PI".J50 ].J60 ] = Woo - W;)O + Wos 

we deduce that 

(Woo - Woo + Wns)¢ = O. 

From Eq. (3.9) we also have. provided p =l-v. 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

i[[[PI"PI"JSl'].JSp].J5u] =gp"W5v +gvuWsp' (3.14) 

from which we deduce (taking (T = P =I- v) that 

W5v ¢ = O. (3.15) 

Similarly. from the commutator (P=l-v here) 

i[ [[ PI"P'l.Jsv ] .J5p ] .J6u ] = gpu W6v + gl'u W6p ' (3.16) 

we deduce that 

W6l' ¢ = O. 

Finally. from the commutator 

[[ [[PI"PI".J50].J5d.J,d.J60] = W65 

we have 

W65¢= o. 
Noting from the definition (3.5) that 

(3.17) 

(3.18) 

WA
A = W;)() - WII - W11 - W33 - W55 + Woo = O. (3.19) 

we can readily see from Eqs. (3.10-3.13. 3.15. and 3.17-3.19) 
that all of Eqs. (3.4) hold. 

Conversely. suppose that every ¢ in a vector space 
(;/l-'( k.£0) satisfies Eqs. (3.4). Then by Eq. (3.7) every ¢ in ~ 
satisfies the wave equation. If in addition ~ is ..c( -invariant. 
then the wave equation is by definition locally conformal­
invariant on (;/l-'. 

(2) Suppose ¢(E!iJ) satisfies Eqs. (3.4). Then it is obvious 
from the relations (3.8) that ¢' = XIX1",Xn ¢ also satisfies 
these equations. where XIX1 •... ,xn is any finite set of ele­
ments of ..c(. Let ~ if' be the vector subspace of 9 consisting 
of all finite linear combinations of all such ¢'. Then (;/l-' '" is an 
.if -invariant space of solutions in !iJ of Eqs. (3.4). and so by 
the first part of this theorem. is a space on which the wave 
equation is locally conformal-invariant. D 

Comments: 
1. This theorem enables us to replace the problem of 

finding for which field types there exist ..c( -invariant spaces 
of solutions of the wave equation with the simpler problem of 
finding for which field types there exist any solutions of the 
Equations (3.4). This is the advantage of having found an 
irreducible ..c( -tensor set of equations. 

2. There is an obvious generalization to any situation 
where one has a representation ..c('. on a vector space !iJ'. of 
the so(4.2) Lie algebra. with basis P ;,.K ~.D '. and M ~v' The 

1934 J. Math. Phys., Vol. 23, No.1 0, October 1982 

equation 

(3.20) 

will hold on an .W" -invariant subspace Cik' of!iJ' if and only if 
every vector ¢' in (;/l-" satisfies 

(3.21) 

where WAB ' and JAB' are defined in terms of p~. etc., as in 
Eqs. (3.2) and (3.5). And anyone vector in!iJ' satisfying Eqs. 
(3.21) -.xill generate under the action of..c(' an ..c('-invariant 
space of such vectors. 

3. Barut and Bohmo1 have shown that the self-adjoint 
generators JAB (= - j BA ) of any irreducible unitary repre­
sentation ofSU(2.2), in the ladder series. satisfy (on a suitable 
domain) 

"C .,c 1 • J CD 0 
lAd B + lBd A + tjJABicD =. (3.22) 

These representations are associated with the mass-zero re­
presentations of ISL(2.C). as remarked in the Introduction. 
and this result can be seen to be a corollary to Theorem 3.1-
or rather. to its generalization described in Comment 2. 
However. we emphasize that we do not assume the represen­
tation (unitary or otherwise) of any group on the fields ¢ and 
we are not concerned with any Hilbert space structure for 
such fields. D 

We proceed to investigate the content of the (20 linearly 
independent) equations (3.4). writing them out in SO(3.1)­
tensor form. We have: 

A =/1, B = v:(M"pMPl' + Mvp M PI" - !K"P" 

- ~K"P" - WI'K" - WvKI")¢ 

= - ts'lV(JCDJ CD )¢. (3.23a) 

A = /1, B = 5: [ - Ml"v(PV - KV) + (PV - KV)Mvl" 

-(P'l +KI")D-D(P
" 

+K,,)]¢=O. (3.23b) 

A =/1, B = 6: [ - M"JPv + KV) + (P" + KV)Mvl" 

-(P'l -KI")D-D(PI" -KI")]¢=O' (3.23c) 

A = 5. B = 5: [D 1 + !(PI"PI" - KI"PI" - PI"K" + KI"K,, )]¢ 

= - 't,(JCDJ CD )¢. (3.23d) 

A = 5.B = 6:PI"PI"¢ = KI"KI"¢' (3.23e) 

A =6,B=6:[D2-!(pI"PIl +KI"P
" 

+P"K
" 

+KI"KI"l1¢ 

= - ~(JCDJCD)¢. (3.23f) 

Also, we note that 

J J CD =M Ml"v+KI"P +KI"P _2D2 
CD I"V I" I" • 

=M Ml"v+2KI"P +8iD-2D 2 (3.24) 
/-LV IL ' 

using Eqs. (2.6). A set of equations equivalent to Eqs. (3.23) 
and more convenient than them is obtained by taking certain 
linear combinations and using the commutation relations 
(2.6) to reorder factors in some products. We get 

PI"PI"¢=O. 

KI"KI"¢=O, 

Ml"vpv¢ = (i - D)PI"¢' 

Ml"vKv¢ = (i + D)KI"¢' 

(Ml"pMPv + MvpMPI" -KI"Pv -KvPI")¢ 

- gl"v(MpuMPU - 2iD + 2D 2)¢. 
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and 

(3.26) 

We note also that when Eq. (3.26) holds, we have from Eq. 
(3.24) 

(3.27) 

Finally we note that Eq. (3.26) is redundant, as it follows 
from Eq. (3.25e) by contraction. We therefore drop it from 
the set, leaving again (1 + 1 + 4 + 4 + 10 = )20 equations 
to be satisfied by tP. 

We now obtain an equivalent set of20 equations involv­
ing the generators .IJty,.:!, and KJt' by substituting into Eqs. 
(3.25) the expressions (2.5) for MJty,D andKJt' At first sight it 
appears that the resulting equations will be very complicat­
ed, but great simplifications occur. For example, consider 
the third equation. We have from Eqs. (2.5) 

MJtyPy=xJt(PypY)-(xypY)PJt +.IJtypY (3.28) 

and 

(i - D )PJt = (i - Xypy - Ll )PJt' 

and so 

(3.29) 

MJtyPYtP = (i - D )PJt tfr-=>[ xJt (PypY) + .IJtypY) tP 

= (i - Ll )PJt tP. (3.30) 

Since we shall retain pypYtP = 0 as one equation in our set, 
Eq. (3.30) reduces to 

.IJtypYtP = (i - Ll )PJt 1/1. (3.31) 

It is no surprise that all x-dependent terms disappear in the 
transition from Eq. (3.25c) to Eq. (3.31): as Eqs. (3.25) are 
locally conformal-invariant, they are locally translation-in­
variant. This can be exploited in the reduction of the remain­
ing equations in the set (3.25). We obtain 

Theorem 3.2: Equations (3.4) are equivalent to Eqs. 
(3.25). For fields on which the generators of infinitesimal 
conformal transformations have the form (2.5), they are also 
equivalent to the following: 

PJtPJttP = 0, 

KJtK'tP = 0 

.I,tyP YtP = (i - Ll )PJt tP, 

.IJtyKYtP = (i + Ll )KJt tP, 

(.IJtp.I Py + .Iyp.I P
Jt - KJtPy - KyPJt)tP 

= - gJty(.Ipa.I pa + 2L1 2 - 2iLl )tP. 

(3.32a) 

(3.32b) 

(3.32c) 

(3.32d) 

(3.32e) 

Proof Suppose Eqs. (3.25) hold, and consider Eq. 
(3.25d) 

MJtyK YtP = (i + D )KJt tP, 

= KJt(2i + D )tP, (3.33) 

using Eq. (2.6b). Noting the forms (2.5) of MJty and KJt' we 
proceed to simplfy the left-hand side. We have 

(xJtPy - xyPJt)KYtP 

= [2xJt (xyP Yf + 8ixJt (xyP Y) 

- 2ixJt(xyPY) + 2xJt (xyP Y)Ll + 8ixJtLl 

+ 2xJtxy(Ll - i)P y + xJt (PyK') - 2(xyxY)PJt (xpPP) 
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- 2ixJt(xyPY) + (XyXY)(XpPP)PJt + 2ixJt(xyPY) 

- 2(xyxY)PJtLl - 2ixJtLl + 2xyPJtxP.Ip y - (XyKY)PJt )tP, 
(3.34) 

and 

.IJtyK YtP = [2xY(xpPP)..!'Jty - (xyxY)(i - Ll )PI' 

+ 2xY.IJtyLl + 2xp.IJty.I yp + .IJtyKY)tP, 
(3.35) 

noting Eqs. (3.32a) and (3.32c), already seen to follow from 
Eqs. (3.25). The right-hand side ofEq. (3.33) is 

[2xJt (xyP Y)2 + 2xJt(xyPY)L1 + 4ixJt(xyPY) - (xyXY)PJt(xpPP) 

- (xyxY)PJtLl - 2i(xyxY)PJt + 2x,t (xyPY)Ll 

+ 2xJtLl 2 + 4iXJtLl 

+ 2xP(xypY)..!'Jtp + 2xP.IJtp Ll + 4ixP.IJtp 

+ (XyPY)KJt + KJtLl + 2iKJt )tP· 

Combining these results, we see that Eq. (3.33) is 

[xl' (PyKY) + 2ixJtLl - (XyKV)PJt + 2xp.IJty.I yp 

+ .IJtyKY - 2xI'Ll 2 - 2ixP.IJtp 

- (XyPY)KJt - KJtLl - 2iKJt )tP = 0, 

which we write as AtP = o. 
(3.36) 

Now we note that since Eqs. (3.25) form an d -invariant 
set, P" tP satisfies those equations whenever tP does. There­
fore it is also true that 

AP"tP=O, 

and hence that 

[A,P" )tP = o. 

(3.37) 

(3.38) 

Evaluating the commutator appearing here, we then get 
from Eq. (3.36) 

[g"Jt (KyP Y) + 2ig"JtLl - K"PJt + 2.IJty .I y" 
- 2g"JtLl 2 - 2i.IJt" - KI'P" JtP = 0, 

and Eq. (3.36) then implies further that 

[.IJtyKY - KJt(2i + Ll ))tP = 0, 

(3.39) 

(3.40) 

which is Eq. (3.32d). Contracting Eq. (3.39) with gAl' we get 

KyP YtP = (.Iyp.I yp + 4Ll 2 - 4iLl )tP, (3.41) 

and combining this with Eq. (3.39) we get 

(2.IJty .I y" - 2i.IJt" - KJtP" - K"PI')tP 

= - g,,1' (.Iyp.I yp + 2Ll 2 - 2iLl )tP, (3.42) 

which we see is equivalent to Eq. (3.32e), using the commuta­
tion relations (2.3a). Note that Eq. (3.42) is equivalent to Eq. 
(3.39), as it also implies Eq. (3.41) on contraction withgAJt. 

In a similar way we first reduce Eq. (3.25b) to 

[4xPxa.Ipy.I ya + 4i(xyxY)Ll _ 4(xyxY)L1 2 

+ 2(xvxY)(Pp~) - 4(xyP Y)(xp~))tP = KyKYtP. (3.43) 

But the left-hand side of this vanishes, as is seen by contract­
ing Eq. (3.39) with x"xJt. Therefore Eq. (3.32b) holds. Equa­
tion (3.25e) yields no equations not included in Eqs. (3.32). 

To complete the proof, we need to show that Eqs. (3.32) 
imply Eqs. (3.25). It is easy to see that this is so for Eqs. 
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(3.25aH3.25d), essentially by reversing the arguments 
above. In order to prove it so for Eq. (3.25e), we can proceed 
in the same way, or, more simply, as follows: 

If t/J satisfies Eqs. (3.32), then so does P). t/J. But Eqs. 
(3.32) imply Eq. (3.25d), and hence 

[Ml'vKV - (i + D )KI' ]P). t/J = ° 
as well. But then it follows that 

[Ml'vK v - (i + D)KI' ,P). ]t/J = 0, 

or, using Eqs. (2.6), 

[2Ml'vMv). -2iMI'). +g).I'(KvPV) 

(3.44) 

(3.45) 

+ 2ig).I'D - 2g).I'D 2 - K).PI' - KI'P). ]t/J = 0. (3.46) 

Contracting with~1' we get Eq. (3.26), and substituting this 
back in Eq. (3.46), and noting the relations (2.6), we get ~ 
(3.25e) as required. 0 

Note: We also find that for fields satisfying Eqs. (3.32), 
Eq. (3.24) reduces to 

JCDJCDt/J = 6(C1 + .:::1 2)t/J. (3.47) 

Comments: 
1. In view of Theorem 3.1 (2), anyone (smooth) solution 

ofEqs. (3.32) generates an ..of-invariant vector space of such 
solutions. Our main problem is to find for which field types, 
i.e., for which finite-dimensional representations of 'lr with 
basis operators ~ I'V ,K 1" and .:::1, there exist any solutions of 
Eqs. (3.32). 

2. Any finite-dimensional representation of 'lr can be 
reduced to a direct sum of indecomposable representations, 
not necessarily irreducible, and correspondingly, any field t/J 
can be written as a direct sum of 'lr-indecomposable fields. 
Now as far as the index space of the field t/J is concerned, Eqs. 
(3.32) involve only the 'lr operators. It follows that when 
these equations hold, they hold separately on each 'lr-inde­
composable component field in the direct sum decomposi­
tion of t/J. In addition to this, consider the above-mentioned 
..of-invariant space ~ .p of solutions of Eqs. (3.32), generated 
by one solution t/J in the manner described in the proof of 
Theorem 3.1. The operators in ..of, as far as their action on 
the index space of t/J is concerned, only involve the 'lr -opera­
tors, according to their definitions (2.5). Therefore ~ .p is the 
direct sum of the ..of-invariant spaces generated by the 'lr­
indecomposable components of t/J. For these reasons it is 
sufficient at the outset to consider fields t/J which are 'lr­
indecomposable, i.e., whose index space carries an indecom­
posable representation of 'lr. D 

In examining the implications of Eqs. (3.32), we begin 
with (3.32e), which we write in the form 

with 

Tl'v =~I'{J~PV +~vP~PI' +gl'vC(, 

=UI'P~PV -2i~l'v +gI'V C1' 

rl'v = KI'P" + K"PI' - gl'v G, 

G = C( + 2.:::1 2 - 2i.:::1, 

and C( as in Eqs. (2.7). 
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(3.48) 

(3.49) 

(3.50) 

(3.51) 

We note that 

TI'V = T"I" TI'l' = 0, 

rl'v = rvl" 

Then Eq. (3.48) implies that 

rl'l't/J = 0, 

or equivalently, 

KI'PI't/J = 2Gt/J:-

Equation (3.48) also implies that 

r'''TI''' t/J = r'vrl'v t/J. 

Using Eqs. (3.52) we see that 

r'''Tl'v =Ul'a~a"(U"p~PI' -2i~vl' +gvl'CIl 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

= 4~l'a~ ~"P~ _ 4i~l'a~ ~v _ 4(C)2 av pp.. av p. 1 

= 4(CIl2 - 16(C2)2, (3.56) 

using Eqs. (2.72) and (2.74) of Lemma 2.5. Now consider 

~I' "r"pt/J = (~I'"K"Pp + ~l'vKpP" - ~I'{JG)t/J 

= (Pp~I'"Kv + Kp~I'''P'' - igI'{JK"P" 

+ iKI'Pp - ~l'pG)t/J 

[using Eqs. (2.3b)] 

= [Pp(i +.:::1 }ieI' + Kp(i -.:::1 )PI' + iKI'Pp 

- (~I'P + 2ig1'P)G ] t/J 

[using Eqs. (3.32) and (3.54)] 

= [.:::1 (KI'Pp - KpPI') + 2i(KI'Pp + KpPI') 

- (~I'P + 2igl'{J)G]t/J (3.57) 

[using Eq. (2.3e)]. Then 

~PI'~1' vrvpt/J = [.:::1~PI'(KI'Pp - KpPI') - ~PI'~I'{JG]t/J 

= [2.:::1 (i +.:::1 )KpPP + 2C1G ]t/J 

[using Eq. (3.32d)] 

= 2(2.:::1 2 + 2i.:::1 + CIlGt/J 

= 2[4.:::1 4 + 4(C( + 1).:::12 + (CIl2]t/J. (3.58) 

Now 

T"Prvpt/J = rP"r"pt/J 
= UPI'~1' "rvpt/J, (3.59) 

using the definition (3.49) and noting Eqs. (3.52) and (3.53). 
Combining Eqs. (3.55), (3.56), (3.58), and (3.59) we get 

[4(Cd2 - 16(C2f]t/J = 4[4.:::1 4 + 4(C1 + 1).:::12 + (C()2]t/J, 

i.e., 

(3.60) 

Now consider this equation, together with Eqs. (3.32b) 
and (3.32d). Any field satisfying Eqs. (3.32) must satisfy these 
three equations in particular. In Sec. 2 we have shown that 
this set of equations is 'lr-invariant, and in fact character­
izes what we have called a representation of 'lr of Class !!2. 
Therefore we have 

Theorem 3.3: The nonzero components of any field t/J 
satisfying Eqs. (3.32), belong to a representations of 'lr of 
Class!!2. D 
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Comment: 
1. In the context of free, massless fields satisfying local­

ly conformal-invariant equations it follows that we can, 
without significant loss of generality, limit ourselves at the 
outset to fields whose index spaces carry indecomposable 
representations of 'lr of Class !!). Then Eqs. (3.32b), (3.32d), 
and (3.60) hold identically. However, we must bear in mind 
that such an indecomposable Class!!) field may represent 
only some of the components of a given field, whose index 
space carries a larger indecomposable representation of 'lr; 
and whose extra components, though set to zero by Eqs. 
(3.32b), (3.32d), and (3.60) when the field is free and massless, 
could become operative when the field is "in interaction." 
Such a possibility exists because the algebra 'lr has represen­
tations which are not fully reducible. A classification of all 
such possibilities would require a classification of all inde­
composable representations of 'lr which "contain" a repre­
sentation of Class!!) . Such a classification will not be at­
tempted here, and we restrict our attention henceforth to 
indecomposable Class!!) fields. D 

We know that an indecomposable representation of 'lr 
of Class !!2 is of one of the types listed in Theorem 2.1. We 
shall show that if Eqs. (3.32) are required to admit plane 
wave solutions, then representations of all types except 
[A., + ;O,u] are eliminated. The existence of plane wave solu­
tions is essential if the associated fields are to be able to de­
scribe free, massless particles (at the many-particle or one­
particle level, according as the fields are quantized or not). 

Definition 3.2: A massless plane wave is a field tP(x) of 
the form 

tP(x) = tPoexp ( - ikl-'xl-')' (3.61) 

where tPo is a constant nonzero field and the k I-' are real 
constants, not all zero, satisfying 

kl-'kl-' = O. (3.62) 

D 
Lemma 3.1: Let tP(x) be a field whose index space carries 

the irreducible representation (m,n) ofsl(2,C), with basis op­
erators ~ I-'V' If the equations 

(3.63) 

where a is a constant, admit a massless plane wave solution, 
then 

a = - (m + n + 1). (3.64) 
Proof In the notation used in the proof of Lemma 2.5, 

Eq. (3.63) reads as 

AoatP = aatP. (3.65) 

Suppose that these equations admit a solution in the form of 
a massless plane wave (3.61). Then it follows that 

AoktPo = aktPo. (3.66) 

Now in the representation (m,n), according to Lemma 2.5, 
Eq. (2.87), 

[A - (m - n)]o[A + (m - n)]o[A - (m + n + 1)]0 

[A + (m + n + 1)] = O. (3.67) 

Applying the operator on the left-hand side of this identity to 
ktPo' we get from Eq. (3.66) 
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[a - (m - n)][a + (m - n)][a - (m + n + 1)] 

[a+(m+n+ 1)]kl-'tPo=O (3.68) 

Since kl-' tPo by assumption does not vanish for all,u, it follows 
that 

a€!m - n, n - m, m + n + 1, - (m + n + 1)). (3.69) 

Case (1): a#O. 
Multiply Eq. (3.66) on the left by B (again in the nota­

tion of Lemma 2.5). Then we get 

BoAoktPo = aBoktPo (3.70) 

whence, with the help of Lemma 2.5, Eq. (2.83) we have 

BoktPo = a-IC2ktPO (3.71) 

or, in view of Eqs. (2.8), 

i.e., 

.II-'vk vtPo = {3kl-' tPo, 

where 

{3 = a-I(m - n)(m + n + 1). 

In view ofEq. (2.90), we then have in addition 

(3.72) 

(3.73) 

{3e!m-n,n-m,m+n+l, -(m+n+l)J. (3.74) 

i.e., 

Consider the,u = 0 component ofEq. (3.72): 

10ik itPO = {3kotPo 

S.ktPo = - {3kotPo (3.75) 

where 

S = (110,120,130) = (~23,I31,Id 
k = (k I,k 2,k 3). (3.76) 

Let (s) denote the (1$ + I)-dimensional irreducible represen­
tation of su(2). It is known that the representation (m,n) of 
sl(2,C), when regarded as a representation of su(2) with basis 
operators S, is a direct sum of those irreducible representa­
tions (s) with 

se! m + n, m + n - 1, ... ,[m - n[ J, (3.77) 

each such representation occurring once. It is also known 
that ifn is a real unit vector, then in the representation (s), the 
operator S·n has eigenvalues s, s - 1, ... , - s. It follows that 
in the representation (m,n) ofsl(2,C), S·n has eigenvalues 
m + n, m + n - 1, ... , - (m + n); in particular, the largest 
eigenvalue of (S.n)2 equals (m + nf Now Eq. (3.75) implies 

(S·kftPo = {32k.ktPo, (3.78) 

since, by assumption, (ko)2 = k·k. Thus on tPo, (S·n)2 has the 
eigenvalue {3 2, where 

n = k/[k[. 

It then follows that 

{32«m + n)2. 

(3.79) 

(3.80) 

Next consider the,u = 0 component ofEq. (3.63), 

~oik itPO = i(a + l)kotPo 
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i.e., 

T.krpo = i(a + l)korpo, 

where 

T = (.IOI~02~03)' 

Let us define the operators 

S± = !(S ± IT). 

(3.81) 

(3.82) 

(3.83) 

Then it is easily checked from Eqs. (2.3a) that the S +; (and 
likewise the S _ ;) satisfy the su(2) commutation relations. 
Moreover, the S +; commute with the S _ ;' and 

S+ .S+ = A(S,S - T·T + 2iS·T) 
= I J" .IIlV + 1 i1 .IIlV 

~Ilv 11 IlV 
= A(C I + 2C2) 

=m(m+l) 

in the representation (m,n). Similarly, 

S_·S_ = n(n + 1) 

(3.84) 

(3.85) 

in this representation. We can regard S+ as the basis opera­
tors of a representation (m) of su(2), and S_ as the basis 
operators of a representation (n) of su(2). Then, by the argu­
ment employed above for the operators S, we can deduce 
that ifo is aoy real unit vector, the maximum eigenvalue of 
(S+'0)2 is m2 in the representation (m,n); and the maximum 
eigenvalue of (S_ .of is n2

• But according to Eqs. (3.75) and 
(3.81) we have 

S ± .krpo = - HP ± (a + l)]korpo, 

whence 

(3.86) 

(S ± '0)2rpo = HP ± (a + 1 Wrpo, (3.87) 

with 0 as in Eqs. (3.79). From this we can conclude that 

Alfi + a + 1)2<m2 

Alfi - a - 1)2<n2. (3.88) 

The only pair ofnumbersa"Bsatisfying the conditions (3.69), 
(3.74), (3.80), and (3.88) is 

a = - (m + n + 1), P = n - m (3.89) 

Case (2): a = 0 
According to the Lemma to be proved, there should be 

no massless plane wave solutions ofEq. (3.63) in this case, 
since (m + n + 1) is never zero. Suppose on the contrary that 
such a solution does exist. From Eq. (3.81) we have 

T.krpo = ikorpo, (3.90) 

while from thell = (1,2,3) components ofEq. (3.63) we get 

(.I;jk j + .I;ok O)rpo = ikirpo, 

i.e., 

(k 1\ S - koT)rpo = - ikrpo. (3.91) 

Now take the dot product ofEq. (3.91) on the left with T, 
noting Eq. (3.90), to obtain 

(T·k 1\ s - koT·T)rpo = korpo. (3.92) 

Next take the cross product ofEq. (3.91) on the left with k to 
obtain 

[(S.k)k - (k·k)S - ko(k 1\ T)]rpo = o. (3.93) 
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Noting that (k.k) = (kO)2, and that 

S·(k 1\ T)rpo = [ - T.(k 1\ S) - 2zT.k]rpo 

= - T·(k 1\ S)rpo + 2korpo, (3.94) 

we take the dot product ofEq. (3.93) on the left with S to 
obtain 

[(S.k)2 - (kofS.s + koT.(k1\ S) - 2(ko)2]rpO = O. (3.95) 

Combining this equation with Eq. (3.92), we get 

+S.k)2rpo = (kof(1 + S·S - T.T]rpo. (3.96) 

But if a = 0, it follows from Eq. (3.69) that m = n = r, say. 
In the representation (r,r) of sl(2,C), 

C I = !.Illv.II'V = S·S - T·T = 4r(r + 1), (3.97) 

so that we have from Eq. (3.96) 

(S'0)2rpo = (2r + 1 )2rpo, (3.98) 

with n again as in Eq. (3.79). However, as argued above, the 
maximum eigenvalue of (S'0)2 in the representation (r,r) is 
(2rt Thus we have a contradiction, and there is no massless 
plane wave solution if a = O. 0 

A closely related result is 
Lemma 3.2 (Weinberg's Lemma): Let rp(x), .Illv be as in 

Lemma 3.1. If the equations 

(3.99) 

where P is a constant, admit a massless plane wave solution, 
then 

p=n-m. (3.100) 

Proof On a massless plane wave solution, Eqs. (3.99) 
reduce to 

(3.101) 

(again in the notation used in the proof of Lemma 3.1). Mul­
tiplying on the left with A and using Eq. (2.83) we have 

PAokrpo = C2krpo 

= (m - n)(m + n + l)krpo. (3.102) 

Suppose P = O. Then Eq. (3.102) implies m = n, so that 
P = n - m as required. Suppose P #0. Then Eq. (3.102) be­
comes 

Aokrpo = P -I(m - n)(m + n + l)krpo 

and by Lemma 3.1, 

P -I(m - n)(m + n + 1) = - (m + n + 1) 

whencep = n - m as required. 
Comment: 

(3.103) 

(3.104) 

o 
1. Weinberg42 considered free, quantized, positive-ener­

gy, massless fields, belonging to the irreducible representa­
tion (m,n) ofsl(2,C). He showed that if such a field has (Lor­
entz-invariant) helicity h then, in our notation, h = m - n. 
Now the covariant statement that the field has invariant he­
licity h is Eq. (3.99), withP = - h [as Eq. (3.75) shows when 
ko = Ikl > 0]. Furthermore, the possibility of quantizing a 
field rp which satisfies Eqs. (3.99) is, in the usual formula­
tions, dependent upon the existence of plane-wave solutions 
of those equations. For these reasons it seems appropriate to 
call Lemma 3.2 "Weinberg's Lemma", as we have done 
~re. 0 
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Theorem 3.4: If 1/1 is an indecomposable Class f!2 field, 
and Eqs. (3.32) admit a massless plane wave solution, then 1/1 
is an indecomposable [A., + ;O,u] field, for some integer or 
semi-integer A., and some non-negative integer u. 

Proof In view of Theorem 2.1, it suffices to show that 1/1 
cannot be (I) a [A., - ;l,u] field, (2) a [A., + ;l,u] field, where 
1>0,or(3)a {v} field. 

1. Suppose that 1/1 is both a [A., - ;l,u] field and a solu­
tion ofEqs. (3.32). Then Eqs. (2.61) hold, and Eq. (3.32c) 
yields 

.I;'/LP/LI/I = i(M + N + 2)P;.I/I. (3.105) 

Let P mni denote the projector onto the ith one (in some order­
ing) of the r mn multiples of the irreducible representation 
(m,n) of sl(2,C) carried by the index space of 1/1. (cf. Sec. 2). 
Then P mni commutes with .I;'/L' M, and N, so that 

.IJ../LP/Ll/lmni = i(m + n + 2)PJ..l/lmni' (3.106) 

where 

I/Imni=Pmnil/l. (3.107) 

Now if 1/1 is a massless plane wave, so is I/Imni' if it does not 
vanish. But Lemma 3.1 shows that there are no massless 
plane wave solutions ofEqs. (3.106). Thus I/Imni vanishes, for 
every; and every possible (m,n). But then 1/1 vanishes, and we 
have a contradiction. Thus 1/1 cannot be a massless plane 
wave. 

2. Suppose that 1/1 is both a [A., + ;l,u] field (with I> 0), 
and a solution of Eqs. (3.32). Then by Definition 2.5 the 
smallest eigenvalue of - i.1 is (\A. \ + 1 + I), which is greater 
than (\A. \ + 1). Since Eqs. (2.60) hold here, it follows that the 
least eigenvalue of (M + N) is greater than \A. \' and that the 
least eigenvalues of M and N are both greater than O. Hence 
the operator (MN) is invertible. Now let P, be the projector 
onto that subspace of the index space associated with the 
eigenvalue (\A. \ + 1 + t) of - i.1 (l<t<u). Since 1/1 satisfies 
Eq. (3.32e), it satisfies (by contraction) 

K/LP/LI/I = (.I/Lv.I/LV + 4.12 - 4i.1 )1/1, 

= -SMNI/I. 
(3.1OSa) 

(3.1OSb) 

If 1/1 is nontrivial, then not every P, can annihilate 1/1. Of those 
P, satisfying 

P,l/li=O (3.109) 

let Pbe the one having the smallest value of t. Since Eq. (2.3e) 
implies that K/L shifts the eigenvalue of - i.1 (and hence the 
value of t ) upward by one unit, it then follows that 

PK/L pl'I/I = O. (3.110) 

Eqs. (3.1OS) and (3.110) together imply 

P(MN)I/I = O. (3.111) 

But the projectors P, evidently all commute with M and N, 
so that 

(MN)PI/I=O, 

and since (MN) is invertible, we have 

PI/I=O, 

(3.112) 

(3.113) 

contradicting the definition of P. Thus 1/1 cannot be a nontri­
vial solution of Eqs. (3.32). [Note that we did not need to 
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assume 1/1 to be a massless plane wave solution. There are no 
nontrivial solutions to Eqs. (3.32) if 1/1 is a [A., + ;I,u] field 
with 1>0.] 

3. Suppose that 1/1 is both a { v I field and a massless plane 
wave solution (3.61) ofEqs. (3.32). Contracting Eq. (3.32c) on 
the left with IP/L, using Lemma 2.5, Eq. (2.69), and noting 
Eqs. (2.13), we obtain 

.1Ipvk vl/lo = (M - N)(M + N + 1 )kp 1/10' (3.114) 

The p = 0 component of this equation is 

.1 S·kl/lo = (M - N)(M + N + 1 )kol/lo (3.115) 

where Sand k are defined as in Eqs. (3.76). Since the opera­
tors.1, S·k, M and N all commute, we get from Eq. (3.115) 

.1 2(S.k)21/10 = (M - N )2(M + N + 1 )2(ko)21/10' (3.116) 

Since Eq. (2.42a) holds in a { v} representation, we then have 
[introducing n as in Eq. (3.79)) 

(M - N )2(S.n)21/10 = (M - N )2(M + N + 1 )21/10' (3.117) 

Now introduce, as in Sec. 2, the projector P mn onto that 
subspace of the index space associated with the totality of 
representations (m,n) ofsl(2,C) that are contained in the giv­
en { v I representation of 'Jr. Recalling that, for each chosen 
m and n, this projector commutes with.1, M, N and.I/Lv, we 
get from Eq. (3.117) 

(m - n)2(S.n)21/1mn = (m - n)2(m + n + 1)21/1mn' (3.11S) 

where 

I/Imn =Pmnl/lO' (3.119) 

If m i= n we have then 

(S.n)21/1mn = (m + n + 1)21/1mn' (3.120) 

But, as remarked in the proof of Lemma 3.1, the largest 
eigenvalue of (S.n)2 in the representation (m,n) of sl(2,C) is 
equal to (m + n)2. It follows that 

I/Imn = 0, mi=n. (3.121) 

Now in a { v} representation of 'Jr, Eq. (2.42b) holds, and we 
see that the only representation (m,m) ofsl(2,C) which can 
occur have 

m = n = !(v - 1). 

Thus we have 

Prrl/lo = 1/10' r = !(v - 1), 

whence 

Ml/lo = Nl/lo = rl/Jo' 

(3.122) 

(3.123) 

(3.124) 

We recall again that the four-vector operator KI' can link a 
representation (m,n) ofsl(2,C) only with (m ±!, n +!) and 
(m ± !, n - ~). It follows that 

(3.125) 

Now 1/1 satisfies Eq. (3.1OSa), so that 

Kl'k/Ll/lo = 4[M(M + 1) + N(N + 1) +.1 2 
- i.1 ]1/10' 

= 4[2MN + M + N -;.1 ]1/10' (3.126) 

using Eq. (2.42a). Multiplying on the left by Prr , using Eqs. 
(3.123) and (3.125), and noting thatPrr commutes withM, N, 
and .1, we get 

(2MN + M + N - i.1 )1/10 = o. (3.127) 
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Then Eqs. (3.124) imply 

A "'0 = - 2ir(r + 1 )"'0' (3.128) 

Now, since Eqs. (2.42a) and (3.124) hold, we have 

A 2"'0 = 0. (3.129) 

Consistency of Eqs. (3.128) and (3.129) requires 

r = O(=>v = 1) (3.130) 

and 

(3.131) 

Now consider Eq. (3.32c), which is supposed to be satisfied 
by",. On a plane wave solution, we have 

~!,-vk v"'o = (i - A )k!,- "'0' 
so that Eq. (3.131) implies 

~,.,vk v"'o = ik,., "'0' 
But Eqs. (3.124) and (3.130) imply 

Poo"'o = "'0' 
so that we have 

~,.,vk vpoo"'o = ik,., "'0' 
Since (0,0) is the trivial representation of sl(2,C), 

~,.,vp()o = 0, 

and Eq. (3.135) yields 

k!,-"'o=O, 

(3.132) 

(3.133) 

(3.134) 

(3.135) 

(3.136) 

(3.137) 

providing a contradiction. Thus'" cannot be both a I v I field 
and a massless plane wave solution ofEqs. (3.32). D 

Comment: 
1. We have yetto show that indecomposable [A" + ;O,u] 

representations exist, and that plane wave solutions of Eqs. 
(3.32) exist if'" is a [A, + ;O,u] field. These questions will be 
examined in full in subsequent papers. In the next section we 
shall see that well-known sets of conformal-invariant free­
field equations do provide illustrative examples, but all cor­
responding to cases with u = 0. D 

Now if'" is a [A, + ;O,u] field, then in particular, 

A = i(M + N + 1), (3.138a) 

M - N = A, (3. 138b) 

and Eq. (3.32c) becomes 

~,.,vpv",= i(M +N)P!,-"" (3.139) 

Contracting on the left with ~p'" and using Lemma 2.5, Eq. 
(2.69), we get 

iC2Pp'" = -i(M+N+l~p,.,P!'-"'. (3.140) 

Using Eqs. (2.13) and (3.138b), and noting that (M + N + 1) 
has a well-defined inverse, we then obtain 

(3.141) 

If this '" is a positive-energy (resp., negative-energy) plane 
wave, Eq. (3.141) is a covariant statement that'" has helicity 
A (resp., - A.) (cf. Comment 1 following Lemma 3.2). Not­
ing Theorems 3.1, 3.2, 3.3, 2.1, and 3.4, we therefore have 

Theorem 3.5: If the wave equation (1.1) is locally con­
formal-invariant on a vector space ~ ~ g;, then the nonzero 
components of any plane-wave solution t/JEo// belong to a 
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direct sum of indecomposable [A, + ;O,u] representations of 
'fr, for various values of A and u. Moreover, if",,,, is a direct­
summand of such a plane wave solution, corresponding to 
the representation [A, + ;O,u] for some u, then "'''' has Lor­
entz-invariant helicity A or - A according as the plane wave 
has positive or negative energy. D 

Comment: 
1. In this sense we justify our assertion in the Introduc­

tion that Eq. (1.1) is not locally conformal-invariant when '" 
is a potential, since such finite-component fields do not have 
(manifestly) Lorentz-invariant helicity,31 i.e., they do not 
satisfy equations ofthe general form of Eq. (3.141). D 

4. CONNECTION WITH EARLIER WORK 

Most earlier works on the conformal-in variance of 
massless field equations have been concerned with fields cor­
responding to representations of 'fr of Type la, in the nota­
tion of Mack et al.43

, i.e., representations in which the K,., 

= 0. In the light of Theorem 3.5, the following result is sig­
nificant for such fields: 

Theorem 4.1: An indecomposable [A, + ;O,u]-represen­
tation of 'fr is of Type la if and only if u = O. For each 
integral and semi-integral A, there exists exactly one (up to 
equivalence) indecomposable [A" + ;O,u]-representation. It 
is in fact irreducible, and remains so when restricted to 
sl(2,C), the sl(2,C ) content being (A,O) when A >0, and (0, - A ) 
when A < 0. In either case, the basis operator A satisfies 

A = i(IA I + 1). (4.1) 

Proof In an indecomposable [A, + ;O,u] representation, 
the eigenvalues of - iA are, according to (2.62), 

IA I + 1, IA I + 2,.··IA I + u + 1. 

Since - iA is diagonalizable, the representation space is a 
direct sum of the corresponding eigenspaces. But if K,., = 0, 
Eqs. (2.3) show that these eigenspaces are separately invar­
iant under the action of the 'fr algebra, contradicting the 
assumed in decomposability unless u = 0. 

Conversely, when u = ° the representation space con­
sists of the single eigenspace corresponding to the eigenvalue 
(IA I + 1) of - iA. Since the action of K!,- is to increase the 
eigenvalue of - iA by one unit, it follows that in such a 
representation 

K,., =0, 

A = i(IA I + 1). 

(4.2a) 

(4.2b) 

I n view of the defining relations (3.138) of such a repre­
sentation, we have then 

M + N = IA I, M - N = A 

so that if A>O, 

M=A, N=O, 

and if A <0, 

(4.3) 

(4.4a) 

M=O, N= -A. (4.4b) 

It follows from the meaning of M and N that if A>O, the 
representation [A, + ;0,0], regarded as a representation of 
sl(2,C), is a direct sum of replicas of(A,O); while if A <0, itisa 
direct sum of replicas of (0, - A ). But when Eqs. (4.2) hold, 
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the corresponding irreducible sl(2,C) subspaces are also 'Jr­
invariant, so that if the given representation of 'Jr is inde­
composable, it must consist of a single irreducible represen­
tation (A.,O) or (0, - A. ) of sl(2,C). 

It can now be seen that there exists exactly one (up to 
equivalence) indecomposable representation of 'Jr satisfying 
all these conditions for a given value of A.. It consists of the 
representation (A.,O) ofsl(2,C) [or (0, - A. ), if A. < 0], extended 
to a representation of 'Jrby definingKp and.d via Eqs. (4.~ 
It is evidently irreducible. U 

For an irreducible [A., + ;0,0] field then, Eq. (4.2b) holds 
and it can be seen from the cotransformation law (2.4) and 
(2.5) for the field under changes of scale in particular, that 
such a field has the length dimension - (1,1 I + 1). This is the 
"canonical" dimension of a field corresponding to a repre­
sentation (1,11,0) or (0,1,11) ofsl(2,C). 

Combining Theorems 3.5 and 4.1, we have (cf. 
Bracken41

): 

Theorem 4.2: If if! is a field of Type la, and the wave 
equation (1.1) is locally conformal-invariant on a vector 
space au ~ ~ , then the non zero components of any positive­
energy (respectively, negative-energy) plane wave solution in 
au belong to a direct sum of irreducible representations of 
sl(2,C) ofthe type (m,O) or (O,n), with the corresponding 
length dimensions ( - m - 1) and ( - n - 1), and corre­
sponding Lorentz-invariant helicities m and - n [respec-
tively, - m and n]. 0 

What is the content of the critical Eqs. (3.32) for irredu­
cible [A., + ;0,0] fields, or direct sums of such fields for var­
ious values of A? Equations (3.32b) and (3.32d) are satisfied 
identically . We note that since the only representations (m.n) 
of sl(2,C) involved here have mn = 0, then 

MN=O, (4.5) 

and Eq. (3.32e) can be written with the help ofEqs. (4.2a), 
(3.138a), (4.5), and (2.13) as 

'rpvif! = 0, (4.6) 

with'rpv as in Eq. (3.49). But in a representation of the type 
under consideration, T pv vanishes identically because of the 
following: 

Lemma 4. J: Let ~ pv be basis operator of a finite-dimen­
sional representation (m,O) or (O,n) ofsl(2,C). Then the tensor 
Tpv, defined as in Eq. (3.49), vanishes identically. 

Proof In the representation (m,O) we have [cf. Eqs. 
(3.83) and (3.85)] 

Ipv = - i~pv 
and Eq. (2.69) of Lemma 2.5 becomes 

Le., 

- i~pv~ v,t - ~p,t = iC~p,t 

'rpv = O. 

= im(m + llgp,t 

= !iC1gp,t, 

(4.7) 

The argument is similar for the representation (O,n). 0 
It follws that for fields which correspond to a direct sum 

of irreducible [A., + ;0,0] representations of 'Jr, Eqs. (3.32) 
reduce to (3.32a) and (3.32c), Le., 
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PppPif! = 0, (4.8a) 

~pvpvif! = (i -ii )Ppif!= - i(M + N)Ppif!. (4.8b) 

And furthermore, if the direct sum of fields contains no sum­
mand if!,t withA = 0, then Eq. (4.8a) is implied by Eq. (4.8b), 
since 

(M + N)if!,t = (- i.d - l)if!,t = IAIif!,t, (4.9) 

and contracting Eq. (4.8b) on the left with pp gives 

-i(M+N)PPPJ1.if!,t =0. (4.10) 

We now consider the results of earlier investigations in 
relation to ours. 

A. The scalar field 

The index space is one-dimensional in this case, and 
carries the trivial representation (0,0) of sl(2,C). This can be 
extended to the nontrivial representation [0, + ;0,0] of 'Jr, 
by taking KJ1. = 0 and.d = + i. The dimension of the field is 
then ( - 1). Eq. (4.8b) is trivial in this case as 
~ = 0 = M = N. We are left with the single Eq. (4.8a), Le., 

JLV • • 
the wave equation, in our locally conformal-mvanant set. 

B. The two- and four-component neutrino equations 

Consider the two-component neutrino field X, with in­
dex space carrying the representation (~,O) of sl(2,C) with 
basis operators 

(4.11) 

in the notation of Lemma 3.1. Here a are the Pauli matrices. 
This representation can be extended to the representation 
n, + ;0,0] of 'Jr, bytakingKp = Oand.d = 3i/2. Thenx has 
dimension ( - 3/2). A locally conformal-invariant set of 
equations (implying DX = 0) is then Eq. (4.8b), which is 
(since M = !, N = 0 here) 

~J1.VavX = - !iapX, (4.12) 

or equivalently 

a·Vx = - ant, 
(a!\ V + iaao)X = - iVX, 

where 

V = (a 1,a2,a3 ). 

(4.13a) 

(4.13b) 

(4.14) 

Eq. (4.13b) is implied by Eq. (4.13a), so we can consider Eq. 
(4.13a) alone, the Wey1 equation, as a locally conformal-in­
variant equation. It implies that a positive energy field has 
helicity ( + ~). 

The case of a two-component field corresponding to the 
representation (O,~) of sl(2,C), and [ - ~, + ;0,0] of 'II"', is 
similar. Again the field has dimension ( - ~). The four-com­
ponent (Dirac bispinor) neutrino field if! is the direct sum of 
these two two-component fields. The appropriate represen­
tation of 'Jr is n, + ;0,0] ffi [ - !, + ;0,0], with basis 
operators 

~J1.V = !i[yJ1.'Yv]' Kp = 0, ii = (~)i, 

where YI' are the Dirac matrices, satisfying 

YI'Yv + YvYp = 2gpv ' 
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Equation (4.8b) reads 

F[YI" ,Yv ]avtP = - ~ia/l tP, 
which, with the help of Eq. (4.16) can be reduced to 

YI"(YvaV)tP = 0, 

or equivalently, 

yVavtP = 0. 

(4.17) 

(4.18) 

The two-component fields are recovered with the use of the 
projectors 

p ± =!(1 ± Ys), 

where 

Ys = - iYOYIY2Y3' 

Thus if 

tP ± = P ± tP, 
then tP ± satisfies 

YstP ± = ± tP ± . 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

and corresponds to the representation [ ± !, + ;0,0] of 'Jr. 
This can be seen by evaluating 

C - 1 Y ~I"V - 3 (4.23a) 1- Z-JlV -"2 

C2 = F~l"v~I"V = Ai( - iYs~l"v~I"V = (llrs. (4.23b) 

A comparison with Eq. (2.13) shows that on tP ± ,M = ! and 
N = 0, while on tP-, N =! and M = 0. The fields tP ± have 
helicity ±! (for positive energy) in accordance with Theo­
rems 3.5 and 4.2. 

C. Maxwell's equations for the free electromagnetic 
field 

The index space of the electromagnetic field 
Fl"v (x) [= - FVI" (x)] carries the representation (1,0) EB (0,1) 
of sl(2,C). We can extend this to a representation 
[1, + ;0,0] EB [ - 1, + ;0,0] of rr, by taking KI" = ° and 
L\ = 2i. Then Fl"v has dimension ( - 2). Since (M + N) = 1 
here, a locally conformal-invariant set of equations (imply­
ing OF = 0) is, from Eq. (4.8b), 

~l"vavF= - ial"F. 

The sl(2,C) operators act on FaP as 

(~l"vF )aP =(~ I"V lappa Fpa ' 

where 

- 2i(~l"vlappa = (gl"aovP - gva0I"P)Opa 

+ OaP(gl"pOv a - gvp0l" I 
- (gl"(30/ - gv(30I"P)Oa (7 

(4.24) 

(4.25) 

- OpP(gl"aOv (7 - gva0l" I, (4.26) 

and on substituting this expression in Eq. (4.24) and using the 
antisymmetry of Fl"v' we get 

gl"aiJ>Fp(3 - gl"(3iJ>Fpa = - a/lFap - aa F(31" - a(3Fl"a' 

Contracting both sides with gl"a we find 

iJ>Fpa = 0, 
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(4.27) 

(4.28) 

and Eq. (4.27) then implies also 

al"Fap + apFl"a + aaF(31" = 0. (4.29) 

Eqs. (4.28) and (4.29) are the free-field Maxwell's equations. 
They are written in compact form in Eq. (4.24) [or Eq. 
(4.27)]. Note that by Theorems 3.5 and 4.2, the [ ± 1, + ;0,0] 
component Fl"v I ± I of Fl"v satisfies also 

~ aVFI ± 1= +a FI ±I (4.30) 
J-lV J-l' 

an equation which is also locally conformal-invariant, and 
which states that the invariant helicity of (positive energy) 
fields F"v I ± I is ± 1. It is easily checked that 

F I±I-I(F - 'F- ) 
pv - 2 ~lV + I f1'V) 

(4.31) 

where 

(4.32) 

Thus FI ± I (respectively, FH) is the right (respectively, left) 
circularly polarized component of F. 

O. The Bargmann-Wigner equations 

The index space of the fields S used by Bargmann et al. 18 

to describe massive and massless particles with spin s( > 0) is 
the symmetrized tensor product of 2s identical, four-dimen­
sional Dirac bispinor spaces, which we may label with 
a = 1,2, ... ,2s. Let YI" lal be the Dirac matrices acting on the 
ath four-dimensional space. Then for each a, the relations 
(4.16) are satisfied, and YI" lal commutes with rl" 1(31 if a =I-{3. 
Introduce also Ys lal, a = 1,2, ... ,2s, by analogy with Eq. 
(4.20). 

For massless particles with helicity + s, Bargmann et 
al. further required that S ( = s + now) satisfies 

YslalS + = s +, a = 1,2, ... ,2s. (4.33) 

Since the eigenvalues + I and - 1, respectively, ofYslalla­
bel the representations (!,O) and (O,!) of sl(2,C) carried by the 
ath factor space, it follows that the index space of S + carries 
the symmetrized tensor product of the representation (!,O) 
with itself (2s) times. This is the representation (s,O). Similar­
ly we may introduce S _ satisfying 

YslalS _, a = 1,2, ... ,2s, (4.34) 

and associated with the representation (O,s) of sl(2,C). 
The sl(2,C) basis operators in both cases are (restrictions 

of) 

(4.36) 

According to Eqs. (2.8), on the representation (s,O) or (O,s), 

CI = 2s(s + 1). (4.37) 

It follows that 
2s 

I (YI" lalyl'l(3lfs ± = 0. (4.38) 
a <(3 = I 
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Now ro(al and ir/al (j = 1,2,3) can be taken to be Hermitian, 
without loss of generality, for each value of a. Thus 
(rl-' laly<(PI) is Hermitian. It then follows from Eq. (4.38) that 

(rl-'laly<(PI)s±=O, a;:j:p. (4.39) 

Conversely, it can easily be seen that if S satisfies Eqs. (4.39), 
then it belongs to that part of the tensor-product space assoi­
cated with the representation (5,0) Ell (0,5) of sl(2,e). Eqs. 
(4.39), and equivalently the symmetrization conditions and 
Eqs. (4.33) and (4.34) of Bargmann eta I, are not to bethought 
of as dynamical conditions, but rather as statements defining 
the index space of the fields to be used to describe massless 
particles. One could, of course, start with 2(2s + I)-compo­
nent fields corresponding to this representation of sl(2,e), 
but the advantage of the approach used by Bargmann et 
al.-introducing redundant components and then imposing 
conditions which set them to zero--is simply that one can 
employ the familiar algebra of the Dirac matrices. 

The representation (5,0) Ell (0,5) can be extended to the 
representation [5, + ;0,0] Ell [ - 5, + ;0,0] of 'If/', by setting 
KI-' = OandLl = + i(s + 1). ThenShasthecanonicaldimen­
sion ( - 5 - 1). Since (M + N) = 5 here, a locally conformal­
invariant set of equations for 5 (implying Os = 0) is then, 
from Eq. (4.8b), 

.II-'vavs = - isS. (4.40) 

Substituting for .II-'V from Eq. (4.35), we get 
2s I rl-'lal(Yvlalav)s=o. (4.41) 

a=l 

Contracting on the left with y<(PI, using the commutation 
and anticommutation relations between the r p Iii I, and noting 
Eqs. (4.39), we get 

(rl-' (pIa 1-')5 = 0, p = 1,2, ... ,2s. (4.42) 

Conversely, ifEqs. (4.42) hold, then so do Eqs. (4.41) and 
hence Eqs. (4.40). Thus the locally conformal-invariant Eq. 
(4.8b) is in this case equivalent to Eqs. (4.42), which are the 
Bargmann-Wigner equations. 18 The component 5 ± corre­
sponding to the representation [ ± 5, + ;0,0] of 'If/' can be 
obtained as 

2s 

5 ± = II [!(1 ± rr))5. (4.43) 
a=l 

It satisfies the locally conformal-invariant equation (3.141) 
with A = ± 5 [and also Eqs. (4.33) or (4.34)), and so (for 
positive energy) has helicity ± 5 as expected. 

The Eqs. (4.40), where the index space of 5 carries the 
representation (5,0), (O,s), or (5,0) Ell (0,5) of sl(2,e), were consi­
ered before the work of Bargmann et al. by Dirac,15 Fierz,16 
and Garding, 14 using the dotted-undotted spinor formalism. 
The complete equivalence of these different ways of writing 
the same equations must be emphasized. Those sections in 
other works, 19-23.26 concerned only with showing the confor­
mal invariance of these equations, were repeating in different 
formalisms part of the work of Gross. 17 McLennan 13 had 
previously shown the local in variance of these same equa­
tions.63 Note also that for 5 = ~ and 5 = 1 the Bargmann­
Wigner equations are completely equivalent to the neutrino 
equations, and Maxwell's equations, respectively, as can be 
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seen from our discussion above. 
When we write all these equations in the forms (4.12), 

(4.17), (4.24), and (4.40), we see most clearly that they belong 
to one family-the family of conformal-invariant equations 
for Type Ia fields. 

E. Errors in the work of McLennan and Post 

McLennan!3 claimed to prove the conformal invari­
ance of certain sets of field equations described by Gard­
ing. 14 In these papers the dotted-undotted spin or formalism 
is used. The index space of a field with p un dotted indices and 
q dotted ones (p and q are non-negative integers), separately 
symmetric in each set, carries the irreducible representation 
(!P,~q) of sl(2,e) in our notation. In particular, fields tP corre­
sponding to the representation (!P,~q) Ell (~q,!p) [withp;:j:q] 
are considered, together with first-order field equations 
[McLennan's Eqs. (3.19)) which imply that the wave equa­
tion (1.1) is satisfied. According to our results above, these 
equations can not be locally conformal invariant unless 
pq = 0. This contradicts a claim made by McLennan, but it 
is easy to find an error in his analysis. He supposes [see his 
Eq. (6.4)] that under a special conformal transformation, a 
component of the field corresponding to the representation 
(!P, ~q) transforms in such a way that its p undotted indices 
are not affected. Similarly, for a component corresponding 
to (~q, ~), the p dotted indices are not affected. But such 
transformation laws are not consistent with the structure of 
the Lie algebra of the conformal group, for an infinitesimal 
translation does not affect spinor indices, but the commuta­
tor of our infinitesimal special conformal transformation 
along one spatial axis, and an infinitesimal translation along 
another, is an infinitesimal rotation about the third [cf. Eq. 
(2.6i)), and so affects all dotted and undotted indices. There­
fore, an infinitesimal special conformal transformation must 
in general also affect all dotted and un dotted indices. 
McLennan's proposed transformation law is not consistent 
ifp;:j:O. 

In claiming to deduce the conformal invariance of equa­
tions satisfied by fields with p = q and zero helicity (such 
fields can also be thought of as symmetric, traceless, tensor 
fields qJl-'v",p withp indices), McLennan merely remarked 
that such sets of equations "are equivalent to the scalar or 
pseudo-scalar wave equation" (1.1), which is conformal in­
variant. In fact one can show that42 

qJ/iV"'P = a/iaV .. ·apqJ. (4.44) 

where qJ satisfies Eq. (1.1). However, the conformal invari­
ance of Eq. (1.1) for qJ does not ensure the invariance of the 
equations satisfied by qJ/iV"'P defined as in Eq. (4.44), and in 
fact our results imply that these equations are not invariant. 
The index-space representation of sl(2,e) associated with 
this tensor field is (!P, !P). This can be extended to a represen­
tation of 'JI/" only by setting K/i = ° and Ll equal to a constant, 
so that the field is in particular of Type la. But then Theorem 
4.2 shows that the wave equation is not locally invariant on 
such a field, if p;:j:O. The reason for this breakdown of con­
formal in variance in the passage from qJ to qJ/iV"'P is easily 
seen-the operators al-',av '" in Eq. (4.44) are Lorentz-covar­
iant but not conformal-covariant objects. 
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More recently Post26 considered free, massless, posi­
tive-energy fields ,pm,n)(x) whose index space carries an irre­
ducible representation (m,n) of sl(2,C), and which have Lo­
rentz-invariant helicity ..1,= (m - n) [cf. Lemma 3.2], He 
claimed to prove that the equations satisfied by such fields, 
including the wave equation (1.1), are conformal-invariant, 
even if mn #0. This contradicts our results, and indeed, the 
result given by one ofus41 before Post's work appeared. His 
proof is incorrect, and depends crucially on a result attrib­
uted to Mack et al. 22 [See the paragraph following Post's Eq. 
(5.11).] This result, which is in fact invalid, was not proved in 
Ref. 22, though its validity was implied there. The result in 
question can be described as follows. 

A Hilbert space of the fields ¢(m,n) can be defined, carry­
ing the unitary, irreducible representation ofISL (2,C) ap­
propriate to a massless "particle" with positive energy and 
helicity (m - n). This representation extends to a unitary 
irreducible representation ofSU(2,2), with self-adjoint gen­
erators P ~,K ~ ,D " and M ~v satisfying, on a suitable do­
main, the commutation relations (2.6). Then these operators 
can be identified on the Hilbert space with the generators 
(2.5) of conformal transformations for these fields, after ap­
propriate choices for KfL and L1 are made. 

Mack and Todorov showed that this is so if mn = 0, but 
they did not consider directly the cases with mn #0. Instead 
they quoted a result ofW einberg, 42 who showed that if a free, 
massless positive-energy field X corresponds to an irreduci­
ble index space representation (m,n) of sl(2,C) with 
m - n = A, and has Lorentz-invariant helicity A, then X is a 
linear combination of the rth partial derivatives with respect 
to the variables XfL, of a field S which also has invariant heli­
city A. If ..1,:>0, then t corresponds to an index-space repre­
sentation (..1,,0), and r = 2n. If A < 0, then S corresponds to 
(0, - A), and r = 2m. On this basis, Mack and Todorov con­
cluded that they could restrict their attention to the cases 
with mn = 0, in order to prove the desired result for the 
operators P A ,K A ,D " and M ~v' However, as remarked in 
the Introduction, and as implied by Theorem 4.2, the result 
in question is not valid if mn # O. In fact one finds that the 
operators K A in these cases, unlike the K;. of Eqs. (2.5), are 
non local. The reason for this breakdown of conformal in­
variance, in the context of Weinberg's result, is again that the 
operator afL relating massless fields with mn = 0 to ones with 
mn #0 [cf. Eq. (4.44)] is not conformal covariant. Essentially 
the same misunderstanding of this point led McLennan into 
error, as noted above. 

F. Other related works 

Several authors36-40.43 have considered the conditions 
to be satisfied if classical field equations derivable from an 
action principle are to be conformal invariant. However, 
they have not been concerned with the specific situation 
where the wave equation (1.1) is required to be one of the 
field equations obtained. The conditions obtained are ac­
cordingly much less specific than ours. (In another sense, 
they are more specific, since it is not clear which of the sets of 
field equations we have described are derivable from an ac-
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tion principle.) Furthermore, these works have concentrated 
on fields of Type la. 

The conformal invariance (in a weaker sense) of wave 
equations for massive particles has been considered by other 
authors. 5.11,24.54.64 Because the taking of the zero mass limit 
is a nontrivial matter, particularly in the context of confor­
mal invariance,65 it is not clear how the results obtained in 
these works relate to ours. 

The conditions under which Lorentz-invariant equa­
tions of the form (1.2) are also conformal invariant have been 
analyzed by Kotecky et al. 30 But again, because they did not 
specifically require that Eq. (1.1) should follow from Eq. 
(1.2), their results are not easily related to ours. They did 
relate their results to some extent with those of McLennan, 13 

but did not detect any errors in that work. Only fields of 
Type Ia appear in the results of Kotecky et al. One reason for 
this is easily seen. Iffields of Type lb are involved, then one 
has a four-vector operator KfL acting on the index space, and 
having scale dimension ( + 1). Then as well as equations of 
the forms (1.2), field equations of the form 

LfLil'¢=A¢ (4.45) 

must also be considered, where A is a dimensionless matrix. 
Equation (3.54) provides an example. Massless wave equa­
tions of the general form (4.45) have appeared in a more 
general context in the work ofWightman.66 Let us remark 
also that for field equations of the form (1.2), (4.45) where LfL 
is rectangular, an important and nontrivial constraint [cf. 
Theorem 3.4], not considered by Kotecky et al., is that the 
equation should admit plane wave solutions. 

Fields of Type Ib have received comparatively little at­
tention in the literature. Ciccariello and Sartori52 (see also 
Ferrara et al.,53 and Lopuszanski and Oziewicz25) consid­
ered fields of Type Ib and associated conformal-invariant 
wave equations, but once again, their aims were different 
from ours, and their results and ours are not easily related. 
Lopuszanski et al. did note the appearance of conformal­
invariant equations of the form (4.40) for fields of Type la, as 
one of us had done earlier.41 (See also Seetharaman.46) 

Since the Lie algebra 'Jr is a subalgebra of su(2,2), any 
finite-dimensional representation of the latter defines a re­
presentation of the former. Mack et al.43 have considered 
fields of Type Ib generated in this way. But it must be empha­
sized that only a limited class of representations of 'Jr, and 
consequently, only a limited class offield types, can be ob­
tained in this way. There is a countable number of inequiva­
lent, finite-dimensional representations for su(2,2), but an 
uncountable number for 'Jr and representations of 'Jr in 
which L1 is not diagonalizable [cf. Eqs. (2.17)] are not con­
tained in representations of su(2,2). 67 

Dirac" and Hepner51 (see also Mack et al.43 and Bu­
dinj29) have considered the particular case of Dirac spinors 
¢(x) and the associated four-dimensional representations of 
su(2,2) with [cf. Eqs. (2.5) and (2.6)] 

PfL = ~K-I(1 ± Ys)YfL , mfLV = !i[ywYv]' 

d = + ~iY5' kfL = ~K( 1 + Ys)YfL . (4.46) 

Here the Dirac matrices are as in Sec. 4.2, and K is a nonzero 
constant with dimensions of length. (Representations with 
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different values of K are equivalent, so this value has no phys­
ical significance.) Then one may take for the generators of 
conformal transformations of tP(x) 

PI' = ia!-' + PI" M!-'v = x!-,Pv - xvP!-, + m!-'v' 

D = xl-'PI' + in + d, K!-, = 2x!-'(xVPv + in) 

- xVxvP!-, + k!-', (4.47) 

where n is a constant. These operators satisfy the relations 
(2.6), but are not of the form (2.5). However, by a similarity 
transformation43 

¢(x)_exp( - ixVpv)¢(x), 

P!-'---+exp( - ixVpv)'P!-' ·exp(ixVpv), 

etc., one can bring them to the form (2.5), with 

K!-, = ~K(1 + Ys), ,j = in + ~iys 
~!-,v = li[y!-',yv]' 

(4.48) 

(4.49) 

These operators (4.49) span a representation, Dn+ say, of 
'11'", which is not a [A, + ;O,u] representation for any A, u. 
However, the representation DI +' for example, is indecom­
posable but not irreducible, and contains the representation 
n, + ;0,0] as an invariant subrepresentation, associated with 
the subspace ofspinors on which Ys = + 1. Accordingly, 
the equation (1.1) is then locally conformal invariant pro­
vided Eqs. (3.32) hold, and here they reduce to 

(Y!-,P!-')¢ = 0, 

Ys¢ = ¢. 

(4.50a) 

(4.50b) 

This is an example of the type of behavior whose possibility 
was indicated in Comment 1, following Theorem 3.3. In the 
present example, so long as we are concerned only with free 
massless fields, there is no real loss of generality if we restrict 
our attention to spinors for which Eq. (4.50b) is satisfied 
identically-i.e., essentially two-component spinors corre­
sponding to the representation n, + ;0,0] of 'II'" [cf. Sec. 4.2]. 

On the other hand, the equations 

yI-' PI' ¢ = 0 (4.51a) 

and 

(4.51b) 

are not conformal invariant if we adopt the representation 
D 1+ for¢, since they are not consistent with Eqs. (3.32). [The 
roles of the equations (4.50b) and (4.51b) are interchanged if 
we consider instead the representation D 1_ for ¢.] The situa­
tion here is to be contrasted with that in Sec. 4.2, where the 
representation n, + ;0,0] E& [ - ~, + ;0,0] of 'II'" was adopted 
for ¢, and both sets of equations, (4.50) and (4.51) are confor­
mal invariant. When we vary the relevant representation of 
'II'" on Dirac spinors, we are really changing the field type, 
and when we talk about conformal invariance or noninvar­
iance of equations like (4.50) of(4.51) we must be clear as to 
what type of fields we are considering. Failure to do so seems 
to have led to some confusion in the literature.68

•69 In par­
ticular, we should not confuse the results described here for 
spinors corresponding to the representations D 1 +' D 1-' or 
IB, + ;0,0] E& [ - ~, + ;0,0]) of 'II'" with the result implied by 
Dirac9 (see also Budini29 and Caste1l68

) that the equation 

(1 ± Ys)yI-'PI'¢ = 0 (4.52) 
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is conformal invariant if ¢ corresponds to the representation 
D2 ± of '11'". Eq. (4.52) does not imply Eq. (1.1), so ¢(x) is not a 
massless field according to our definition, and our general 
results are not directly relevant to this case. 

5. CONCLUDING REMARKS 

We have derived the conditions under which the wave 
equation (1.1) is locally conformal invariant, and have seen 
as a result that although some well-known sets of massless 
wave equations for fields of Type la are invariant, many oth­
ers are not. Indeed, it is fair to say that most massless wave 
equations for fields ofthis type are not conformal invariant. 
In particular,41 Eq. (1.1) is not invariant if the index space of 
¢ carries an irreducible representation (m,n) of sl(2,C) with 
mn#O. 

Most generally, we have shown that only [A, + ;O,u] 
fields are of direct interest in the discussion oflocally-invar­
iant wave equations, and that these always carry Lorentz­
invariant helicity A (for positive-energy plane waves). For 
u > 0, these fields are of Type lb. In subsequent papers, we 
shall describe the representations [A, + ;O,u] of 'II'" com­
pletely, and also examine in detail the consequences ofEqs. 
(3.32) for such fields, thus completing our analysis. 
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It has been shown in Part I that the requirement of local conformal invariance of the wave 
equation for finite-component fields focuses attention on fields whose index spaces carry a certain 
type of finite-dimensional, indecomposable representation of the nonsemisimple Lie algebra 
((k4 -B d )\13 sl(2, C )). All representations of this type are here described in complete detail, in each 
case in an sl(2, C) basis. Although indecomposable, these representations are in general not fully 
reducible. 

PACS numbers: 11.10.Qn, 11.30.Ly, 02.20. + b 

I. INTRODUCTION 

In an earlier work I (henceforth referred to as BJ1), we 
have considered the conditions for local conformal invari­
ance of the wave equation 

otP(x) = 0, x = (xl'), J.L = 0, 1,2,3, (1.1) 

where t/J is a classical field with some fixed, finite number of 
complex-valued components. The index space of this field is 
assumed to carry a corresponding finite-dimensional repre­
sentation of the Lie algebra 

'fr = ((k4 -B d)-B sl(2, C)), (1.2) 

with basis operators KI"..1, and .II''' (= - .I"I') satisfying the 
commutation relations 

i[ .II'''' .Ipu] = gl'P.I"u + g"u.II'P 

- g"p.Il'u - gl'u.I"p, 

i[ KI" .I"p] = gl'pK" - gl'"Kp' 

[KI',K,,] =0, 

[.II''''..1 ] = 0, 

(1.3a) 

(1.3b) 

(1.3c) 

(1.3d) 

i[ KI"..1 ] = KI" (1.3e) 

Only if this assumption is made2 can one define, for an arbi­
trary infinitesimal conformal transformation of space-time, 
an appropriate cotransformation law for the field t/J. The 
generators of infinitesimal conformal transformations of t/J 
then take the forms 

homogeneous Lorentz 

transformations: 

space-time translations: 

dilations: 

special conformal 

transformations: 

(1.4a) 

(l.4b) 

( l.4c) 

alPresent address: Department of Mathematics, University of Queensland, 
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hlPresent address: Department of Mathematics, University of Toronto, To­
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and satisfy on suitably smooth t/J the commutation relations 
appropriate to the Lie algebra of the conformal group. The 
significance of 'fr in this connection stems from the fact that 
it is the Lie subalgebra associated with those conformal 
transformations which leave invariant the point x = 0, viz. 
those composed of homogeneous Lorentz transformations, 
dilations, and special conformal transformations. (An iso­
morphic subalgebra is associate with the dilation group, 
composed of homogeneous Lorentz transformations, dila­
tions, and space-time translations, and is of independent in­
terest. The dilation group, like the conformal group itself, 
has been discussed as a possible approximate space-time 
symmetry group in particle physics. In that context, howev­
er, the main interest is in infinite-dimensional representa­
tions3 of 'fr.) 

The problem of classifying all finite-component field 
types having inequivalent cotransformation laws for infini­
tesimal conformal transformations, is seen to correspond to 
the problem of classifying all inequivalent finite-dimensional 
representations of 'fr. Such representations have been 
called2 of type I, as distinct from infinite-dimensional (type 
II) representations. More particularly, a finite-dimensional 
representation and corresponding field is called of type Ia if 
the associated basis operators KI' vanish identically, and of 
type Ib otherwise. The Lie algebra 'fr is not semisimple, and 
its representations of type I or II are not in general fully 
reducible. The problem of classifying all inequivalent repre­
sentations of type Ib in particular seems quite beyond our 
present powers. 

In BJ1, we have defined the wave equation (1.1) to be 
locally conformal-invariant on a vector space all of smooth 
solutions, if 0& is invariant under the action of the conformal 
algebra (1.4). Then we have shown that the non-zero compo­
nents of any t/J in such a 0& must belong to a representation of 
'fr from a certain class g , characterized by the property 
that the basis operators of any representation from this class 
satisfy the 'fr-invariant set of equations 

KI'~ = 0, 

.II'"K" = (..1 + i)KI" 

..1 4 + (CI + 1)..1 2 + (Cz)Z = 0, 

(l.5a) 

(1.5b) 

(1.5c) 
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where 

CI = ~fwIJLY, 

C2 = (1/8)i~YP(TIJLy.Ip(T' 

(The metric tensor is diagonal with 

(1.6a) 

(1.6b) 

goo = -gil = -g22 = -g33 = + 1, and the alternating 
tensor has ~123 = + 1.) Accordingly, we have restricted our 
attention to indecomposable (but not necessarily irreducible) 
representations of rr in Class !!2, and associated indecom­
posable Class !!2 fields. 

We have shown furthermore that if (a) tP is an indecom­
posable Class !!2 field, (b) a locally conformal-invariant vec­
tor space Ok' of solutions of the wave equation (1.1) does exist, 
and (c) at least one of the solutions in Ok' is a plane wave, then 
the associated indecomposable Class !!2 representation of 
rr must be, for some integer U and non-negative integer u, 
a representation of the type we have labeled [A, +; 0, u]. 
Since we are interested primarily in the possibility of using 
locally conformal-invariant spaces of solutions ofEq. (1.1) in 
the description offree massless particles, the condition (c) is 
important, and our attention has therefore been limited fur­
ther, to indecomposable [A, +; 0, u]-representations and 
fields. 

The basis operators of such a representation satisfy, by 
definition, certain conditions additional to (1.5). In order to 
be able to describe these conditions, we must first recall that 
every finite-dimensional representation of rr must be fully 
reducible when regarded as a representation of the sl(2, C) 
subalgebra associated with the basis operators .IJLY' Let 
(m, n) label the (2m + 1 )(2n + 1 )-dimensional irreducible re­
presentation4 of sl(2, C), where 2m and 2n are non-negative 
integers, associated with eigenvalues 2[m(m + 1) 
+ n(n + 1)] and [m(m + 1) - n(n + 1)] ofthesl(2, C)-invar­

iants C I and C2, respectively, of Eqs. (1.6). An arbitrary fin­
ite-dimensional representation of rr must decompose into a 
direct sum of such representations (m, n), with various values 
of m and n, and various multiplicities. The operators C I and 
C2 in such a representation of rr will therefore have the 
form 

C I = 2M(M + 1) + 2N(N + 1), 

C2 =M(M + 1) -N(N + 1), 

(1.7a) 

(1.7b) 

where M and N are non-negative, simultaneously diagonali­
zable, sl(2, C) scalar operators whose eigenvalues are non­
negative integers or semi-integers. On that subspace of the 
representation space for rr which is associated with the to­
tality of irreducible representations (m, n) ofsl(2, C) for fixed 
m and n, M and N have the eigenvalues m and n, respective­
ly. 

The additional defining properties ofa [A, +; 0, u]­
representation of '}f'" are then 

(i) Ll = i(M + N + 1), (1.8a) 

implying in particular that Ll is diagonalizable, 

(ii)M-N=A, 

(iii) the eigenvalues of - iLl are exactly the set of 
numbers 

(1.8b) 

[IAI+l,IAI+2,"·,IAI+u+IJ. (1.8c) 
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The conditions (i) and (ii) taken together are stronger than, 
and imply condition (1.5c), as can be seen with the help of 
Eqs. (1.7). Thus the independent conditions characterizing a 
[A, +; 0, u]-representation are Eqs. (1.Sa), (1.Sb) and condi­
tions (i)-(iii) above. 

In BJI we have shown that a [A, +; 0, u]-representa­
tion is of type Ia if and only if u = 0. We have shown also that 
for each integer U there exists, up to equivalence, exactly 
one indecomposable [A, +; 0, OJ-representation. It is in fact 
irreducible, and remains so when restricted to sl(2, C), being 
then labeled (A, 0) if ..1,;;;.0 and (0, - A) if ..1,< 0. The basis 
operator Ll is constant, having the value iliA 1 + 1), and of 
course KJL = 0. 

We have shown also that if tP is an indecomposable 
[A, +; 0, 0] field, and lies in a locally conformal-invariant 
vector space Ok' of solutions ofEq. (1.1), then tP actually satis­
fies a set of equations including (1.1). These equations are 
equivalent to the scalar wave equation if A = 0; to two-com­
ponent neutrino equations if 1..1, 1 = !; to Maxwell's free field 
equations if 1..1, 1 = 1; and in general to the Bargmann­
Wigner equations for massless fields ofhelicity A. The con­
formal invariance of these sets of equations is well known.5 

In order to find new conformal-invariant free massless field 
theories, possibly of interest to physics, it is therefore neces­
sary to look at what are in effect, the only remaining possibi­
lities, indecomposable [A, +; 0, u] fields with u > 0. These 
are fields of type Ib, and the corresponding representations, 
although indecomposable, are not irreducible. 

We have not attempted a complete description of these 
representations in BJ1. Indeed, we have not even proved 
their existence for arbitrary integers U and u > 0. It is the 
purpose of this work to fill these gaps. That we are able to 
achieve this object completely, as the ensuing Theorem 2.1 
shows, is remarkable, given the apparent intractability of the 
corresponding task for the totality of representations of type 
Ib, or even those of Class !!2 . Our success depends upon the 
diagonalizability of Ll in [A, +; 0, u]-representations, and 
the availability of Gabriel's theorem,o.7 whose substance 
should not be underestimated. We were able to derive our 
own proof of the latter from "first principles" for the special 
case of interest to us (i.e., for the quiver corresponding to the 
Dynkin diagram for Au + 1- see Sec. 2) but this proof runs to 
several pages. 

In subsequent work we shall describe the structure of 
the new sets of locally conformal-invariant massless field 
equations obtained for indecomposable [A, +; 0, u] fields 
with u >0. 

II. STRUCTURE OF THE RELEVANT 
REPRESENTATIONS OF 71' 

Theorem 2.1: Up to equivalence, there is exactly one 
indecomposable [A, +; 0, u]-representation of 71' for each 
integer or semi-integer A and each non-negative integer u. 
When regarded as a representation of sl(2, C), this represen­
tation of 71' has the decomposition 

(A, 0) Ell (A. +~,~) Ell ... Ell (A. + ~u, ~u) 
if ,,1,;;;'0, and 

(0, - A. ) Ell (~, ~ - A ) Ell ... Ell (~u, ~u - A ) 
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if A < O. The dimension of the representation is 

d =!(u + l)(u + 2)(2u + 3 + 61,1, I). (2.3) 

A basis consisting of vectors 

18, s, S3)' 

8EIIA I + 1, 1,1, I + 2, ... , 1,1, I + 1 + u j, 

sEliA I, 1,1, 1+ 1, ... ,8-lj, 

S3E! s, S - 1, ... , - sJ, (2.4) 

can be introduced, on which the operators A, .2"/lY' K/l' and 
the related operatorsM, N, CI , and C2 ofEqs. (1.6) and (1.7) 
act as foIIows [we write 

(.2"23' .2"31'.2" d = S, 

(.2"0 I' .2"02' .2"(3) = T]: 

A 18, s, S3) = i818, s, S3)' 

S,SI8, s, S3) = s(s + 1 )18, s, S3), 

(2.5a) 

(2.5b) 

(2.6a) 

(2.6b) 

S318, s, S3) = s318, s, S3)' (2.6c) 

C118, s, S3) = (A 2 + 8 2
_ 1)18, s, S3)' (2.6d) 

C2 18, s, S3) = ,1,818, s, S3)' (2.6e) 

M 18, s, S3) = !(8 + ,1,- 1)18, s, S3)' (2.6f) 

N 18, s, S3) = ~(8 - ,1,- 1)18, s, S3)' (2.6g) 

(SI ± iS2) 18, s, S3) 

= [(S±S3+ 1)(s+s3)] 1/218,s,s3± 1), (2.7) 

T3 18, s, S3) 

= D (s)[(8 - s)(8 + s)(s - S3)(S + S3)] 1/2 

X 18, S - 1, S3) + s38E (s)18, s, S3) 
- D (s + 1 )[(8 - s - 1 )(8 + s + 1) 

X (s - S3 + l)(s + S3 + 1)] 1/2 18, S + 1, S3)' (2.8) 

(TI ± iT2) 18, s, S3) 

= ± D (s)[(8 - s)(8 + s)(s +S3)(S +S3 - 1)]1/2 

XI8,s-l,s3± 1) 

+ 8E(s)[(s +S3)(S ± S3 + 1)] 1/2 18, s, S3 ± 1) 

±D(s+ 1)[(8-s-1)(8+s+ 1) 

XIs ± S3 + l)(s ± S3 + 2)]1/2 

XI8,s+l,s3±1), (2.9) 

Ko18, s, S3) 

= K[(8 - s)(8 + s + 1)] 1/2 18 + 1, s, S3)' (2.10) 

K318, s, S3) 

= iKD (s)[(8 - s)(8 - s + l)(s - S3)(S + S3)] 1/2 

X 18 + 1, S - 1, S3) 

+ iKS3E (s)[(8 - s)(8 + s + 1)] 1/2 18 + 1, s, S3) 

-iKD(s+ 1)[(8+s+ 1)(8+s+2)(s-s3+ 1) 

X (s + S3 + IIP/218 + 1, s + 1, S3)' (2.11) 

(KI ± iK2 )16, s, S3) 

1949 

= ± iKD (s)[(8 - s)(8 - s + 1 )(s + S3) 
X(s=fs3-1)]1/218+ l,s-l,s3± I) 

+ iKE (s)[(6 - s)(6 + s + l)(s =f S3) 
X(S±S3+ Ij]1 /216+ l,s,s3± 1) 
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±iKD(s+ 1)[(8+s+ 1)(8+s+2) 

X (s ± S3 + l)(s ± S3 + 2W 12 

X 16 + 1, S + 1, S3 ± 1). (2.12) 

where 

D (s) = (S2 - A 2)1/2/S(4s2 - 1)1/2, 

E(s) = - iA IsIs + 1), (2.13) 

and K is a nonzero constant. The nonzero value of K is imma­
terial, representations which differ only in this value being 
equivalent.8 The formulas (2.10, 2.11) for K/l applied to 
18, s, S3) are only valid for 6 < (1,1, I + 1 + u), and 

K/l 1(\,1, I + 1 + u), s, S3) = O. (2.14) 

TheoperatorsK/l are nilpotent, and the product (K/lKy •. .Kp ) is 
not identically zero only if it does not contain more than u 
factors. (In particular, if u = 0 then K/l = 0.) 

Proof We know that in such an indecomposable repre­
sentation of 'Jr, ( - iA ) has the eigenvalues (1.8c) 

8 = 1,1, 1+ 1, 1,1, I + 2, ···,1,1, I + 1 + u. 

Since Eqs. (1.8a, b) hold, it follows that, if ,1,>0, the pair 
(M, N) has eigenvalue pairs 

(m, n) = (,1,,0), (A +~, ~), ... , (A + ~u, !u), (2.15) 

while if A < 0, it has eigenvalue pairs 

(m, n) = (0, - A), (!d - A), ... , (!u.!u - A). (2.16) 

Accordingly, this representation of 'Jr, when regarded as a 
representation of sl(2, C), has the general form 

rotA, 0) EB rl(A + !, !) EB ... EB ru(A + !udu), (2.17) 

for ,1,>0, or 

ro(O, - A) EB rl(!d - A) EB ... EB ru(!u, !u - A), (2.18) 

for A <0, where ro, rl, ... , ru are certain positive integers. It is 
convenient at this stage to go from the (m, n) to the [ko, c] 
labeling scheme4 for the finite-dimensional irreducible re­
presentations of sl(2, C), where 

ko=m -n, 

c = m + n + 1. (2.19) 

In the case at hand, because Eq. (1.8b) holds, we get only 
representations with ko = A, and the decompositions (2.15) 
and (2.16) have the common form 

ro[A, 1,1, 1+ 1] EBrl[A, 1,1, I + 2] EB· .. EBru [,1,,1,1, 1+ u]. 
(2.20) 

We see that the eigenspace r {j, associated with the eigenva­
I ue 8 of ( - iA ), carries the direct sum of r T copies of the 
representation [A, 8 ] of sl(2, C), where r = 8 - 1,1, I - 1. We 
imagine these copies ordered in some definite way, and la­
beled by an index a taking values 1, 2, .... r T • Now each 
representation [A. 6 ] of sl(2, C), when regarded as a represen­
tation of its su(2) subalgebra spanned by the operators S. is a 
direct sum of (2s + 1 )-dimensional irreducible representa­
tions (s) of su(2), for s = 1,1, I. 1,1, I + 1, ...• l) - 1 (each occur­
ring once). And each representation (s) ofsu(2), when regard­
ed as a representation of its u( 1) subalgebra spanned by the 
operator S3' is a direct sum of one-dimensional representa­
tions [S3] ofu(I), for S3 = S, S - 1, ... , - s (each occurring 
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once.) Accordingly, we can introduce a set of basis vectors 
for the whole carrier space of the given representation of 'Jr, 
labeled 

18,a,s,s,), (2.21) 

where 8 runs over the eigenvalues of ( - i.1 ) as in Eqs. (2.4); 
foreach8 ( = 7 + 1,.1 I + 1), a runs over the values 1, 2, ... , rr' 
and independently s runs over the values 1,.1 I, 1,.1 I + 1, ... , 
8 - 1; and for eachs, s, runs over the valuess, s - 1, ... , - s. 
On the basis vector (2.21), the operators .1, S·S and S3 will 
have the eigenvalues i8, sIs + 1), and S3' respectively. More­
over, in view of Eqs. (1.6) and (1.7), the operators M, N, GI , 

and G2 will have the eigenvalues !(8 + A - 1), !(8 - A - 1), 
(A 2 + 8 2

_ 1), andA8, respectively. The action of the sl(2, G) 
operators in an su(2);;;'u(l) basis of an irreducible representa­
tion [ko, c] is well known. 4 We get Eqs. (2.7), (2.8), and (2.9) 
with 18, s, S3) replaced by 18, a, s, S3) throughout. (These 
operators do not "see" the label a.) 

We now turn to the action of the operators Kfl' In view 
of the commutation relation (1.3e) and the fact that Ko com­
mutes with S, we must have 

Ko18, a, s, s,) = L Af3a 18 + 1, /3, s, S3)' (2.22) 
(3 

for some complex numbersAf3a , which a priori could depend 
on8 ands(but not ons3 ). The sum is over the rr+ I values of/3 
(with 7 = 8 - 1,.1 I - 1). Equation (2.22) can only hold for 
8 <8max = (1,.1 I + 1 + u), and we must have also 

Kol!lA I + 1 + u), a, s, S3) = O. (2.23) 

According to Eq. (1.3b), Kfl is a four-vector operator. The 
most general structure possible for such operators within a 
finite-dimensional representation of sl(2, G) is well known.4 

We can apply these known general results to the particular 
situation at hand, or determine the structure directly, noting 
that a necessary and sufficient condition for Ko as in Eqs. 
(2.22) and (2.23) to be the fourth component of a four-vector 
is that 

(2.24) 

[The remaining components of Kfl can then be defined by 

iK j = [Ko, T j ] , (2.25) 

and the commutation relations (l.3b) will then be satisfied.] 
We get, in place ofEq. (2.22), 

Ko18, a, s, s,) 

= L B ~~ [(8 - s)(8 + s + 1))1/218 + 1, /3, s, s3),(2.26) 
(3 

wheretheB~~, 7-(8 -1,.1 1- 1) = 0,1, ... , U - 1, are com­
plex numbers which do not depend on s or s,' but are other­
wise not restricted by Eq. (2.24). For each value of 7, we may 
regard them as the elements of an (rr+ I X rr) matrixB (r). We 
might expect these matrices to be restricted in form by the 
relations (1.5a), (1.5b) and (l.3c) which are required ofa 
[A, +; 0, u] representation, but in fact this is not the case. 
These relations place no restrictions whatsoever on the B (r) 

but are satisfied once Ko and K j have the forms determined by 
Eqs. (2.26), (2.23), and (2.25). We see this most simply as 
follows. 
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The operators Kit as defined so far are shift operators for 
( - i.1 ), M, and N, and in fact we have 

MK" = Kit (M + ~), NK,t = Kit (N + ~). 
It follows that 

M[KI',Kv] = [Kit' Kv](M+ 1), 

N [K,,, K,,] = [Kit' Kv](N + 1). 

(2.27) 

(2.28) 

Thus [Kit' K,.] shifts any vector from a repesentation sub­
space of sl(2, G) labeled (m, n) to one labeled (m + 1, n + 1). 
But, just as a four-vector operator [transforming according 
to the representation (~, ~) itself] can only link4 (m, n) with 
(m + ~, n ± !) and (m - !, n ± ~), so any antisymmetric ten­
sor operator like [K/t' Kl'] [transforming according to the 
representation (1,0) E!l (0, 1)] can only link (m, n)with(m ± 1, 
n), (m, n), and (m, n ± 1). It cannot link (m, n) with (m + 1, 
n + I)-and to avoid a contradiction it must be true that 

[Kit' Kl'] = O. 

Similarly, we have 

M(K/tKt) = (K/tKt)(M + 1), 

N(K,tKt) = (K/tK'")(N + 1). 

(2.29) 

(2.30) 

But a scalar operator like (K"K'") cannot link (m, n) with 
(m+ l,n+ 1),andso 

K"K't = O. (2.31) 

Consider the commutator 

[K,,, GI ] = [K", ~vpLVP] 
= 2iL"pl<" + 3K,t (2.32) 

using the relations (1.3 b), already established. In view of Eqs. 
(1.7) and (2.27) we then have 

iL,tpl<" + ~/t = [K", M(M + 1)] + [Kit' N(N + 1)] 

= K"M(M + 1) - M(M + I)K" 

+ KflN(N + 1) - N(N + I)K/, 

= K/tM(M + 1) - KfI(M + !)(M +~) 

+ K"N(N + 1) - K,t(N + !)(N +~) 

= - K,,(M + N + ~), (2.33) 

so that 

L"pl<" = iKfI(M + N + 3) 
= i(M + N + 2)K/, = (i + .1 )K", (2.34) 

as required. Thus we see that Eqs. (1.3c), (1.5a), and (1.5b) are 
all satisfied. 

How then are the matrices B [r) restricted? It is easy to 
see that for no 7 can B (T) be identically zero; otherwise the 
representation space splits into the direct sum of nontrivial 
'Jr-invariant subspaces, contradicting the assumed in de­
composability of the given representation. But the indecom­
posability restricts them much more than this. Consider the 
effect of a change of basis, of the special form 

18, a, s, S3)' = LS~~ 18, /3, s, s,), (2.35) 
(3 

where, for each 8 as in Eqs. (2.4) and corresponding 
7 = 8 - 1,.1 I - 1, the (r r X r r) matrix S (r) with complex ele­
ments S ~~ is nonsingular. Then 
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18, a, s, S3) = LS~~~ 118,,8, s, S3)', 
(3 

(2.36) 

where SiT) ~ I is the inverse of SiT), and so, from Eq. (2.26), 

KOLS~~~ 118,,8, s, S3)' 
(3 

= 2: L B ~~ [(8 - s)(8 + s + 1)] 1/2 
r (3 

S IT+I)~II"+1 )' X r(3 U , r, s, S3 , 

i.e., 

= 2: B ~r [(8 - s)(8 + s + 1)] 1/218,,8, s, S3)', (2.37) 
(3 

where 

(2.38) 
r (T 

In short, 

BIT)' = SIT+ I)~ IBIT)SITI, 7 = 0,1, ... , u - 1. (2.39) 

Since we are only interested in the structure of the represen­
tation [A, +; 0, u] up to equivalence, we may look for a 
canonical form of the matrices B IT) with respect to transfor­
mations of the form (2.39). 

Consider a sequence of (u + 1) complex vector spaces 
YT ,7 = 0,1, ... , u of dimension ro, r l , ..• , ru , respectively. The 
matrices B IT) define a sequence of linear mappings between 
the spaces YT , shown diagrammatically thus: 

BIO) B (I) 

o ____ ~---o--~ __ -o ... o' ___ ~-_o 

(2.40) 

Now consider in abstraction the oriented, connected graph 
appearing in that diagram, 

0 __ --+-__ 0 __ --+-__ 0 ••• 0 __ --+-__ 0 (2.41) 

Such a graph, and more generally, any finite, oriented, con­
nected graph, is called a quiver. If with each vertex of the 
quiver (2.41) is associated a finite-dimensional vector space, 
and with each directed edge a linear mapping in the appro­
priate direction, as in the diagram (2.40), then one has a re­
presentation (Y, B) of the quiver. The direct sum of two such 
representations (Y,B ), (Y',B ')istherepresentation(Y" ,B "), 
where for each 7, 

Yr" = Yr EB YT ', 

BIT)" = BIT) EBB IT)' . (2.42) 

A representation (Y, B ) is indecomposable if it cannot be re­
presented as a direct sum of two nontrivial representations. 
Two representations (Y, B), (Y', B ') are equivalent if there 
exist invertible mappings SiT) 

SIT): Y~ -YT 

such that 

BIT)' = SIT+ I) ~ IB IT)SIT) 

(2.43) 

(2.44) 

for 7 = 0, 1, ... , u - 1. It can be seen that an indecomposable 
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[A, +; 0, u] representation of 'fr defines an indecomposable 
representation of the quiver (2.41), and that any indecompos­
able representation of the quiver in which none of the B IT) is 
identically zero, defines a [A, +; 0, u] representation of 'fr. 
Moreover, equivalent representations of the quiver define 
equivalent representations of 'fr. The problem now arises of 
classifying the equivalence classes of indecomposable repre­
sentations of the quiver (2.41). The notion of a representa­
tion, and of the indecomposability and equivalence thereof, 
can be defined for any quiver. Gabriel6 (see also Bernstein et 
al.7

) has posed and answered the following question: for 
which quivers are there finitely many equivalence classes of 
indecomposable representations? He found that a necessary 
and sufficient condition is that the graph, when unoriented 
(i.e., with the arrows removed from the edges) must coincide 
with the Dynkin diagram for one of the simple Lie algebras7 

A 2, A 3, ••• , D4 , Ds, ... , E 6 , E7 , or E 8• What is more remarkable 
is that in every such case there is a one-to-one correspon­
dence between the equivalence classes and the positive (inte­
gral7

) roots associated with the corresponding Lie algebra. 
In the case at hand, we have the Dynkin diagram of Au + I' 
and the result is that, if the positive root is (r 0' r I' ... , r u ), then 
the dimension of YT is rT in any representation (Y, B) from 
the corresponding class. There are ~(u + l)(u + 2) positive 
roots of Au + I, viz.7 

(1,0,0, ... ,0), (0,1,0, ... ,0), ... , (0,0,0, ... ,1) 

(1, 1,0, ... ,0), (0, 1, 1,0, ... ,0), ... , (0, 0, 0, ... ,0, 1, 1) 

(1, 1, 1, ... , 1) 
(2.45) 

But we are only interested in the situation where all B IT) are 
nontrivial, as already remarked, so only the last root is of 
relevance. (The others correspond to representations 
[A, +; I, v] of rr with l> ° or v < u.) Accordingly, each of 
the spaces Y T is one-dimensional, and 

ro =rt =···=ru =1. (2.46) 

We may now drop the unnecessary label a from the basis 
vectors (2.21). Each matrix B IT) reduces to a nonzero con­
stant-and furthermore, since there isjust one equivalence 
class corresponding to the last of the roots (2.45), we can 
without loss of generality take all these constants equal, to K 

say. Thus we arrive at the form (2.10) for the action of Ko on 
the basis vector 18, s, S3)' and the forms (2.11) for the remain­
ing components are simply obtained from Eq. (2.25). The 
dimension d of the representation of rr is now obtained by 
adding the dimensions of the irreducible representations 
[A, IA I + 1], [A, IA I + 2], ... , [A, IA I + u] of sl(2, C), as 

u 

d= 2:(7+1)(2IAI+7+1), (2.47) 
r=O 

yielding the result (2.3). That the product (KI'Kv'''Kp) is not 
identically zero only if it does not contain more than u fac­
tors, follows at once from the action of K,. as defined by Eqs. 
(2.10), (2.11), (2.12), and (2.14). 0 

III. AN ILLUSTRATIVE EXAMPLE 

Consider a [0, +; 0, 1] field. It has five components, 
and the sl(2, C) content of the index space representation is 
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(0, 0) e H, !). (3.1) 

The basis vectors 18, S,S3) of Theorem 2.1 run over 11,0,0), 
12,0,0),12,1,1),12,1,0), and 12, 1, - O. Represent them 
by column vectors (1000 O)T, (0100 O)T, etc. Let 
ERS (R, Se{ 1, 2, 3,4,5 J) denote the 5 X 5 matrix with a 1 in 
the R th row and S th column, and zeros elsewhere. Then 
according to Eqs. (2.6H2.14), the matrix representations of 
the 'lr operators are 

S3 = E33 - Ess, T3 = E24 - E42, 

S. + iS2 = h/2)(E34 + E4S)' 

S. - iS2 = h/2)(E43 + ES4)' 

T. + iT2 = (V2)(E2S + Ed, 

T. - iT2 = - (v2)(Es2 + E23), 

Ko = K(v2)E211 K3 = - iK(V2)E4., 

K. + iK2 = 2iKE3., K. - iK2 = - 2iKEs., 

..:1 = iE •• + 2i(E22 + E33 + E44 + Ess). 

Now make a unitary transformation 

A---+UAUt 

(3.2) 

(3.3) 

of each of the 'lr operators A, where 

U =E •• +E22 - iEs4 

+ (l/v2)(iE33 - iE3S - E43 - E4S)' (3.4) 

This corresponds to a change from the su(2»u(l) basis to a 
tensor basis. An arbitrary [0, +; 0, 1] field then takes the 
form 

( 'P(X)) 
tP(x) = \A1"(x) , (3.5) 

where'P is an sl(2, C) scalar field, and AI" a four-vector field. 
The action of the 'lr operators is then found to be 

.II""(~) = i~l"pA" _ g"pAJ, (3.6a) 

..:1 (;,) = {~J, (3.6b) 

KI" (:J = K'~I""'P). K' = KV2. (3.6c) 

Consider an infinitesimal scale transformation 

x'l" = (1 + E}xI" (3.7) 

and the corresponding transformation of "', as generated by 
the operators (lAc), 

i.e., 

""(x) = tP(x) + iE(ixl"al' +..:1 )",(x) 

= (1 + iE..:1 )t/J((1 - E)x), 

""(x') = (1 + iE..:1 )",(x). 

Then 

1952 

'P'(x') = (1 - E)q> (x), 

AI"'(x') = (1 - 2E)AI"(X), 
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(3.8) 

(3.9a) 

(3.9b) 

so 'P(x) has length dimension ( - 1) and AI" (x) has dimension 
( - 2). [Note that the four-vector potential of the electro­
magnetic field has dimension ( - 1).] Now consider an infini­
tesimal special conformal transformation 

x'l" = xl" + 20 "x " xl" - Ol"x"x" 

and the corresponding field transformation 

""(x) = tP(x) + iOI"(2ixl"x"a" + 2x1"..:1 

i.e., 

- ix"x"al" + 2.I1'''x'' + KI" )tP(x) 

= (1 + 2iOl"xl"..:1 + 2iOI".II""x" + iOI"KI") 

XtP(xl" - 20 "x"xI" + Ol"x"x"), 

""(x') = (1 + 2iOl"xl"..:1 

+ 2iOI".II""x" + iOI"KI")tP(X). 

Then 

'P'(x') = (1 - 20I"xl")9:' (x), 

the usual transformation law for a scalar field, while 

A ~(x') = AI" (x) - 40 "x"AI" (x) - 20l"x"A,,(x) 

+ 2x1"0 "A" (x) + iK'0I"'P (x). 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Here we see the novel feature of Type Ib fields-under the 
action of the conformal group, fields belonging to different 
index-space irreducible representations of sl(2, C) are mixed 
together. 

Note that the subspace of fields having 'P(x) = 0 is in­
variant under this action. This corresponds to the fact that 
although the representation [0, +; 0, 1] of 'lr is indecom­
posable, it is not irreducible, and it "contains" the indecom­
posable (and irreducible) representation [0, +; 1, 1] as an 
invariant subrepresentation. More generally, we can see that 
[A, +; 0, u] contains [A, +; 1, u), which contains [A, +; 2, 
u), etc. Of the representations [A, +; 0, u), only those with 
u = 0 are irreducible . 
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A general method for constructing the extension of an ordinary Lie algebra do to a superalgebra 
do e d t is given, once one knows in which representation of do the odd generators d t are. 
Explicit matrix representations for the superalgebras F (4) and G (3), and for ordinary algebras E8, 

F4 , and G2 are presented. 

PACS numbers: 1l.30.Pb 

1. INTRODUCTION 

Superalgebras play an increasingly important part in 
physics, since they are the mathematical foundation of su­
pergravity theories. In mathematics, a complete classifica­
tion of all simple superalgebras has been given by Kac. t A 
superalgebra is per definition a finite set of generators which 
can be divided into even ( = bosonic) and odd ( = fermionic) 
elements (a Z2 grading), such that the bracket relation 
between any two generators is antisymmetric, except that for 
two odd generators it is symmetric. Moreover, the super­
Jacobi identities are satisfied. They differ from the usual Ja­
cobi identities by signs and an easy way to derive them is to 
require that they become identities if one defines the bracket 
relations by commutators and (in the case of two odd genera­
tors) by anticommutators. However, for the specific matrix 
representations which we consider below, the bracket rela­
tions are not simply given by supercommutators. (Theyare, 
of course, always supercommutators for the adjoint repre­
sentation). 

The simple superalgebras consist of two main families: 
Osp(n/m), with O(n) and Sp(m) in the even sector, and 
SU(nlm), with SU(n)XSU(m)XU(I) in the even sector, ex­
cept that for n = m the U(I) is omitted. [One may always 
consider only generators with vanishing graded trace, since 
they form an ideal. For n = m the U(l) is generated by the 
unit matrix which has vanishing graded trace but which 
forms an abelian ideal for n = m.] Moreover, there are three 
kinds of exceptional superalgebras: 

(i) the algebrasF(4), G(3), andD(2, 1, a); 
(ii) the algebras PIn) and Q(n); and 
(iii) the algebras W, S, S, and H which can be represent­

ed as general coordinate transformations or canonical trans­
formations of anticommuting variables only. 

In this article we shall give matrix representations for 
F(4) and G (3) as well as for the purely bosonic exceptional 
algebras G2, F4 , E8. [We stick to V. Kac's name F(4) for the 
superalgebra, although it should not be confused with the 
ordinalry algebra F4 from Cartan's classification.] 

Most of the known applications are based on Osp(N 14), 
which yields N-extended Poincare supergravity with cosmo­
logical constant,2 and SU(4/ N), which yields N-extended 
conformal supergravity3 (at least, this is known to be the case 

for 1 ~N ~3). The reason is that Sp(4) and SU(4) [or, rather 
SU{2,2)] are the space-time algebras for d = 4 dimensions, 
namely the de-Sitter algebra SO(3, 2) and the conformal alge­
bra, respectively. It is known that if one goes to higher di­
mensions, supergravity theories can go only as high as 
d = 11 dimensions,4 not higher, since otherwise spins ex­
ceeding 2 enter, and it has been shown that for such spins no 
consistent coupling to gravity exists.s Gauge supersym­
metry6 is based on Osp(3, 1!4N), which leaves the line ele­
ment in superspace ~ (X j )2 + ~ (8 i(J i) invariant, where Xi are 
the coordinates of 4-dimensional Minkovski space-time. 

The question arises which superalgebras yield super­
gravity theories in dimensions d > 4. It is known that simple 
Poincare supergravity in d = 5 is described by SU(4/1),1 
where SU(4)-SO(6) is the de-Sitter algebra for d = 5. It 
seems possible that the superalgebra F(4) (the number 4 de­
notes the rank of the bosonic part as usual) whose even sector 
consists of spin (7) X SL(2, R ), will give rise to Poincare su­
pergravity in d = 6 dimensions, since 0(7) is the de-Sitter 
algebra for d = 6, while its spinor representation spin (7) is 8-
dimensional, which is indeed the dimension of the Clifford 
algebra in d = 6. Another possibility for F(4)8 would be that 
it leads to conformal supergravity in d = 5, since 0(7) can 
also be viewed as the conformal group in d = 5 (the gener­
ators~i6 and~s7 yield then Pi andKj , with i = 1, 5 while~67 
yields the dilaton generator D ). Since one needs in d = 5 an 
even number of spinors (in order to be able to define Major­
ana spinors) pairs of spinors would then fill up the 8-dimen­
sional columns and rows in the off-diagonal parts. Quite gen­
erally, the matrix representations have in the even sector the 
spinor representations of the bosonic groups, since the odd 
charges must transform under the bosonic symmetries as 
spinors (due to the spin-statistics theorem). The superalgebra 
G (3) has no space-time group in its bosonic sector, but it may 
playa role in grand unified schemes, where it may combine 
several internal symmetries. The problems here will be the 
occurrence of ghosts, just as they occur in SU(2/1). 9 

We have added explicit matrix representations for the 
ordinary exceptional Lie algebras E8, F4 , and G2• After the 
demystification of the exceptional Lie algebra E7 by Crem­
mer and Julia, 10 and of E6 by Cremmer, Scherk, and 
Schwarz, II this seemed not only possible, but even desirable. 
We thank E. Cremmer and B. Julia for discussions about 
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these matters. It may be that our explicit matrix representa­
tions will be helpful for the gauging of super F (4), and for 
phenomenological applications based on the ordinary F4 and 
G2• Since E7 and E6 arises as global symmetries of the largest 
supergravity theory in d = 4 wand d = 5, II respectively, 
after dimensionally reducing the only supergravity model in 
d = 11, one may expect E8 to emerge in d = 3. 

2. STRUCTURE OF LIE SUPERALGEBRAS 

We recall that a Lie superalgebra d is a vector space 
(real or complex) that decomposes into two vector spaces do 
and d I (d = do ffi d 1) and is endowed with a binary 
bracket operation [ ,]: d X d _d satisfying the laws 

[X, Y] = - (- WY[y, X], (2.1) 

[X, [V, Z]] + (- WIY+ZI[y, [Z, X]] 

+ ( - l)ZIX + YI[Z, [X, V]] = 0, (2.2) 

for all X, Y, Z in d. Here a symbol appearing in an exponent 
of ( - 1) is understood to have the value 0 or 1 according to 
whether the corresponding element lies in door d I. Such 
elements are called pure. Equations (2.1) and (2.2) are ex­
tended to the impure case (i.e., to arbitrary elements of d) by 
application of the linear laws 

[X, aY] = a[X, V], 

[X, Y + Z] = [X, Y] + [X, Z], 

a being any number (real or complex). 

(2.3) 

(2.4) 

Equations (2.1) and (2.2) are non trivially self consistent 
only if the bracket of two pure elements is itself pure and if 
( - l)[X.Yl = ( - l)X + Y. The problem of classifying all Lie 
superalgebras is equivalent to finding all possible solutions of 
these equations. Kac l has given the complete classification 
of the simple Lie superalgebras, i.e., those that possess no 
nontrivial subalgebras invariant under the bracket oper­
ation. Most of these are easily described in terms of specific 
representations oflow order. A few, notably the exceptional 
superalgebras D (2, 1, a), F(4), and G (3), appear to have no 
matrix representation of order lower than that of adjoint 
representation. In this respect they are similar to the excep­
tional ordinary Lie algebra E8• 

The adjoint representation ad d is obtained by assem­
bling the structure constants into matrices. The structure 
constants themselves are defined relative to a pure basis! ei l 

def 

[eo ej ] = ekc\. (2.5) 

Since any element of d is expandable in terms of the e i the 
structure constants determine the superalgebra. Equations 
(2.1) and (2.2) may be replaced by 

i "k i 
C jk = - ( - 1 Y c kj' (2.6) 

c i c m +(_lylk+llci c m .+(_l)lli+ kICi cm. =0 jm kl km Ij 1m Jk . 
(2.7) 

where now an index appearing in an exponent of ( - 1) takes 
the value 0 or 1 according to whether the associated basis 
vector lies in door d 1 • 

Let D; denote the matrix (Cj;k). Then Eq. (2.7) is equiva­
lent to 

(2.8) 
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where the bracket symbol now denotes the 
supercommutator: 

def 

[Di' Dj ] = DiDj - (- l)ijDj D i • (2.9) 

The D; are the generators of ad d. [The symbol H[, )" is 
often used for the supercommutator. This notation is deplor­
able in two respects: (1) It leaves the antisupercommutator 
D;Dj + ( - l)YojD; in limbo. (2) It fails to emphasize that 
the supercommutator is the analog of the commutator of 
ordinary Lie algebra theory, not of the anticommutator.] 

It will be convenient to use Greek indices from the first 
of the alphabet to designate basis vectors lying in d I and 
Greek indices from the middle of the alphabet to designate 
basis vectors lying in do. Such indices are often referred to 
asfermionic and bosonic, respectively. Because of the rule 
( - 1) [eref} = ( _ l)i + J, structure constants bearing an odd 
number of fermionic indices vanish, and the adjoint gener­
ators D; have the block structure 

_ (CV,.a 
DfL - 0 (2.10) 

Equations (2.7) decompose into the following four equations: 

c'" vA ~ a7" + c'" aA ~ 7"V + c'" 7",1 ~ va = 0, 

C
a 

fLYCY vf3 + ca 
vyC

Y 
13,. + Ca 

f3aCa,.v = 0, 

c'" ayCY f3v - c'" f3y CY va + c'" vu Cu af3 = 0, 

C
a 

13,. c'" yli + C
a 

y,. c'" lif3 + C
a 

liJ.t c'" f3y = o. 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Equation (2.11) shows that the c's with purely bosonic 
indices are the structure constants of an ordinary Lie alge­
bra. This Lie algebra is just do, which is a subalgebra of d. 
Equation (2.11) and (2.12) together are equivalent to 

(2.15) 

which shows that the D,. generate a representation of do, 
namely the direct sum of ad do and another representation 
generated by the matrices 

def 

G,. = (C
a 

J.tf3). (2.16) 

The latter representation, denoted by do: d I' will be called 
the extending representation because its existence is what 
makes possible the extension of do to a superalgebra d. It 
determines the action of do on d 1: Let X be an element of 
do and Y an element of d \. Then [X, Y] = X"G,. Y, where 
X,. are the components of X relative to the basis {e,. ). 

The extending representation cannot be just any repre­
sentation of do for it must also be compatible with the struc­
ture equations (2.13) and (2.14). Checking this compatibility 
is the hardest part of the problem of constructing and classi­
fying Lie superalgebras. We outline here a method that 
works in many cases: 

First, choose do to be a semisimple Lie algebra. For 
such an algebra there always exists a nonsingular symmetric 

s 

matrix", = (rJ fLv ) such that rJ wc7" vu is completely antisymme-

tric in the indices Ji, v, and 0'. One such matrix is the Cartan­
Killing matrix ( - cU

"7"c7" vu). However, if do is not simple 
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this is not the only possibililty. In an appropriate basis 1) may 
s 

be built out of blocks, each block being the Cartan-Killing 
matrix of one of the simple invariant subalgebras of sf 0 and 
each block carrying its own arbitrary scale factor. The arbi­
trariness of the independent scale factors is important. 

Next, choose for sf 0: sf 1 a representation of sf 0 for 
A 

which there exists a nonsingular antisymmetric matrix 1) 
A 

= (1JafJ) such that the matrices 1)GJl are all symmetric. The 
s A s 

matrices 1) and 1), together with their inverses 1) - 1 = (if") 
A 

and 1) - 1 = (1JafJ
) can be used to lower and raise bosonic and 

fermionic indices, respectively. If they are combined into a 
single matrix 

def (~ 
1)= 

o 
(2.17) 

then the matrices 1)DJl are antisupersymmetric: 

(2.18) 

Finally check whether the identity 

A 1 (A) GJlS 1)GIl= - 2 GJl tr S 1) GIl , 

def 

GIl = if"G" (2.19) 

holds, where S is any symmetric matrix. This is the crucial 
identity. It turns out that in order to satisfy it sf 0: sf 1 usual­
ly has to be a reducible representation of sf o' If sf 0 is chosen 
to be simple sf 0: sf 1 can be irreducible only when 
sf 0 = SL(n) [or SU(n)]sf 0: sf 1 is then the adjoint represen­
tation. [This leads to the superalgebra Q (n - 1 )(see Ref. 1 ).] 
Among the so-called classical Lie superalgebras 1 the only 
other examples for which sf 0: sf 1 is irreducible are D (2, 1, 
a), F(4), and G(3). For each of these superalgebras sfo has 
SL(2) as an invariant subalgebra, and the independent scale 
factors multiplying the blocks of which (1JI''') is therefore 
composed have to be chosen in a special way to make the 
identity (2.19) hold. 

Give a Lie algebra sf 0 and an extending representation 
satisfying the requisite conditions, one immediately has half 
of the structure constants of the Lie superalgebra sf 0 $ sf l' 
namely, cI'"u and ca

JlfJ • The remaining structure constants 
are obtained by defining 

def 

(2.20) 

def 

cI' afJ - if" 1J ay C \fJ = cI' fJa • (2.21) 

It is easy to see that Eq. (2.13) is then equivalent to (2.12), and 
Eq. (2.14) is an alternative version of (2.19). Moreover, the 
matrices 1)Da are symmetric, and 1JUCjk is completely anti­
supersymmetric in the indices i,j, and k. 

A 

We have not actually used the nonsingularity of 1) in the 
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A 

above. However, it is not difficult to show that if 1) is singular 

then sf is not simple, nor even semisimple. If sf is simple 
then 1) is necessarily nonsingular and the Cartan-Killing 
matrix is necessarily a multiple of it. That is, 

- str(DiDj ) = - ( - l)kck
ucjk = A1Jij' (2.22) 

or, equivalently, 

(2.23) 

- cI' ayC
Y 
fJl' + cY

aJl cI' fJy = A1J afJ' (2.24) 

for some constant A. Because it is the supertrace (str) that 
appears here, nonsingularity of the Cartan-Killing matrix is 
not a necessary condition for a Lie superalgebra to be simple, 
as it is for ordinary Lie algebras. For example, A vanishes in 
the case ofD (2, la), although not in the case ofF (4) and G (3).\ 

3. STRUCTURE OF F(4) 

For this superalgebra sf 0 is SO(7) $ SL(2) and sf 0: sf 1 

is spin (7) X sl(2), spin (7) being the 8-dimensional spin repre­
sentation of SO(7) and sl(2) the 2-dimensional fundamental 
(or defining) representations ofSL(2). sfo has dimension 24 
and rank 4 [the latter number explaining the "4" in "F(4)"] 
and sf \ has 16 dimensions. 

Spin (7) is most easily described in terms of Y matrices 
satisfying 

IYI',y"J=20Jl,,1, !-L,v=l,oo.,7. (3.1) 

There are only two inequivalent irreducible faithful repre­
sentations for the y's, each of dimension 8 and each the nega­
tive of the other. It does not matter which representation is 
chosen, for the generators of spin (7) involve the y's only in 
the bilinear combinations 

def 

GI''' = Hyl" y,,]. (3.2) 

It turns out that the y matrices for spin (7) can be chosen 
unitary, antisymmetric and pure imaginary. For example, 

y\ = 1XU3XU2, 

Y2 = 1Xu\Xu2, 

Y3 = u2X1Xu3, 

Y4 = u2X1Xu\, 

Ys = U3Xu2X1, 

Y6=U\Xu2X1, 

Y7 = U2XU2XU2, (3.3) 

where the u's are the Pauli matrices. With such a choice, 
which will be assumed from now on, the 21 matrices GI''' are 
antisymmetric and real while the 35 matrices 

def 

GI'''(7 = !(YI'G"(7 + y"GUJl + YaG"I')' (3.4) 

are symmetric and imaginary. Any antisymmetric 8 X 8 ma­
trix A can be decomposed in the form 

A = aJl YJl + !aJl"GI'''' (3.5) 

and any symmetric 8 X 8 matrix S can be expressed as 

S = s1 + !sl'vuGJlva' (3.6) 
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where 

all = i tr(Y/lA), a/lV = -! tr(G/lvA), 

S = l tr S, S/lv{T = -! tr(G/lVO.s)· 

We shall need the trace relations 

tr Y/l = 0, 

tr(Y/lYvYc7) = 0, 

tr(Y/lYvYc7Y1'Yp ) = 0, 

tr(G/lvGc71') = - 2(8/lc7 8vr - 8/l1'8vc7 )' 

as well as the following identities: 

G/lvG/lV = - 11 1, 

G/lVYc7 G /lV = - ~ Yc7' 

G/lVG c71'G/lV = - !Gc71" 

G/lv G Pc71'G/lV = ~ G pc71" 

[G/lV' Gc71'] = - 8/lc7 G v1' + 8/l1'Gvc7 

- 8 v1'G"c7 + 8 vc7 G/l1" 

Equation (3.17) can be rewritten in the form 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

[G"v' Gc71'] =!GpACpA/lVc71" (3.18) 

where the c's are the structure constants of SO(7): 

CpA "V 171' = 8 p1'8Av 8/lc7 - 8 A1'8pv o/lc7 

+ 8pv8Ac78W - 8Av8pc78W 

+ 0pc7 8 A"Ov1' - SAc7 0 p"Ovr 

+ 0p/loA1'8vc7 - 8 A"Op1'8v(T' (3.19) 

The Cartan-Killing matrix is, up to a factor, just the unit 
matrix in the 21-dimensional vector space of 7 X 7 antisym­
metric matrices: 

- !C'K/lvpACpAc71'tK = 108/lvc71" 

def 

0/lVc71' = 0/l(T8v1' - 8,,1'Ov(T' 

(3.20) 

(3.21) 

Tum now to SL(2). This is the 3-dimensional algebra of 
all traceless real 2 X 2 matrices, the bracket operation being 
the commutator. Any such matrix B can be expressed in the 
form 

B = B\Ga b, with Baa = 0, a, b = 1,2, (3.22) 
def 

Gab = Mab-!oab1, (3.23) 

where Ma b is the 2 X 2 matrix that has 1 in the ath row and 
b th column and zeros elsewhere. The Ga b are the generators 
of sl(2). They are traceless and satisfy 

[G b G d] _ G feb d 
a' C - e C fa c , 

where the c's are the structure constants ofSL(2): 

ce b d = oe 0 d 8 b _ oe 0 b 8 d 
fa c a fcc fa' 

The Cartan-Killing matrix in this case is given by 

_ ce b h cq d f = _ 4(0 d Ob _ lOb r: d) 
fa g he e a c l a U c • 

(3.24) 

(3.25) 

(3.26) 

Expressions (3.20) and (3.26), with appropriate scale 
s 

factors thrown in, are the blocks of the matrix 1) discussed in 

Sec. 2. It turns out that we shall succeed in securing the 
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identity (2.19) if we choose for 1) the 24 X 24 matrix with 

elements [introduction of an overall scale factor changes the 
construction only trivially.] 

n b_nb_O 
"lJ.Lva - "/0 f-LV - • 

s 

The elements of the inverse matrix 1) - I are given by 

7J JLV CT'T = {j}tv err' 

1J
a

b cd = ~(8ad 8\ - !8
a

b OCd)' 

1J/lV 
a 

b = 1J
a
b"v = 0, 

and satisfy 

1J/lvpA 1JpA 171' = 8/lvc71" 

1J
a

b ef1J/cd=sabcd, 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

where 8 abc d is the unit matrix in the 3-dimensional vector 
space of traceless 2 X 2 matrices: 

def 
r:a d_ r:a r:d lr:a r:d 

U be - U c Vb - 2 U b U c • (3.35) 

In addition to the structure constants (3.19) and (3.25) of 
SO(7) EB SL(2) we have, for F(4), also the structure constants 
given by the matrix elements of the generators G"v X 1 and 
lxGa b of spin (7)Xsl(2). Using indices from the first part of 
the Greek alphabet to denote components in the 8-dimen­
sional spin space, we have 

Ca a /lV {3b = (G/lV X l)a a {3b = ! [Y", Y v lat/0a b' (3.36) 

Ca
a

c
d

{3b =(IXGc
d

)aa{3b 

= Oa{3(Oc a8d b - !8c doa b)' (3.37) 

We come now to the crucial role played by SL(2) in the 
structure of F(4) [as well as G (3), see below]. It consists in the 
following elementary fact: Every traceless 2 X 2 matrix is 
converted into a symmetric matrix through mulitplication 
by 

def (0 
E = (Eab ) = _ I ~). (3.38) 

This allows us to choose (there is, in fact, no choice in the 
A 

matter) for the matrix 1) in the present case 

(3.39) 

It is then straightforward to compute the remaining struc­
ture constants of F(4): 

Ca a t/b"v = - Ca a "v{3b = - Hy", Yv lat/0ab , (3.40) 

Ca a t/b cd - Ca a cd (3b 

= _ oa{3(8c a8b d - ~8c d8b a), 

C"vaa{3b = -1J"v(T1'1Jaa yc Cy c c71'{3b 

CC d aa {3b 

= - ![Y", Yv lat/ Eab = C"v{3baa' 
_ c e g f 
- 1J d f1Jaayg Cy e (3b 

= - ~8a{3(Ead8Cb - ~Eab8Cd) 

= - a8a{3WaEbd + 8
C

b Ead ) 

B. S. DeWitt and P. van Nieuwenhuizen 
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In order to verify the identity (2.19) form the 
combination 

117pv OTCp" aa PbC," yc &J 

+ f h. ,.Jl 17. g C faapb"'-h yc&J 

= ~(Gpv)afJ(Gpv)Y6(6ac6bd - 6ad6bc ) 

+ ~(6ac6bd + 6ad6bc - 26ab6cd )' (3.44) 

Next note that any 16 X 16 symmetric matrix S can be de­
composed in the form 

SaaPb = 6apSab + t(Gpvu)apTpvuab 

+ Up(Yp)ypEab + !Vp,,(Gpv)apEab' (3.45) 

where the S 's, T's, U 's, and V's are appropriate coefficients. 
A straightforward computation, which makes use of the 
identities (3.9H3.16), then leads to 

(l17p"OT cpvaa cy Curd6 bP + 17,f g h c'faa cy c8h d6 bP )Scyd6 

= - 4Vpv(Gpv)apEab - 6liap (Sab - 6abScc )' (3.46) 

= - 4Vpv(Gpv)afJEab - 6liafJ(Sab - 6ab Scc )' (3.47) 

The equality of the right sides of these equations shows that 
(2.19) is indeed satisfied. The reader who goes through the 
algebra will discover an intricate cancellation of terms, 
which comes about only because of the special choice that 
has been made for the matrix 1) [Eqs. (3.27), (3.28) and (3.29)]. 

Every element X ofF (4) can be associated with a 10 X 10 
matrix: 

(3.48) 

A [ = (Apv)] is an antisymmetric real 7 X 7 matrix, B is a 
traceless real 2 X 2 matrix, and C is a real 8 X 2 matrix. The 
elements of A and B are the components of X that lie in·.rf 0' 

and the elements ofC are the components that lie in .rf I' The 
obvious relation of(3.48) to spin (7) X sl(2) suggests thatF(4) 
has a relatively simple 10 X 10 matrix representation. Unfor­
tunately, this is not so. The bracket relation for the superal­
gebra is not faithfully reproduced by the supercommutator 
of matrices ofthe form (3.48). That is why we are forced to 
work directly with the structure constants, i.e., with the 
40 X 40 adjoint representation, in constructing F (4). 

Actually, the supercommutator does not fail by much. 
Denote by X12 the bracket of XI and X2, and by A12, AI, A2, 

etc., the associated components. Then using the structure 
constants that have been constructed above, one finds 

(Adpv = [AI' A2]pv - ~tr[Gpv(CIECf + C2ECiJ] , 
(3.49) 

BI2 = [BI> B2] + ~(CiC2 + CfCI)E, 

CI2 = ~(AlpvGpvC2 -A2jtvGpvCI) 

- (CIBf - C2Bil· 

(3.50) 

(3.51) 

By virtue of (3.5), Eq. (3.49) may be rewritten in the form 

!A12p"Gpv = HAl' A2]pvGpv + CIECf + CfECI 

- ~rptr[rp(CIECf + cfECd. (3.52) 

Equations (3.49H3.51) show that the bracket operation for 
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the elements of F(4) may be recovered by taking the super­
commutator ofthe matrices (3.48) and then subtracting the 
block matrix 

(
lYp tr [yp (CIEoCf + C2ECil] 0 ) 

1(CiC2 + CfCIlE . 
(3.53) 

Because the elements of F(4) are so naturally assembled 
into the matrix (3.48) and because the supercommutator of 
this matrix does give correctly some of the bracket relations 
for the superalgebra, we propose to give the name "matrix 
pseudorepresentation" to what we have constructed here. In 
Sec. 6 an alternative, partly heuristic, derivation of this pseu­
dorepresentation is given, in slightly different notation. 

4. STRUCTURE OF G(3) 

For the G (3) superalgebra.rf ois G2 $ SL(2) and.rf o:.rf I 
isg2Xsl(2), whereg2 is the 7-dimensional fundamental re­
presentation (representation oflowest order) of the excep­
tional Lie algebra G2 • .rf 0 has dimension 17 and rank 3, and 
the dimensionality of d I is 14. 

G2 is often defined as the subalgebra ofSO(7) generated 
by matrices of the form !ApvGpv having zeros in the eighth 
row and column. The matrices themselves constitute g2' 
This way of defining G2 andg2 turns out to be rather cumber­
some for applications. We give here a simpler description. 
(For additional details see Sec. 5.) 

Let X be an element of G2• X has 14 real components. In 
an appropriate basis 8 of these components may be assem· 
bled into the real and imaginary parts of the elements of a 
traceless anti-Hermitian 3 X 3 matrix A,and the remaining 6 
components may be assembled into the real and imaginary 
parts of a complex 3 X 1 matrix or 3-vector V. If A and V 
themselves are assembled into the traceless anti-Hermitian 
7X7 matrix 

D(X) =((l1~)~'V 
_vt 

then 

(lIY2)e·V* 
A* 

_VT 
(4.1) 

(4.2) 

where [XI' X2] is the bracket operation for G2• Here E and ~ 
denote the antisymmetric tensors e"vu and Epvu , respectively. 
~. V and E·V* stand for the 3 X 3 matrices (Epuv V1 and 
(~<TVV* u). The asterisk denotes complex conjugation and 
effects a raising or lowering of indices according to the rules 

VP*=V*p, AP,,*=A*pv= -A"p. (4.3) 

The matrices (4.1) constitute an explicit realization of 
g2' which allows a direct computation of the structure con­
stants ofG2• Denote by X12 the bracket of XI and X2 and by 
A12, V 12' AI' V I' etc., the associated components. Then Eq. 
(4.2) yields 

AI2 = [AI' A2] + !(E.Vr~·V2 - E.Vr~·Vd 

- (VIV! - V2VTJ, (4.4) 

(4.5) 
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Vf2 = AfVi - AiVf + V2~,VIV2 When this matrix is multiplied by a scale factor, expressions 

= - AiVi + Afvf + V2~,VIV2' 
Use of the identity 

(4.6) (4.22), (4.23), and (4.24) must all scale together. 

(4.7) 

permits Eq. (4.4) to be rewritten in the manifestly traceless 
form 

An = [AI' A2l - ~(V,Vi - V2Vi) 

- !1(VrV2 - ViVd· 

Multiplication of the identity 

(4.8) 

O=e A T _ e A 7 + '" A TAT 
- j1(j'T V C7TV fl 'CiVIL a - C"l'/-lU 'T 

= e"'<7TA Tv - A * '" TeT<7V + e",TVA T<7' (4.9) 

by V<7 yields the relation 

(~.V)A - A*(~.V) = - ~·(AV), (4.10) 

which allows the entry in the second row and first column of 
D (X 12) to be expressed in the form 

;2 ~.(AIV2 - A2Vd - (VfVi - ViV!) = ;2 ~·VI2' 
(4.11) 

as is necessary for consistency. 
The structure constants of G2 are defined by 

X I/ =~BCXIBX2C. (4.12) 

Replacing X A by A '" v' V'" and V * "" and keeping only the 
non vanishing structure constants, we have 

A'" -d' T AA<7AP 
12 v - "<7 piT 2 A 

+C"V"TVI<7ViT +d'" a TV fa V2T, (4.13) 

Vil = d' va TAI"<7 V2T + d'va·rVlvA2aT 

+d'ViTVI*vVz*a' (4.14) 

VI2*'" =CllVaTAlvaV2*T +C'" v a7VI*"A2iTT 

+ C,l va VI vv2a, (4.15) 

which, on comparison with Eqs. (4.5), (4.6), and (4.8), yield 

d' T - _ d' r _ 3(8'" "T I "Ii ,;: T) 
va - v a - - 2 aU v - J<" vUu , 

(4.16) 

(4.17) 

d' v" T = - d' TVa = 8"'v8aT - W"T8v <7, (4.18) 

C",v<7T= -C", T v<7= -8",iT8v7+18",TOv<7, (4.19) 

d' V" = v2€,"va, (4.20) 

C",va = v2e",va' (4.21) 

The terms involving the factor! in expressions (4.18) and 
(4.19) arise from application of the projection operator onto 
the subspace of traceless matrices in the space of 3 X 3 
matrices. 

The Cartan-Killing matrix for G2 is readily computed: 

_ c<7 Pc v T _ ca PCT v _ C CTva _ 128 v 
TJ-l p a /-l T P a U/-l'T - 1-" 

- CaT'" pcP V"T - Ca I' 7PC7pV a - Ca",TCTva = 128"'v. 
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(4.22) 

(4.23) 

(4.24) 

The structure constants and Cartan-Killing matrix for 
SL(2) are given in Sec. 3, Eqs. (3.25) and (3.26). It turns out 
that in order to satisfy the identity (2.14) we shall need, for 

s 

G (3), a matrix 11 that contains the Cartan-Killingmatrices of 

G2 and SL(2) scaled by factors A and - n, respectively: 

YIp VaT = _ (8
" 

T8<7 v - ! 8'l v8a T), 
"-

YI", v = ~ 8p "-

YlPv = ~ 8 'lv' 
b d _ 1(" d,;: b I" b" d) 

1]a c - 4. U a U c - 'lU a U c . 

s 

The elements of the inverse matrix 11 - I are 

YI"'" aT = -(8 1\0<7" -*8 Pv8"T)' 
.,.,-Ip -2"P 
'/ v - jU v' 

.,.,-1 v=~ v 

./ '" 3 '" ' 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4,29) 

(4.30) 

(4.31) 

(4,32) 

Let the indices"', "" and 0 label, respectively, the first 
three rows, the second three rows and the last row of the 
matrix (4.1), and let the indices v' v, and 0 label, respectively, 
the first three columns, the second three columns and the 
last column. We can read off directly from Eqs. (3.37) and 
(4.1) the non vanishing matrix elements of the generators of 
the extending representation g2 X sl(2): 

elW aT vb = (8'" a8Tv -18'" v8a T)8U b = - d'a vba r, (4.33) 

C",Q aT"b = -(8,/8<7 v -18p"8a
T)8\ = _c",U"""T, 

C",a<7 0b =8",aOab = -C"u Ob a, 

co
a 

a vb = - 8(7 vOu b = - Co
a 

vb 0", 

d'a aOb =8"'<78ab = -d'a Oba ' 

C'" a avb = (1/V2)e",av8ab = - C'" a "ba' 

CO
a a Vb = -8a

v8a
b = -COa"bO" 

d'a d = 8"',,(8a
e8d

b _ !8ab8e d) e vb 

= - d'a vbe d, 

Cp 
a dv = 0", V(8a

c 8d
b - i8ab8e d) c b 

= -C", av d 
be , 

Co
a e d = 8a 8d _ 18a 8 d Ob e b 2 b e 

= - CO
a Obe d 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

Expressions (3.25), (4.16)-(4.21), and (4.33)-(4.43) con­
stitute for G (3), the structure constants that were called d'V<7' 
cU",P' cUp", in Sec. 2. To obtain the remaining structure con­
stants, denoted by d' up in Sec. 2, we need to apply the matrix 
s A 

11 - I [Eqs. (4.29)-(4.32)] as well as the matrix 11, which in the 

present case we choose to be [cf. Eq. (3.39)] 

YlOaOb = eab' 

B. S. DeWitt and P. van Nieuwenhuizen 

(4.44) 

(4.45) 

1958 



                                                                                                                                    

This yields 

c" v u a 1'17 = c" v1'b Ua 

",p U KCA = - 'T/ v A 'T/ U KC C P 1'17 

= (8' r 8 1'

u 
- ¥5"',,8

U
r )€ub' 

-#" u __ ",-II' V cPcru 
(,..- a b - ./ "'TTl ape b 

Cl'vuub = _'T/-ll'r'T/vu Pc Cp
c 

rub 

= (V2/3)€l'vu€ab' 

c" vaOb = c" Obva = - 'T/-Il'r TJva UCCUC1' Ob 

= -~8'v€ab' 
v -I 1" v (J'C 

Cl'vaOb = CI'Ob a = - 'T/ I' 'T/ auc C rOb 

= - ¥5" "€ab' 

cab I'cvd = CUpvd I'c 

U e I' ug f 
- 'T/ b f'T/ cugC e vd 

= - i8'v(8
a

c €db + 8 u
d €cb)' 

a a e g f 
C bOcOd = - 'T/ b f'T/OcOgCO e ud 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

(4.50) 

(4.51) 

= - jWc€db + 8 u
d €cb)' (4.52) 

It is now a straightforward computation to check that 
the identity (2.14) holds: 

A K-J> I' 'u + A-J> I' C u 
'T/p ,(.- A a "b C K c 1'd TJp (.- a vb A c r8 

+ fhel' -R u + ( u ) 
'T/e g C f uvbL-h crd cyc "b' c'rd 

= j(8',,80"r - 8'r8U,,)(€ab€cd + €ac€db + €ad€bc) = 0, 

'T/r
PCT 

l'uObCp "c Od + TJe
f 

g hCefl'aOb~h "cOd 

+ CYC(Ob,"c'Od) = 0, 

TJr
PCr 

OUl'bCp "cOd + TJTpCrOal'bcPvcOd 

+ 'T// g hCefOu"bdlh vcOd + CYC(",b,"c'Od) = 0, 

'T// g hCefouObdlhOCOd + CYC(Ob.Oc.Od) = o. 

(4.53) 

(4.54) 

(4.55) 

(4.56) 

It is also straightforward to verify that Eq. (2.22) holds with 
A =4. 

Just as every element of F(4) can be associated with a 
lOX 10 matrix so every element X of G (3) can be associated 
with a 9 X 9 matrix 

(l/V2)€v* 

A* 

_VT 

CT 

v 
V* 

(4.57) 
CE) C*E . 

DE 

B 

A and V are the matrices appearing in Eq. (4.1). B is a trace­
less real 2 X 2 matrix, C is a complex 3 X 2 matrix and D is a 
real 1 X 2 matrix. The 17 independent real and imaginary 
parts of the elements of A, V, and B are the components of X 
that lie in .sf o. The 14 independent real and imaginary parts 
of the elements ofC and D are the components of X that lie in 
.sf \. 

Using indices ", "', 0, and U to label the rows of the ma­
trix (4.5) and indices v, ",0, and 17 to label the columns, one 
can read off from the structure constants the bracket rela­
tions for F(4): 
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A\2 = [AI, A2l - ¥vlVi - V2VTl- ~1(Vl'V2 - Vi·V I ) 

+ CIEC! + c2ECT -11(CIECi + C2ECTJ, (4.58) 

V\2 = AIV2 - A2VI + V21:VrV! + ~:CrEC/ 
+ i(CIEDf + C2EDi), (4.59) 

B\2 = [BI> B2l + ~(CTC2 + CICI + C;C! 

+ CfCr + D;D2 + DJDtlE, (4.60) 

C\2 = [AI' C2 l - [A2, Cd + (l/V2)l:(VrC! - V!Cr) 

+ VIDz - VzD I - C\Bf + CzBf, (4.61) 

DI2 = - vTC2 + ViC\ - ViC! + VfC I - DIBf + DzB;' 
(4.62) 

The double dot appearing in some of the terms above indi­
cates that contractions are to be performed over two pairs of 
dummy indices. The reader can easily compute by how 
much these bracket relations fail to be given by the super­
commutator itself. The matrices (4.57) do not yield a matrix 
representation of G (3), but rather, once again, a 
pseudorepresentation. 

5. MATRIX REPRESENTATIONS FOR E8 , F4 , and G2 

In this section we use the work of Cremmer and Julia, 10 

who gave a simple matrix representation for E7 • Their work 
was extended to E6 in Ref. 11, and we here extend their work 
to E8 , F4 , and G2 so that one now has simple matrix represen­
tations of all the exceptional groups, in a form suitable for 
physical applications. 

Suppose one wants to find a matrix form for a linear 
representation R of an algebra A which acts on coordinates 
Xi. One first selects a maximal subalgebra H so that 
A = H + K, and determines how the Xi decompose into irre­
ducible multiplets of H. For example, in the case of Gz, one 
maximal subgroup is H = SU(3) and Xi (i = 1, 7) decompose 
into 3 + 3 + 1. (See the preceding section.) Usually there are 
only a few decompositions possible, and out of these the cor­
rect one is always obvious. Since H is a maximal subalgebra, 
A = H + K is a Cartan decomposition which means that [H, 
K] e K and [K, K] e H. The former means also that the para­
meters of K are representations of H. In the example of Gz, 
there are 8 parameters for SU(3) while the remaining 6 can 
only be in 3 + 3 since the 7 of Gz is real (as are all its represen­
tations). The [K, K] eH relation is a test on the correctness of 
the choices made so far. 

Different choices for the maximal subalgebra H lead to 
matrices which look quite different, and only one particular 
form may be useful for a physical application, but all these 
matrices are equivalent, of course. 

Although the separation of A into H + K looks like a 
coset approach, it is not. For example, Gz has 14 generators 
and H = SU(3), so that there exists a 6-dimensional nonlin­
ear representation of G on the coset space A-H. Only H 
acts linearly on the coset space, but by adding one extra 
dimension in this example, one finds a 7-dimensionallinear 
representation of the full G2 • We now consider E 8 , F4 , and 

G2• 
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The exceptional Lie algebra Eg has 248 generators, its 
lowest dimensional representation is the adjoint representa­
tion, and is thus real. O( 16) is a maximal compact subgroup. 

Since spin (16) is 128 dimensional, one expects a repre­
sentation of Eg on an antisymmetric tensor tP ij = - tP ji (i, 
j = 1, ... , 16) which has 120 components, and on a spinor t/? 
(a = 1, ... , 256). Since ind = 16 dimensions the Dirac matri-
ces r j(256X256) withj = 1, ... , 16 can be chosen real, and 
one can impose in even dimensions the Weyl condition on 
spinors 

(5.1) 

it follows that t/? has 128 independent components. Thus we 
expect that tP ij and t/? represent the fundamental representa­
tion. As parameters one has, of course, the 120 parameters 
A ij ofSO(16), plus 128 other parameters. Clearly, these 
could form a real spinor A a which satisfies again the Weyl 
condition. Therefore we write 

otP ij = (A iktP kj + A jktP ik) + (A ar~ri'll), 

ot/? = UA ijrij apifl) + (tP ijrij a pA P). (5.2) 

Clearly, the Weyl condition onA is the same as on "'. Since 
the Dirac matrices are real and Hermitian, they are symmet­
ric, so that the charge conjugation matrix C, defined by 
Cyl' C -I = ± y;, is unity if one chooses the positive sign. 12 

(For the negative sign choose r 17.) Thus one needs no Dirac 
(or rather Majorana) bar on the spinors and this proves the 
covariance of the transformation rules under O( 16). 

The nontrivial commutators are those with one or two A 
parameters. For the former one easily finds that A is indeed a 
spino rial parameter, as shown by the following commutator 

[0 (,1,),0 (A )] = 0 [A '= !AijrijA ], (5.3) 

which holds both when acting on tP ij and when acting on ",a. 
The (A, A) commutator on tP ij is easy to evaluate. Sup­

pressing spinor indices and defining tP·r = tPijr ij one has 

[0 (,1,2),0 (AI)]tP ij = AlrijtP·rA2 - 1++2. (5.4) 

Since the rij are antisymmetric, one finds easily (assuming 
that A I and ,1,2 commute) 

[0(A2),0(A I)]tP
ij =0[A 'ij =4A2rijA I ]tPij. (5.5) 

On ",a, however, theAA commutator is more interesting 
to evaluate. One starts from its definition 

[0 (,1,2)' 0 (AI)]'" = (A2rij",)(rijAd - 1++2. (5.6) 

The product of all the r i forms an orthogonal and complete 
set, given by 

0 1 - '1 r i ri,i, ri, ... i. r 17 r 17ri r 17ri, ... i'J -t, , , ... , ", ... , . 
(5.7) 

This is the analog of the set of 16 Dirac matrices in four 
dimensions. Due to the completeness of the 0 I, one can easi­
ly derive the following Fierz rearrangement identity: 

(A 2M",)(NAd 

= I(A 20
IA I)(NO'M",)(trO IO')-I. (5.8) 

I, , 

From the Weyl condition satisfied by AI' ,1,2' and", it is clear 
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that the 0 1 containing r 17 double or cancel the contribu­
tions of the corresponding 0 1 without r 17. In fact, the 0 1 

with an odd number of r's cancel. This leaves 

(5.9) 

It is easy to show that A 1,1,2' Air ijklA2 and Air i, .. i'A2 are 
symmetric in (12), and hence also these do not contribute to 
the commutator. Finally, 

rklri, .. i·rkl = 0 (k, 1= 1, 16) (5.10) 

as one may verify 

Hence 

[0 (,1,2),0 (A I))'" 

= 4(tr r 12r 12)-I(A2rijAI)(rklrijrkl)",. (5.11) 

From rk1rijr kl = - 128r ii (note that one sums over k > I 
and k < I in ot/? but that in 0 I the r ij are counted once, so 
that in 0 lone has i <j), one finds again the same result as for 
the (A, A ) commutator on tP ij. 

Clearly, the 0(16) generators and the rest of Eg form a 
Cartan decomposition, as expected since O( 16) is a maximal 
subgroup. 

The exceptional algebra F4 has 52 generators, a 26-di­
mensional real representation, and 0(9) as a maximal subal­
gebra. Since spin (9) is 16 dimensional, one expects a repre­
sentation in terms of a vector Vi (i = 1,9), a spinor t/? (a = 1, 
16), and a scalar s. Of the 52 parameters, 36 parameters A ~ 
come from 0(9) while the remaining 16 parameters A a clear­
ly form an 0(9) spinor. Thus we put 

ovi = (A '~vi) + (A ariafJifll, 

ot/? = UA ijrij a pifl) 
+ (SA a + vir I,a fJA P), 

Os = alA a"'a)' (5.12) 

where a is a free parameter which cannot be scaled away. 
The (A, A) and (A, A) commutators are guaranteed to be 
uniform for Vi, t/?, and s, due to the manifest 0(9) covariance. 
Let us therefore only check the (A, A ) commutator. 

On Vi one finds 

(5.13) 

using the fact that in d = 9 dimension the Dirac matrices can 
be taken real and Hermitian, thus symmetric. On s the same 
result is found (namely zero). On T/Ja, finally, one finds after a 
Fierz rearrangement 

[0 (,1,2),0 (AI))'" 

= #,1,20 /,1,1 -Ap IA2)(aO I + rk01r k)"" (5.14) 

where the factor -h is due to the fact that the Dirac matrices 
are 16 X 16 matrices in d = 9. The complete set 0 1 is given 
by 

0 1- '1 r i ri,i, ri, ... i,) -t" , ... , (5.15) 

and 1, r i , r i,. i, are symmetric. Hence we only need to con-
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sider 0 I = r ;,;,;, and 0 I = r ;';'. The former yield zero if 

a = 3, and with this result the latter yield the desired 
commutator. 

The scalar s is thus needed because r k r ;';';'r k does not 
vanish. In the case of E8 no scalar is needed, because in 16 
dimensions the identity (5.10) holds. 

The exceptional algebra G2 has 14 generators, its lowest 
representation is 7 dimensional and real, and SU3 is a maxi­
mal subgroup. Clearly, one can only have the following SU3 

reduction 

(5.16) 

Thus we expect a representation on an SU3 triplet x a
, an 

antitriplet xa = (xa)* and a real scalar xo. The parameters 
consist of 8SU 3 parameters A a f3 and six other parameters, 
which can only be a triplet 0" and an antitriplet aa = (0")*. 
Thus we expect the following matrix representation for G2 : 

oxa = A af3xf3 + .yf3Yaf3xy + o"xo, 

oXa = #af3y0f3xY + laf3xf3 + aaxo, 

(5.17) 

where a is a free constant to be fixed below. Again we only 
need verify the (0', 0') commutator since all transformation 
laws are manifestly SU 3 covariant. 

Acting on xa one has 

[0 (0'2),0 (O'I)]xa = (au'fa2.f3)xt3 + au'fa'ixf3 

+ ~(CZf3Yal.f3Ey.5'o1)x· 
+ (lIV2)(CZf3Yal,f3a2.y).x° - 1+-+2, 

(5.18) 

The composite parameters are thus 

(A Tf3 = (a - !)(0' I
aa2,f3 - o.c;al ,(3) - ~Op(iiI'0'2 - a2'0'1)' 

(0" t = Y2€"f3YUI ,f3 U 2, Y , 

(i7')a = -aV"1.Eaf3YO'If3O'~. (5.19) 

Clearly 

a = -1, (5.20) 

and with this value A ' is traceless, as it must be, while also the 
(0', 0') commutator is consistent. This completes the 7 X 7 
matrix representation ofG2• In terms ofx + X, (x - x)/iand 
XO it is real, but we prefer in this paper to use the basis xa , xa , 

andxo. 

6. ALTERNATIVE CONSTRUCTION OF THE MATRIX 
PSEUDOREPRESENTATION FOR G(3) 

We now extend the methods of Sec. 5 from ordinary Lie 
algebras to superalgebras, and show how one can derive the 
9 X 9 matrix pseudorepresentation for G (3). The result coin­
cides of course with the results obtained by the general meth­
od used in Sec. 3, but it may be that the simplicity of the 
arguments used below makes them useful also for non semi­
simple superalgebras. 

Since the odd generators must be in the same represen­
tation as that used for G2 , the odd matrix elements are 
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(qa;, iia;' dt (6.1) 

with ii/ transforming under SU(3) as ~ and with d; real. 
Thus we consider the matrix 

( 

A a ~(E.atr 0" qw) 

~(€';)ay laf3 aa iia' 
M= 

-aa -0" 0 d;' 

iia; qa; ad; c/ 

(6.2) 

where (E.a)ar = CZf3Yaf3 and (€'O')ay = Ea(3r0f3. We shall now 
discuss the elements in the last row. Since d; is real, and this 
property must be preserved, c/ must be real, and one can 
take c traceless (its unit matrix forms an ideal). Since under 
ordinary matrix multiplication the elements of c contain 

terms iil,a;qtj + qf,;ii2,a j + adl,id/ + 1+-+2, reality of c 
requires 

iil,a; = (qf,;)*· (6.3) 

If c is to be traceless, dl,;d2; + d2,;d/ = O. This can only hold 
if i = 1, 2 and if d I., = Eijd /. Thus we have found the ele­
ments of the last row of M 

(6.4) 

It also follows that the matrix c is an element of SL(2, R ). 
Thus the bosonic algebra is G2 X SL(2, R ). 

One must be careful with these arguments and we only 
present them as a heuristic guide to guessing the correct bo­
sonic group. In fact, as we shall see, the matrix composition 
rule is not given by ordinary (anti)commutators, but in the 
even sector extra terms are needed. Hence, the above argu­
ments are simply not applicable, since we assumed that the 
odd-odd elements of c were obtained by anticommuting the 
corresponding generators. Nevertheless, one arrives at the 
correct starting point and such arguments may also be useful 
for other cases, 

One can rephrase the form of M as a set of transforma-
tion rules on coordinates (xa

, xa , XO) and (.v;): 

oxa = A a (3xf3 + ~CZf3Yu f3xy + o"xo + qaiyo 

oxo = - uaxa - o"Xa + d'y;, 

1: _ - a a- + d ° + j (6 5) uy; - qa;x + q; xa a;x c;Yj' ' 

and one easily convinces oneself that the only free parameter 
is a. 

If one takes the commutator or anticommutator of two 
matrices MI and M 2, the result must be again a matrix of the 
same form. In particular, the composite entry qf~ must be 
related to the composite entry Q12,a; by Q12,a; = Eij(qI2aj )*. 
This means that 

Eij(..11q/ + ~E'UIQ/ + O'ld/ + q1kC2/)* - 1+-+2 

= iil,;..12 + -ffh;€'0'2 - adl,Jf2 + c1./ii2J - 1+-+2. (6.6) 

All terms match if one fixes a to be given by 

a = + 1. (6.7) 

With this value for a, the composition rule of the parameters 
for the last row and column of M is consistent with ordinary 
matrix commutators or anticommutators. 

In the even-even sectors, the composition rule cannot 
be given by ordinary matrix muliplication, as we already 
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stressed. For example, the composite A a f3 is no longer trace­
less, though it is still anti-Hermitian. By accident, c is still 
traceless, but we take now the most general composition rule 
for the elements of the bosonic sector, and only assume that 
the terms with purely bosonic parameters are as usual. The 
requirements ofSU(3) and SL(2, R) covariance severely re­
strict the possible form of the terms bilinear in q and d. 

'a - A [ ai - I),a (Yi- ) 1 1 
/l, 12.f3 - ... + ql q2.f3i - Y"'f3 ql q2.yi + +-+2 , 

o'f2 = ... + :2 [e«f3Yq\.f3q2.Yi] + C [qf id2.i + 1+-+2], 

c12/ = ... + D [(ql,aiq2aj + c.c) + 1+-+2] 

+E[dl,id/+ 1+-+2]. (6.8) 

The terms denoted by ... in A 12 and 0'12 are bilinear in Ai and 
O'i(i = 1,2), while the terms denoted by ... in C 12/ are given 
by [c l , c2 ]/. 

In order to fix the five free parameters A, B, C, D, Ewe 
consider the Jacobi identities. As an example, consider the 
three matrices M(ql)' M(d2), and M(0'3)' Since M(qd and 
M (d2) are odd generators, while M (0'3) is even, the Jacobi 
identity reads 

[!M(ql)' M(d2)j, M(0'3)] - ! [M(d2), M(0'3)], M(qdl 

+ UM(0'3)' M(qd]' M(d2)] = O. (6.9) 

The signs are easily understood: pulling M (q I) in the first 
term to the right, it passes the odd generator M (d2 ) which 
results in an extra minus sign, but permuting M (0'3) to the 
left, no minus signs can appear since M (0'3) is bosonic. 

Consider now the (1, 1) entry in the Jacobi identity (the 
entry which inMis called A a (3)' The composite parameter A., 
due to combining two matrices Mr and MIl , is given by 

A fII,f3 = (ArAII)af3 + ~(E'Ur€'O'IItf3 - ufUIl,f3 - 1+-+11 

+ A [qfiqII,f3i - jOa f3qr Yiqn,Yi + 1+-+11]. (6.10) 

It is clear that the only contributions of the form qldp3 in 
the (1, 1) entry from the three terms in the Jacobi identity are 
given by 

from term 1: ~(E'U12€'0'3)af3 + (0'3udaf3, 

from term 2: -A(q~~ql,f3i -jOpqr3ql,Yi), (6.11) 

from term 3: none. 

The only terms in u 12 of the form qld2 and in q23 of the form 
dP3 are 

- - ~i d ai -<ld i 0'12,a - vql,a 2,i' q23 = - U3 2' (6,12) 

To make life even simpler, one may consider only the terms 
with 0 a f3' There are only two such terms, and one arrives at 
(using qidi = - qid i). 

C=+~. (6.13) 

In the odd sector of M one finds the relation between A 
and B, C on the one hand, and between D, E and B,C on the 
other hand. Consider for example a relation C-E. Since C 
corresponds to qd terms and E to dd terms, we consider 
d l d2q3 terms. Since the C terms come from 0', II and the E 
terms from Cr II' we must consider an entry whose composi­
tion rule contains terms like O'd and qc. This is clearly the (1, 
4) entry (the one called qai in M ). Thus we consider the Jacobi 
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identity for three matrices M, containing parameters q3' dl' 
and d3 , respectively, 

[!M(q3)' M(dl)j, M(d2 )] + [!M(dd, M(d2)j, M(q3)] 

+ [!M(d2),M(q3)J,M(dl )] =0. (6.14) 

The composition rule of the parameter qUi reads 

qf;r =Arq;r - _1_ E.o\q;, +O'rd;r +qicII/-I+-+II. y2 
(6.15) 

Each of the terms in the Jacobi iden ti ty can con tribu te q 3d I d 2 
terms to the (1, 4) entry. The first term in the Jacobi identity 
corresponds to q, II with I = (31) and II = 2, and thus we 
must consider those terms in qr II which contain d II . Hence 
one receives a contribution from term 1 given by 0' 31d ~ . 
Similarly, the second term in the Jacobi identity can only 
contribute if there is a qII term in qr II' Finally, the last term 
in the Jacobi identity is equal to the first if one interchanges 
the indices 1 and 2. 

The sum of all contributions of the form q3d Id2 to the 
Jacobi identity for the (1, 4) entry of M is given by 

(0'3Id2
i) + ( - q.jc 12/) + (0'23d li) 

= (Cqld IJ )d2
i - qlE(dlJd2

i + d2Jd l
i) 

+ (q.jd2J )dl,i = 0, 

from which one easily deduces that 

E=C. 

(6.16) 

(6.17) 

The other parameters are fixed in a similar way. The 
ql dp3 terms in the (4, 4) entry of M yield E = D, while the 
qlqii3 in the (1, 1) entry yield B = +~. Since there is al­
ways a free scale in the (odd, odd) bracket relations, our final 
result contains still one free parameter which we fix by 
A = 1. Thus 

A=I, B= +1' C=E=D=~. (6.18) 

The completes our discussion of G (3). The matrix repre­
sentation is (6.5) with a = 1. The bracket relation of two 
matrices is given by the usual commutators or anticommuta­
tors, except that for the bracket between two odd elements 
one must use the formulae (6.8) and (6.18). 
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Study of superluminal electromagnetic fields 
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Behavior of Maxwell's equations under imaginary and real superluminal Lorentz 
transformations respectively has been reexamined and the expression of a Lorentz force acting on 
an electric charge interacting with superluminal electromagnetic fields has been derived. It has 
been ~hown that in four-dimensional space-time as well as in six-dimensional space-time the 
elect~cally charged tachyon interacting with electromagnetic fields behaves neither as a purely 
electnc charge nor as a purely magnetic monopole. 

PACS numbers: 14.80.Kx,12.20. - m 

1. INTRODUCTION 

Diverse approaches have been developed to carry out 
the field theory of tachyons, probably because fundamental 
quantal properties of these particles are not yet very well 
known. In the classical theory of tachyons, two main ap­
proaches have been followed by different authors. In the first 
one, adopted by Recami et al." Corben,2 Teli et aU and 
others,4 the components of a four-vector in the directions 
perpendicular to the relative motion become imaginary on 
passing from the subluminal to superluminal realm, while in 
the second approach adopted by Antippa,5 Antippa and Ev­
erett,6 Gonzalez-Gascon? and Lemke,S the real superlu­
minal Lorentz transformations are used. 

We9 have recently derived the transformations of elec­
tromagnetic fields, four-potential, and four-current density 
under both types of superluminal Lorentz transformations 
and showed that the Maxwell's equations are not invariant 
under any type of transformation in general, while the com­
ponents of superluminal electromagnetic fields transverse 
with respect to the direction of the relative motion appear to 
satisfy field equations similar to Maxwell's equations under 
the superluminal Lorentz transformations of the second 
type. In the present paper it has been shown that the chrono­
topical mapping (3,1)-(1,3) in the first type ofsuperluminal 
Lorentz transformations does not retain the invariance of 
Maxwell's equations, and to retain such an invariance we 
must include an extra negative sign in the transformations of 
four-current source density. The expansion for the superlu­
minal magnetic field under the first type of transformations 
and mapping (3,1 )_( 1,3) is then inconsistent and it becomes 
isotropic, having the same strength in all directions. It has 
also been shown that under these transformations the nature 
of the Lorentz force is changed and an electrically charged 
tachyon interacting with superluminal electromagnetic 
fields does not behave exactly as expected of either electric 
charge or magnetic monopole, in contradiction with the re­
sults of Recami-Mignani, \0 Vysin, II and Dattoli-Mig­
nani. 12 It has also been shown that in six-dimensional space­
time formalism originated by Demers, 13 the consistency of 
the magnetic field may be retained under the first type of 
superluminal Lorentz transformations and the mapping 
then becomes one to one. It has also been shown that in six-

.10n leave from Physics Department, Garhwal University, Srinagar (Garh­
wall, U. P., India. 

dimensional space-time formalism, though the expression 
for the Lorentz force on the charge tachyon in the superlu­
minal electromagnetic field is similar to that derived by Dat­
toli-Mignani, 12 it cannot lead to their conclusion that an 
infinite-speed tachyon behaves as a magnetic charge at rest. 
Rather, it has been shown to be similar neither to the force 
acting on a purely electric charge nor to that on a purely 
magnetic monopole. 

We also reexamine in this paper the question ofinvari­
ance of Maxwell's equations under real superluminal Lo­
rentz transformations by using the reduced expansion of 
electromagnetic fields and potentials in terms of standard 
helicity representations of the Poincare group and it has been 
shown that no suitable charge and current source densities 
satisfying equation of continuity can be defined for the Max­
well's equations to be satisfied even for transverse superlu­
minal fields. 

2. SUPER LUMINAL ELECTROMAGNETIC FIELDS 
UNDER SUPERLUMINAL LORENTZ 
TRANSFORMATIONS OF THE FIRST TYPE 

Let us start with two parallel frames K and K I in relative 
motion with velocity u > c along the Z direction such that 
their origins coincide at time t = t' = O. Transformation 
equations for space and time coordinate in these frames may 
be written in the following form I in the natural units 

c=li= 1; 

x/ = ± iXj (j = 1,2), 

X3' = ± r(x 3 - utI, 

t' = ± r(t - vx3 ), 

(1 ) 

where XI = Xl = X, X 2 = x 2 = y, X3 = X3 = z, and r is given 
by 

r=(u2 -1)-1/2. 

From these equations we get 
3 3 

(2 - 2>7 = LX? - t'2, (2) 
I~ t I~ t 

which shows that the reference metric ( + 1, - 1, - 1, - 1) 
in frame K is transformed to the metric ( - 1, + 1, + 1, 
+ 1) and the transformations (1) and the roles of space and 

time get interchanged. In other words, the transformations 
(1) are incorporated with the chronotopical mapping 
(3,1)_(1,3), or 
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(x, y, z, it )-(t " ix', iy', iz'), 

from which we get 

0= -0' 

and the mapping 

(V, i ~)-(~, iV')' 
at at' 

(3) 

(4) 

(5) 

Similar superluminal Lorentz transformations have been de­
rived l4 for the components of the electromagnetic four-po­
tentiallAI" l and it has been shown that 

IAI" '12 = - IAI" 12, (6) 

wi th the corresponding (3, I )-( I ,3) mapping 

(7) 

where ¢ = - iAo. Using relation (2) and the mappings (5) 
and (7) and the similar mapping for the components offour­
current density I JI" l, we may transform the Maxwell's field 
equations 

DAI" = JI" (8) 

in the frame K to the f<;>llowing equation in frame K ': 

o 'AI" , = -JI"" (9) 

which are the equations according to which the superlu­
minal electromagnetic field is coupled to the tachyons 
(which may be considered as bradyons in superluminal 
frame K ' in view of tachyon-bradyon reciprocity). These 
equations are not similar to Maxwell's field equations (8) for 
the superluminal electromagnetic fields. In other words, the 
field equations are not invariant under superluminal Lo­
rentz transformations (1). In order to retain these field equa­
tions under the transformations (2) and mappings (5) and (7), 
we must include an extra negative sign in the transforma­
tions offour-current density, i.e., we must consider the 
mapping 

(ip,Jx,Jy, Jz)- - (p', iJ/, iJy', iJ/). (10) 

In spite of the change in sign in this mapping, the real and 
imaginary components of the four-current lead to the corre­
sponding real and imaginary components of the four-poten­
tial. Change in sign leaves the total charge and current densi­
ties invariant because the volume element also changes sign 
under the transformations (1). With this change in sign in the 
mapping (10) of the components offour-current density, 
Maxwell's field equations may be treated as invariant upon 
passing from the subluminal to superluminal realm and vice 
versa through the transformations (I). 

Under the mappings (5) and (7) the usual equation for 
electric and magnetic fields for the superluminal case trans­
form to the following equations for superluminal fields: 

E-+, -_ d' A. ' al ' 
-gra 'I' -Tt' 

H'=~'fi p' 

(11) 

where fi is the unit vector in the direction of the magnetic 
field. These equations are neither similar to those of fields 
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produced by an electric charge source nor to those produced 
by a magnetic charge source. It may therefore be concluded 
that an electrically charged tachyon interacting with super­
luminal electromagnetic fields observed in frame K does not 
behave exactly as expected of either an electric charge or a 
magnetic monopole. This result is in contradiction with 
those of Recami, 10 Vysin II and Dattoli-Mignani. 12 

A similar conclusion can be drawn by transforming the 
usual expansion of the Lorentz force 

-+ 
-+ aA -+ -+ -+ 
F= e- + eV¢ + e(JX(VXA) 

at 
under the mappings (5) and (7) into the following form: 

-+ 

F-+, ""'V'A.' aA' .... a¢' =e 'I' +e--+ew--, 
at' at' 

(12) 

(13) 

where wis the inverse velocity defined by dt / dx. This is simi­
lar neither to the Lorentz force acting on an electrically 
charged particle nor to the corresponding force acting on a 
magnetic monopole. This equation shows that a subluminal 
electric charge interacting with superluminal electromag­
netic fields or an electrically charged tachyon interacting 
with a subluminal electromagnetic field behaves neither as a 
purely electric charge nor as a pure magnetic monopole. 
However, according to Eq. (13) an electrically charged trans­
cedent tachyon (moving with infinite velocity i.e., w = 0) will 
behave like a pure electric charge interacting with a sublu­
minal pure electric field, while a subluminal electric charge 
moving with velocity close to the velocity oflight and inter­
acting with a purely superluminal magnetic field will behave 
like a magnetic monopole with magnetic charge g = - e. 

Equation (11) for a superluminal magnetic field derived 
by using transformations (1) and mappings (5) and (7) is not a 
consistent one since it gives an isotropic magnetic field hav­
ing the same strength in all directions. Moreover, under 
transformations (1), the components of the position-vector 
become imaginary in the directions perpendicular to the di­
rection of relative superluminal motion between the frames 
K and K '. Similarly, the electromagnetic fields, potentials, 
and cllrrents become imaginary in the direction perpendicu­
lar to the relative motion under the superluminal transfor­
mations (1). Consequently, a particle exposed to superlu­
minal electromagnetic fields will not have real momentum 
and energy. In other words, the transformations (1) lead to 
the conclusion that once we are prepared to consider the 
tachyons, we must give up the idea that dynamical variables 
in relativistic classical mechanics are always real. Further­
more, we have already shown in our earlier papers9

•
15 that by 

using the superluminal Lorentz transformations (1) (of the 
first kind) it is not possible to derive the reduction of fields 
associated with spin-l and spin-! tachyons in terms of the 
standard helicity representation of the inhomogeneous Lo­
rentz group. 

To overcome these problems of the superluminal Lo­
rentz transformation we may adopt the formalism 13, where 
space and time playa symmetrical role and where the time t 
is considered as a vector in six-dimensional space-time with 
three spatial and three temporal coordinates. Recently a 
number of authors have supported the idea that the theory of 
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relativity should involve the use of three dimensions oftime. 
Ziino '6 argued in its favor on the grounds that light-speed 
invariance is not fully consistent with the standard relativity, 
while Pappas 17 has introduced the notion of parallelism and 
the desirability of space-time symmetry as a justification. 

Following Demers' formalism, 13 in which the three 
components of the time vector are coupled together giving 
It I = (t; + t ~ + t ;)1/2 as measurable and all the individual 
space coordinates are measurable in the subluminal frame, 
while on passing from bradyon to tachyons via superluminal 
Lorentz transformations, all the components oftime become 
measurable and the space components couple together giv­
ing only modlrl = (x2 + y2 + Z2)1/2 as measurable, we get 
the following mappings under superluminal Lorentz 
transformation: 

!r,it=i(t; + t~ + t;)1/2J_(i,ir=i(x2 + y2 +Z2)1!2j, (14) 

(Vr,i:J-(VI,i:J (15) 

where Vr and V, are del operators in three spatial and three 
temporal coordinates, respectively. 

In a similar manner the corresponding mapping may be 
written for the components of electromagnetic potential in 
six-dimensional space 

... ... 

(A,icp )-(cp,iA ), (16) 

where 

cp=(cp; +cp~ +cp;)1/2, A (A; +A~ +A;)'/2;(17) 

then in place of equation (11), we get 

-+, ~ ai 
E = -eVA--

I ar ' (18) 
ii' = - v,xi, 

which is similar neither to the fields produced by an electric 
charge source nor to those produced by a magnetic charge 
source in, contradiction with result of Dattoli-Mignani. 12 

Similarly, the Eq. (12) for the Lorentz force is mapped 
into the following equation: 

... -. ai 
F'= -eVIA+e-+ewX(V,Xcp), (19) 

ar 

where w is the inverse velocity defined by 

w=ii/dr. (20) 

Though the expression (19) is identical to that derived earlier 
by Dattoli-Mignani, 12 it cannot lead to their conclusion that 
an infinite-speed tachyon behaves as a magnetic charge at 
rest. Rather it will behave as a purely electric charge inter­
acting with a pure electric field. 

In a forthcoming paper we shall undertake the study of 
classification of bradyons and tachyons in six-dimensional 
space-time, where it will be demonstrated how observable 
speeds are related to nine observables ar;latj (i,j = 1,2,3). 

3. SUPERLUMINAL ELECTROMAGNETIC FIELDS 
UNDER THE SUPERLUMINAL LORENTZ 
TRANSFORMATIONS OF THE SECOND TYPE 

Let us consider two frames of reference K and K ' in 
relative motion with superluminal velocity V(V > 1) along an 
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arbitrary direction of the tachyon corridor. Real superlu­
minal Lorentz transformations of the vector and scalar parts 
of the space-time four-vector! XI" J, with Xo = it may be writ­
ten as follows 14 in natural units c = fz = 1: 

x = x' + (flY - 1)V(v,;') - iflCPvxb, 
v 

(21 ) 

Xo =fly[xb + i(v.x')], ... 
where 

v 
fl = IJI and Y = (v2 

- 1)-1/2. 

U sing these transformations and the techniques of Moses I H 

for the reduction of the wave function in terms of the stan­
dard helicity representation of the Poincare group, we9 get 
the following reduced expansions of the scalar and vector 
electromagnetic potential under the Lorentz condition 
LO(k,p,O) = fO*(k,p,Otwith the usual definition for 
V = (ia/ax ,,ja/aX2, ka/ax3) and Vo = ia/at: 

and 

cp = ~/2fdP ! f(k,p,O) exp[i(p.x - wT)] 
41T3 k 

+ f*(k,p,O) exp[ - i( p.x - w T)] J (22) 

B = ~f~ (£)! f(k,p,O) exp[i(p.x - wT)] 
4~" w(k,jJ) k 

+ f*(k,p,O) exp[ - i( p.x - w T)] J 

+ 4~/2 A}:± I 2 ~/2 f wXjJ) If(k,p')' ) 

Xal(k,p,A) exp[i(p.x - wT)] 

+ f*(k,p,). )t71'(k,p')') exp[ - i(p.x - wT)] j, (23) 

where 

p·x = PIXI + P2X2 + P3t, 

(24) 

andf(k,p,O)andf(k,p')' ) are the complex functions depending 
upon mass k and momentum p of tachyons of spin-l with 
helicitYA = OandA = ± l,respectively. Vectora,(k,p,). lin 
Eq. (23) is given by 

a,(kjl,A) ~ ( ~~ ). (25) 

Reduced expansion of electromagnetic fields may be given as 
follows: 

E L = __ i -f..!!L (J-)! f(k,p,O) exp [if p.x - wT)] 
4~/2 w(k,p) P 

- f*(k,p,O) exp[ - i(p.x - wT)]j, (26a) 

ET- -~ ~ ~f..!!L 
- 4~/2 A,f-± I 2'/2 w(k,p) 

X! f(k,p')' )u,(k,p')') exp[i(p.x - wT)] 

- f*(k,p,). )01(k,p')') exp[ - i(p.x - wT)] J, (26b) 
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and 

iI T = - ~'/2 L 2~/2 fdP [/(k,p'}' )o-I(k,p'}' ) 
41T A=±I 

X exp(i(p.x - (UT)] 

+ I*(k,p'}' )01(k,p'}') exp[ - i(p.x - {UT)]}, 
(27) 

where if L and if T are, respectively, the longitudinal and 
transverse parts of electric fields while the magnetic field is a 
purely transverse one. If these reduced expansions of electric 
and magnetic fields are required to satisfy usual Maxwell's 
equations then the charge and current source densities can­
not both be made to vanish simultaneously and they must be 
given by the following reduced forms: 

and 

p = - 4;/2 f dp [/(k,p,O) exp[i( p.x - (UT)] 

+ 1*(k,p,O) exp[ - i(p·x - (UT)]} 

J = 4;12 f d~ [/(k,p,O) exp[i(p.x - (UT)] 

+ 1*(k,p,O) exp[ - i( p.x - (U T)] } 

k
2 

A f dp 
- 4t?12 ),'?± 1 21/2 (U(k,j!) 

X [/(k,p'}' )iJ1(k,p'}') exp[i(p.x - (UT)] 

(28) 

+ I*(k,p,}. )u1'(k,p,}.) exp[ - i(p.x - {UT)]}, (29) 

which do not satisfy the equation of continuity and, there­
fore, can not be considered as source densities for electro­
magnetic fields satisfying Maxwell's equations. As such, 
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even the transverse superluminal electromagnetic fields do 
not satisfy ordinary Maxwell's equations. The expression for 
a Lorentz force acting on an electrically charged tachyon 
interacting with superluminal electromagnetic fields has al­
ready been derived in our recent earlier paper. 19 
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The influence of the finite nuclear size and screening effects on the evaluation of the interaction 
matrix elements of the Dirac electron in the nuclear Coulomb field is manipulated into a closed 
analytic form. An application to the evaluation of the Bremsstrahlung cross section is discussed. 

PACS numbers: 21.1O.Sf, 2l.10.Ft, 02.30. + g 

I. INTRODUCTION 

In the high energy photonuclear reactions, it is custom­
ary to employ a photon radiator to convert the primary inci­
dent beam of electrons into the photon beam according to 
the Bremsstrahlung process. While it is so essential to have a 
precise knowledge ofthe Bremsstrahlung spectrum as to in­
terpret the succeeding photonuclear reactions, there has not 
been a single reliable experimental determination of the 
spectral distribution. This makes it very important to have 
an accurate theoretical estimate of the photon intensity 
available for the entire photon spectrum and for various inci­
dent electron energies. There have been many such calcula­
tions, which were extensively compiled and categorized by 
Koch and Motz in their review. 1 Most of these calculations 
are essentially based on the Born approximation supple­
mented by various kinds of corrections, such as the screening 
corrections, or by the extreme relativistic approximations 
and so on. Since the electron energy is getting so high, there 
is no doubt that the fully relativistic treatment is mandatory. 

In order to evaluate the interaction matrix elements, 
one needs the Coulomb wavefunctions by solving the Dirac 
equation for the electron in the nuclear field. The radial wa­
vefunctions have been known in terms of the confluent hy­
pergeometric functions, which made the evaluation of the 
matrix elements a considerably difficult task, because one 
had to perform an integration involving a product of two 
such functions, which required a summation of infinite series 
one way or the other. Earlier calculations involve certain 
kinds of extreme approximations, such as the Sommerfeld­
Maue approximation,2.3 to make the problem within the 
reach of the computational capability. 

There is an elaborate work of Gargaro and Onley,4 who 
have succeeded in expressing the integral of this kind in 
terms of the generalized hypergeometric functions for more 
than a couple of cases. Their radial integrals are extended 
from zero to infinity by assuming that the nucleus might be 
regarded as a point charge rather than having a finite size. 
There has been a considerable interest as to whether the fin­
ite nuclear size might affect this type of evaluation as the 
available energy of the primary incident electron is getting 
higher and higher. 

In this paper we will report that these authors' method 
can be extended to finite integrals, some of which are direct 
extensions of their results and the rest are partIy along the 

same line, but are more convenient for practical uses. When 
such finite integrals are considered, we bear in mind that 
either the finite size of the nucleus may affect the evaluation 
or the screening of the nuclear field by the atomic electron 
cloud would shield out the Coulomb field outside the Thom­
as-Fermi radius, or both. As far as the latter is concerned,th­
ere have been many attempts to include the idea of the finite 
range of the effective interaction into the theory,5-7 but noth­
ing has been seriously considered for the former. So far, all 
formulations simply ignore the finite nuclear size effect 
probably because of the mathematical complexity and of the 
optimistic anticipation that such an effect would be very 
small. However, the contribution arising from the integral 
around the origin may be neither negligible nor strongly di­
vergent, but there is no doubt that the Coulomb field is mo­
derately divergent near the origin if the point nucleus picture 
is used. 

In the following, we will consider a finite integral of the 
type 

(Of course, one finite limit suffices for our discussion.) 
When the finite-size nucleus is considered, we have as­

sumed that no photon emission took place within the nuclear 
volume and that the finite nuclear charge distribution al­
tered the pure Coulomb field solutions of the Dirac equation. 
In order to find the new wavefunctions, we have used a 
modified trapezoidal nuclear charge distribution8 and calcu­
lated the radial wavefunctions outside, as well as inside, the 
nuclear radius. Since the nuclear potential range, other than 
the Coulomb potential, is finite, the effect of the nuclear po­
tential is represented by an extra phase shift,9 which can be 
evaluated at the nuclear surface together with the mixing 
amplitudes of the regular and irregular solutions. One can 
use the outside solutions thus obtained to evaluate the above 
integral with appropriate upper and lower bounds. We, how­
ever, use the approximate phase shifted regular solutions to 
evaluate the integral, which may be expressed as a difference 
of two improper integrals, to see if we can find a feasible 
result. It is further necessary to convert this phase shift into 
an appropriate form of the scattering phase shift, 10 because 
of the phase ambiguity of the Coulomb phase shift 7J by a 
mUltiple of 1T, which will be explained in Sec. III. The evalua­
tion using the exact solutions is currently studied and may be 
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discussed in our future publication. 
As for the screening effect, there has been a convincing 

criterion for the cutoffradius,5-7 which seemed to be consis­
tent with our preliminary estimate and will not be discussed 
any further in this context. 

In the next section we will derive the closed expressions 
for the finite integral, which will be applied to the evaluation 
ofthe cross section of the Bremsstrahlung in Sec. III. A brief 
discussion is given in Sec. IV. 

II. FINITE INTEGRALS 

The integral we are considering is of the form 

Ip = fdrf'-le-k\FI(a;b;k'r) IFI(a;b;kr). (1) 

The limiting case of this integral when the upper limit goes to 
infinity has been studied by Gargaro and Onley.4 Our eva­
luation method of the finite integral (1) closely resembles the 
method used by these authors and, therefore, we follow their 
procedure as nearly as possible at the beginning. 

Casel:lk I > Ik 'I, Re(k) <O<Re(k'), 

Re(b I > Re(a) > O,Re(b ) > Re(a) > 0, and Re(a) > 0: 

XIFI(a+n;I+a;-p) ± (n)(kl-(a+m) 
m=O m 

x {r [b,~ - (a + m)]eiTTa 

a,b-(a+m) 

X 3F 2 (b - a,a + m,I + (a + m) - b; 

b,I + (a + m) - a;k'lk) 

+ (~' r-(a+m) 

r[b,b,(a ~ m) -a,b -a - (a + m) + a] 
x b _ a,b - a,a + m,b - (a + m) + a 

x 3F 2 (a,I + a - b,b - a - (a + m) + a; 

1 + a - (a + m),b + a - (a + m);k 'Ik)}, 

where 

r [a,b, ... ] = r (aW (b ) ... 
p,q,... r(p)r(q)··· 

and 3F2 are the generalized hypergeometric functions. 

(2) 

(3) 

In order to prove this equation, the integrand IFI is 
converted into an integral representation form by making 
use of Eq. (A6), after using Kummer's first theorem (A2) as 
given in the Appendix: 

Ip=r[ _ b,b __ ] tduub-a-l(l_ut-I 
a,a,b - a,b - a Jo 

X LldVVa-l(l-v)b-a-1 f:drf'-le-[k'U-kvJr. 

(4) 

1969 J. Math. Phys., Vol. 23, No.1 0, October 1982 

The integral over r gives nothing but the incomplete gamma 
function II : 

f dr f' - Ie - [k'u - kvJr = [k 'u - kv] -ay(a,[k 'u - kv]p), 

(5) 
wherep is the nuclear radius and y(a,x) is 

y(a,x) = iXta-le-l dt [Re(a»O] 

= a - Ixae - x IFI(I;a + I;x). 

Thus we can write the result (5) as 

a - Ipae - [k 'u - kvJp IFI(I;a + 1; [k 'u - kv]p). 

Then we apply the multiplication theorem for IFI , (A12), 
"and we get 

a - Ipae - [k'u - kvJp IFI(I;a + 1; [k 'u - kv]p) 

_ -Ia-p[k' k]-a~(aln -a pe u- v £,..--
n=O n! 

X(l - [k 'u - kv] -It IFI(l - n;l + a;p) 

(6) 

where (aln = r [a; n] ,I;:' ) are the binomial coefficients, and 
use has been made of the Kummer's first theorem (A2) and 
the binomial theorem. 

Substituting (7) into (4), 

[ b b ] i l 

I = r ' _ du ub - a - I 

P a,a,b - a,b - a 0 

X(l-ut- I fdVVa-I(I-V)b-a-1 

af[ a+n ] 
Xp n = 0 a + l,n + 1 

n 

X IFI(a + n;I + a; - p) L ( - It 
m=O 

X (:}k 'u) -(a + m) [ 1 - ( k ~ u ) v] - (a + m) 

Integration over v is carried out, using (A 7), and we get 

I-r[ b ]a~r[ a+n ] 
p - a,b - a p n~O a + I,n + 1 

n 

X IFI(a + n; 1 + a; - p) L ( - l)m 
m=O 

X (:}k ') -(a + m) 

xildu ub - a -(a + m)-I(l _ u)a- I 

( 
_- k ) X 2FI a + m,a;b;-- . 

k'u 
(8) 

Since the absolute value of the argument of 2FI,lk Ik 'ui, is 
greater than unity, one has to use the analytic continuation 
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formula (All) to convert the argument into its inverse, and 
express (8) as 

Ip = r [ b ]pa f r [ a + n ] 
a,b-a n=O a+l,n+1 

X IFI(a + n;l +a; -P)mto( - l)m(;}k,)-(a+m l 

X {fdU ub-a-I(l - u)a-I 

xr[~'~ - (a + m)]( _ 1)-(a+ml(4) -(a+ml 
a,b-(a+m) k 

X~I(a+m,1 +(a+m)-b; 

k' ) I +(a+m)-a;Tu 

xr[b,(a+~)-~](_l)-a(~)-a 
a+m,b-a k' 

X 2FI(a, I +a - b;1 + a - (a + m); ~' u )}. (9) 

Finally, applying (A8), one gets Eq. (2). 
Case2:lk'l > Ik I, Re(k)<O<Re(k'), 
Re(b ) > Re(a) > 0, Re( ® (b ) > Re(a) > 0, and Re(a) > 0. 

I - a" r "" [ a+n ] 
p -P n~O a + l,n + I 

XIFt(a +n;l +a; -P)mto(;}k,)-(cz+m1e;1rm 

X {r [b,b - a - (a + m)] 
b -a,b - (a +m) 

X 3F2(a,a + m,1 + (a + m) - b; 

- k ) b, I + (a + m) + a - b;k' 

+ (~' r-b+(a+ml 

[
b,b,(a + m) - b + a,a - (a + m) + b - aJ 

Xr -
a,a,a + m,b - (a + m) + b - a 

Xe;1Tja- b+a + m) 

X 3F2(I-a,b -a,a - (a +m) + b -a; 

I + b - a - (a + m),b + b - a - (a + m); 

:,)}. (10) 

The proof of this result is similar to the Case I. After inte­
grating over r, we get 

Ip =r[ _ b,b __ ] tduub-a-I(l_u)a-I 
a,a,b - a,b - a Jo 

il 00 [ a + n ] X dvva-I(I-v)b-a-lpaLr 
o n=O a+l,n+1 
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X 1- - u . [ ( 
k ') ] - (a + ml 

kv 

Integration over u can be done by using (A 7) 

Ip = r [_ -b _]( _ qapa f r f a + n ] 
a,b - a n = 0 a + l,n + I 

X tFI(a + n;1 + a; -P)mto(;}k)-(a+m l 

xildvva-(a+ml-I(I_V)b-a-1 

(II) 

X2FI( a + m,b - a;b;~:). (12) 

Using the analytic continuation formulas (All) and (A8), 
integration over v can be done, and one gets (10). 

Case 3:k = k', Re(k) = 0, Re(b» Re(a»O, Re[b 
- a + a - (a + m)] > 0, for all values of (a + m) - b + I 

except zero or negative integers: 

00 ( a+n ] Ip=paLr I IIFI(a+n;l+a;-p) 
n=O a + ,n + 

X ~ 0 (;}k ) -(a + ml 

r [b, I + (a + m) - b] 
X a,1 +(a+m)-a 

X3F2(b - a,a + m,1 + (a + m) - b; 

b,1 +(a+m)-a;l) 

;1Tjo _ m1r [ b, I + (a + m) - b ] +e - _ 
b-a,l +(a+m)+a-b 

X3F2(a,a + m,1 + (a + m) - b; 

b,1 +(a+m)+a-b;lj}. 
(13) 

We start with the recurrence relation 12 for the unit argument 
(AIO). 

= r [::] 3F2(bl - a l,a2,a3;bl,1 + a2 + a3 - b2;1) 

_ r [1 + a I - b2, I + a2 + a3 - b2,b2 - 1] 
1 + b l - b2,a2,o3 

X 3F2(1 + a l - b2,1 + a2 - b2,l + a3 - b2; 

1 + bl - b2 ,2 - b2;1). 
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Choosing a I = b - a, a2 = a + m, 

a3 = 1 + (a + m) - b, b l = b, and b2 = 1 + (a + m) - a, 
the identity (14) gives 

r[b,b,(a ~ m) -a,b -a - (a +m) +a] 
b -a,b-a,a +m,b - (a + m) +a 

X~2(a,1 +a-b,b-a-(a+m)+a; 

1 +a - (a+m),b+a - (a+m);l) 

=r[- b,l +(a+_m)-b ] 
b-a,l +a - b + (a + m) 

X 3F2(a,a + m,l + (a + m) - b;b,l + a - b + (a + m);l) 

_r[b,l + (~+ m) - b,a - ~ +m)] 
b - a,a,l + a - b 

X3F2(b - a,a + m,l + (a + m) - b;b,l + (a + m) - a;l). 
(15) 

Setting (k 'Ik) in Eq. (2) equal to unity and substituting (15), 
we get 

00 ( a+n ] Ip=paIr 1 1 IFI(a+n;1+a;-p) 
n=O a + ,n + 

X mtJ:}k)-(a+ml 

X {(ei1Tar [~'~ - (a + m)] 
a,b-(a+m) 

r [b,a - (a!" m),l + (a +_m) - b]) 
X a,b _ a, 1 + a - b 

X3F2(b - a,a + m,l + (a + m) - b; 

b,l +(a+m)-a;l) 

i17ja-mlr [ b,l +(a+m)-b ] 
+e - -

b-a,l +a-b+(a+m) 

X 3F2(a,a + m,l + (a + m) - b; 

b,l + a - b + (a + m);l)}. 

Using the relation r (c)r (1 - c) = 1Tlsin1Tc, the factor of the 
first term in the braces can be expressed in a single form, and 
Eq. (13) follows. 

These results contain infinite series 3F2 to be evaluated. 
We can also show that there are another form of these results 
expressed in terms of finite series, by making use of another 
formula of the multiplication theorem (A13). 

Case 1': I k I > I k 'I and other conditions are the same as 
for Case 1: 

Ip = f r(a +, n;p) i (n )(k )mr [~'~ + m] 
n=O n. m=O m a,b+m 

( - _ k') X 3F2 b - a, - m, 1 - m - b;b,l - m - a;/: . 

(16) 

After integrating over r, we select the alternative choice of 
(A13): 
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a-Ipa IFI(a;a + 1; - [k'u - kv]p) 

=paX f (a)n( -pt 
n=oa(a + l)nn! 

X ([k'u - kv] - 1)n 

X IFI(a + n; 1 + a + n; - p) 

= f r(a + n,p) 
n=O n! 

X mto( - 1t(:}k'U)m 

X [ 1 - (k~U) v r· 
Integrating over v, we have 

Ip=r[ b ]f r(a~n,p) i(-l)",(n)(k,)m 
a,b - a n = 0 n. m = 0 m 

(17) 

i l ( -- k ) X du ub - a+m- l(l_ u)a-I F - m a·b·-- . 
o 2 I , , , k'u 

(18) 

As we have done before, the analytic continuation formula 
must be used in order to make the absolute value of the argu­
ment of 2FIless than unity. If we formally apply (All), we 
get 

Ip =rL,bb_al 

X n~o r(a ~ n,p) mto( - l)m(:}k't 

X fdU ub - a+m- l(l_ u)a-I 

x{r[;:~::]( - :' r 
Xu - m ~{ - m, 1 - m - b; 1 - m - a; ~' u) 

+r[b, -a_- m]( _~)-a 
-m,b-a k' 

Xua 2FI(a,1 + a - b;l + a + m; ~' u)}. 

(19) 

The second term in the curly bracket has an infinitely large 
value of r ( - m) in its denominator and, hence, it should 
vanish. As a matter offact, the ~I in Eq. (18) is nothing but 
the Jacobi polynomial, and its analytic continuation formula 
lacks the second term of (19). This is shown in the Appendix. 
Dropping the second term and integrating over u, one gets 
(16). 

Case 2':lk'l > Ik I and other conditions are the same as 
for Case 2: 

Ip = f r(a +, n,p) i (n)( _ k ,)mr [b,b - a + m] 
n = 0 n. m = 0 m b - a,b + m 

(
- - k ) X3F2 b -a, - m,l- m -b;b,a -b - m + 1;T- . 

(20) 
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Again, we start from Eq. (4) and integrate over r. After ap­
plying the multiplication theorem (A13), we get 

a-Ipa IFI(a;a + 1; - [k 'u - kv]p) 

= i: y(a ~ np) ± (n)(kV)m[1 _ (~) u]m. (21) 
n=O n. m=O m kv 

Integrating over u, we again have a Jacobi polynomial: 

Ip =r[ __ b _] i: y(a+np) ± (n)(kt 
a,b-a n=O n! m=O m 

Sa
l - - - ( k') X dvva+ m- I(I_v)b-a-1 F -mb-a'b'-o 2 I , , , kv . 

(22) 

Formal application of the analytic continuation formula re­
sults in a vanishing term as before, thus proving (20). 

III. APPLICATION TO BREMSSTRAHLUNG 

As was discussed in the first section, we apply the result 
of the preceding section to the Bremsstrahlung. The photon 
beam in the photonuclear reactions is generated by the 
Bremsstrahlung from the incident electrons interacting with 
the nuclear Coulomb field of a radiator. The cross section 
can be expressed as 

(23) 

where 

IMifl2 = If wi £Oae - ,k'rWI d 3r12. (24) 

The quantities p, W, and; are the momentum, energy, and 
spin of the electron, respectively, and E is the unit polariza­
tion vector of the outgoing photon of momentum k. W's are 
the electron wavefunctions and the subscripts 1 and 2 refer 
to the initial and final states, respectively. a is the Dirac 
matrix, and a = (~ ~), where a is the Pauli spin matrix. We 
use the natural unit:fi = c = m = 1. In calculating the 
Bremsstrahlung intensity spectrum, the most crucial part 
arises from the radial integration in Eq. (24). We intend to 
proceed as strictly as possible and the following plans are 
adopted unless otherwise stated: 

(i) The electron mass is kept in the entire calculation. 
(ii) The finite size of the radiator nucleus is taken into 

account by considering the uniformly charged sphere of ra­
diusp. 

(iii) The electron wavefunctions are expanded in partial 
waves with the appropriate phase shifts. 

(iv) The nuclear recoil momentum is kept in our kine­
r.latics. 

The Dirac equation for the electron in the nuclear Cou­
lomb field is 

[aop + /3 + V]tjI = WtjI, 
where 

/3= (I 0). 
0-1 

The potential V assumes the form 
V= -aZ/r 
V = - (aZ /2p) (3 - r/p2) 

for r>p, 

for r<p. 
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(25) 

(26) 

(27) 

Here a is the fine structure constant. The potential form is in 
accord with our plan (ii). Z is the nuclear charge of the radia­
tor. The solutions for the Dirac equation (25) are written in 
the form, for a given angular momentum, 

(28) 

where r is the coordinate unit vector of the electron and x.: 
are the spin-angular functions, which are written 13 

where (I J.l - m smlls jJ.l) are the Clebsch-Gordan coeffi­
cients, YI,p _ m are the spherical harmonics, and Xm are the 
spin functions. These spin-angular functions x.: and ~_ K are 
the eigenfunctions of the operator K = (1 + a-L). Angular 
momentum quantum numbers I, I', andj are defined accord­
ing to 

j= IKI-!, (30) 

I = 1= {K 
K -K-I 

{

K- 1 
I =1' = -K 

-K 

if K>O, 

if K<O, 
if K>O, 

if K<O. 
(31) 

When a point nucleus is considered, only the solutions regu­
lar at the origin are needed, and they are expressed as 

rf;(r)} = {i(1 - W)I/2 (2pr)Ye("./2)Ylr(y + iy)1 
rg;(r) (1 + W)I/2 (1Tp)I/2r(2y + 1) 

{1m} . . 
X Re [(y + iy)e- ,pre'" 

X IFI(y + I + iy;2y + 1;2ipr)], (32) 

where the superscript C denotes the pure Coulomb field and 

r = K2 - (aZ)2, 

y=aZW/p, (33) 

e2i"Y/ = - (K - iy/W)/(y + iy). 

As far as the electron wavefunctions are concerned, we 
find a very close resemblance between the Bremsstrahlung 
and the beta-decay process for which the conditions (i), (ii), 
and (iii) are all met. Since we have a very reliable code for the 
beta-decay analysis, as was demonstrated in our earlier pub­
lication,8 we have extended our code for the application to 
the Bremsstrahlung. We should, however, note that the 
phase convention employed in the beta-decay analysis is not 
the same as that employed in the electron scattering formal­
ism, that is, the asymptotic form of the radial wavefunction, 
regular at the origin, say, in the electron scattering case (de­
signated as YRW I4

) is 

rgK - sin(pr + y In2pr - ~(j - !)1T + .1K)' (34) 

while in the beta-decay case (designated as BR 15) 

rgK - sin(pr + y In2pr + .1K). (35) 

A method transforming the BR to the YR W scheme is de­
scribed elsewhere. 10 It should be mentioned that the electron 
mass is set equal to zero in the YRW method. Table I shows 
our phase shifts obtained via BR together with the YR W 
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TABLE I. Values of phase shifts for gold." 

YRWb Ours 
(K>O) (K>O) (K<O) 

IKI 8 c 4 _8 c 8c 4 _8c 8 c 4 _8 c 

1 0.40736 - 0.858 20 0.40604 - 0.85714 0.40865 - 0.859 58 
2 - 0.237 97 - 0.27143 - 0.238 62 - 0.27159 - 0.23713 - 0.272 58 
3 - 0.533 03 - 0.076 33 - 0.533 47 - 0.75 98 - 0.532 60 - 0.07636 
4 - 0.726 59 - 0.014 94 - 0.726 91 - 0.014 91 - 0.726 26 - 0.015 01 
5 - 0.870 98 - 0.00199 - 0.87123 - 0.00196 - 0.870 71 - 0.00198 
6 - 0.986 23 - 0.000 17 - 0.986 44 -0.000 19 - 0.98600 -0.000 19 
7 - 1.082 18 - 0.00001 - 1.08236 - 0.00001 - 1.08198 -0.00001 
8 - 1.164 38 - 0.00000 - 1.164 52 - 0.00000 - 1.164 20 -0.00000 
9 - 1.23628 -0.00000 - 1.23641 -0.00000 - 1.236 12 -0.00000 

'The electron mass is neglected here, and the incident energy of the electron is taken to be 113.12 MeV in our calculation. 
bSee Ref. 14. 

results. For the sake of completeness we also list in Table I 
the Coulomb phase shifts () ; due to a point nucleus. As can 
be seen from Table I, our phase shifts are in excellent agree­
ment with those of YR W. Table II shows our results when 
the electron mass is not taken to be zero. 

For a point nucleus the irregular solution does not play 
a role in the radial integration involved in Eq. (24), but even 
the regular solution becomes mildly divergent at the origin; 
e.g., for IKI = 1, g;';::::-!;zrr- I. The divergence associated 
with this behavior of the wavefunction is inevitable for the 
point nucleus approximation. For an extended nucleus, on 
the other hand, the divergence would not occur if we inte­
grate from the nuclear surface to the cutoff radius of the 
screened potential. It is then necessary to find the external 
electron wavefunction expressed as a linear combination of 
the regular and irregular solutions, which should be 
matched to the internal solution at the nuclear surface. We, 
however, in this work, only consider the regular solution 
whose asymptotic form is given by Eq. (34). If there is indeed 
an appreciable difference between a point nucleus approach 
and our approximation method, we may attribute the differ­
ence to the nuclear finite-size effect. More rigorous method 
in which the irregular solution is also taken into account will 
be presented in our forthcoming paper. 

Once this approximation is adopted, the electron wave­
functions for the initial and final states are of the form 

(36) 

TABLE II. Values of (4 - 8 ;) for gold." 

IKI K>O K<O 

1 - 0.856 80 - 0.859 25 
2 - 0.27109 - 0.27209 
3 -0.07594 - 0.076 31 
4 -0.01484 - 0.014 93 
5 -0.00196 - 0.00197 
6 - 0.000 19 - 0.000 19 
7 -0.00001 -0.00001 
8 -0.00000 -0.00000 

"The electron mass is explicitly included in this calculation. 
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where v is the "large component" of the Dirac spinor andSK 

is the amplitude of the K-component eigenfunction. Since the 
initial and final states are asymptotically described by a 
plane wave plus outgoing and ingoing spherical waves, re­
spectively, the superscripts (0) and (i) distinguish these 
spherical waves. 

.1.1'101 i.d K ( ')1.1.1' 
'f'K ex: e I 'f'K 

and t/J: is defined in Eq. (28). For t/J:1il a phase factor ei.d
K 

-i..:3 
should be replaced by e K. 

(37) 

Having obtained the electron wavefunctions for the ini­
tial and final states, we rewrite Eqs. (23) and (24) in a calcula­
ble form. The photon plane wave l6 is expanded in terms of 
the spherical harmonics: 

e - ik'r = 417' I(i) - I! [ h \11(kr) + h )21(kr) ] 
1m 

(38) 

where h \il(kr) are the spherical Hankel functions ofthe ith 
kind. In the following we will consider the outgoing compo­
nent, h \11(kr), only. After summing over polarization and the 
finai state spin variables and integrating over the final elec­
tron angles, we have l7 

d 3(7 = ~P2Wl W2 k dk df1
k 

(217')4 PI 

X Lto ALPL(COSO) 

+ n';1 LtIBLPL.t/COSO)], (39) 

where 0 is the angle between PI and k, n is a unit vector in the 
direction of k X PI' and P L.M (cosO) are the associated Le­
gendre polynomials. In practice, we are interested in the 
photon intensity averaged out for the photon angles; thus 
only the first term in the expression (39) is the most impor­
tant. The coefficient A L is expressed, in general, as 

AL = 24(417')3 L LA.IA.2Xlli(~ 11)1/2( - 1)'+7, 
K)K2K\ IT 

X(/010lllLO)ITK ,K
2
K,IUh {DI J, 

II 
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TK,K,K,I7;/jL = jOjJ!(lIO/IOI/I/IL 0) 

X W(Lijj;l.iI)W(I¥.kJI/I) 

+ 51/2
(10101 1120)fflvW22 I; II) 

X I(L ,)./2(/IO/.0I/I/.L '0) 
L' 

1} 
(41) 

(42) 

and 

DK,K/ = ( - 1)1,(/.).12(/0/101//1 /20) 

X W(lIJ.ld;V)W(I!ii2;!/), (43) 

where angular momentum numbers with a hat (iJ; etc.) are 
A 

1= 21 + I, A = IKI = i + ~,W(abcd;ef)aretheRacahcoeffi-
cients and 

t ;. ~} 
are the 9-J symbols. The radial integrals are 

I = i'" Y2 dr S S (i)· -II' 10Ig ('l·h 1.I(kr) (44) 
KIK21 K. K2 JK 1 K2 I , 

p 

J = 1'" Y2 dr S S (i)· -Ig loll' lil·h 1.I(kr). (45) 
KIK21 K. K2 K, J K2 I 

p 

After integrating over the photon angles n k , 

du = 41Ta P2 WI W2 k dk Ao, (46) 
(21T)4 PI 

where Ao is given by 

Ao = 12(41Tf 2:. A2 A. III [DI J 
KIKiKI I 11 

X [~OjJOI,7, OJ,), 

+ 51/2(101011120)11.(/.)1/2(1.0201/12/.0) 

X WW221;II)W(l.!211;il/tl W(12ij.;Jltl]· 
(47) 

The spherical Hankel functions in the integrands are now 
expanded 18: 

h )11 (kr) = eik/f r [ 1+ n ]Ut -1- 2(2kr) - n. (48) 
n= I n,2 + 1- n 

Substituting (48) into (44), we get 

I =S S (i)2+1,-I,-leiI4K,+4K2)IC (2)C(I)1 
KIK].I K J K2 g f 

X ({/I'1i +'121(Y2 + iY2)(YI + iYI) 
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X Ii:: r[ I+n ](2k)-nW-I-Z 
n=. n,2+I-n 

X i'" dr rY ' + y, - ne - i(p, + p, - k Ir 

X .F.(I + Y2 + iY2;2Y2 + 1;2ip2r) 

X IFI(I + Y. + iy.;2YI + 1;2ip.r) - c.c.} 

1+. [ I+n ] X I r (2k ) - n(it - 1- Z 

n= I n,2 + 1- n 

X i'" dr rY ' + y, - ne - i(p, + p, - k Ir 

X .F.(Y2 + iY2;2Y2 + 1;2ip2r) 

X IFI(I + Y. + iy.;2YI + 1;2iplr) - c.c.}), (49) 

where Cf and Cg are the normalization factors shown in Eq. 
(32) multiplied by the spinor function normalization factor 
in Eq. (36). The 1/: are defined by the equation 

(50) 

and the;5 K, are the difference in phases between the extended 
and the point nuclei, 

(51) 

The presence of the exponential factors e
i
'1[ in Eq. (49) as 

i'11-
compared to e I for the point nucleus [Eq. (32)] guarantees 
the correct asymptotic form of the radial wavefunctions, as 
was exemplified in Eq. (34). It should be noted also that the 
appearance of the exponential e - i(p, + p, - k Ir in the inte­
grands of Eq. (49) is very crucial. The method of evaluating 
the integral ofEq. (I) developed in Sec. II can formally be 
applied only when the nuclear recoil momentum 
q = PI - P2 - k is totally neglected since, under such an ap­
proximation, 

e - i(p, + p, - k Ir :::: e - i2p ,r, (52) 

hence reducing the integrals to the form ofEq. (I). This is 
exactly what Gargaro and Onley4 initially suggested to make 
the evaluation of such integrals possible. The discrepancy 
arising from the q-dependent terms in the integrands, how­
ever, can be removed with the aid of the addition theorem 
(see Appendix) through which we can fully take into account 
of the q dependence and yet are still able to make use of the 
results obtained in Sec. II. In the following we express Eq. 
(49) as 

I =S S (i)2+1,-I,-1/14K ,+4K2)IC (2)C(I)1 
K,K21 K\ K2 g f 

X [(MI - c.c.) + (M2 - c.c.)], (53) 

where 
il'li + '12) . . 

MI = e (YI + lytl(Y2 + lY2) 

X f (I + Y2 + iY2)m (- iq)m 

m=O (2Y2 + l)m m! 

1+1 [ I+n ] X I r W- 2 - 1(2k)-n 
n= I n,1 + 2 - n 
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x/(a;1 + Y2 + iY2 + m,2Y2 + 1 + m,i(2p2 + q); 

1 + YI + iYI,2YI + 1;i2PI)' (54) 

i('1{ -'121 . . ) 
M2 = e (YI + IYI)(Y2 - 1Y2 

with 

i: (Y2 + iY2)m (- iqt 

X m=O (2Y2 + l)m m! 

X I tl r [ I + n ] (i)" - 2 -I (2k ) - " 
"= 1 n,1 + 2 - n 

x/(a;Y2 + iY2 + m,2Y2 + 1 + m,i(2P2 + q); 

1 + Yl + iYJ,2Yl + l;i2pJ!, 

/(a;a,b,K ';a,b,K) 

(55) 

= LX> drrz-1e-K'r IF1(a,b;K'r) IFl(a,b;Kr) (56) 

and 

a = Yl + Y2 - n + m + 1. (57) 

(a)m is the Pochhammer's symbol defined in Sec. II. Similar­
ly we arrive at the expression for JK,K,/: 

J = S S (i)2 + I, -I, -lei(,jK, +,jK"IC (2) C (1)1 
K,K21 K. K z f g 

X [(Ml - c.c.) - (M2 - c.c,)]. (5S) 

IV. REMARKS AND CONCLUSIONS 

It may be seen that the finite size integrals of the Cases 
1,2, and 3 [Eqs. (2), (10), and (13)] reduce to those of the 
infinite integrals of Ref. 4 if the upper limit of the integrals 
approaches infinity. These formulae, however, involve cer­
tain difficulty when they are used to evaluate the cross sec­
tion, mainly because of the unfortunate combinations of the 
parameters appearing in the generalized hypergeometric 
function 3F2' The alternative Cases l' and 2' [Eqs. (16) and 
(20)] are free of such difficulty and also require less computa­
tion time to evaluate the finite series of the 3F2' Even though 
these formulae contain extra infinite summations as com­
pared with the infinite integrals, the computation time is 
found to be reasonably manageable for our IBM 3031 com­
puter. 

The main reason why the above difficulty was encoun­
tered is because of the violation of a couple of conditions for 
the convergence of the integral representation formulae 
(A6HAS). When the finite size correction was introduced 
through the multiplication theorem formula (AI2), it left the 
pqssibility of violating a condition for Eq. (AS) inevitable, 
while the use offormula (A13) eradicated the root ofthe 
trouble. A similar situation also exists for the recoil momen­
tum correction by means of the addition theorem formulae 
(AI9HA2I). Use of either Eq. (A20) or (A2I) causes viola­
tion ofthe conditions for (A6) and (AS) in Case l' and those 
for (A6) and (A 7) in Case 2', whereas the use offormula (A 19) 
does not cause any violation at all. 

As was mentioned in Sec. I, the experimental data are 
very scarce, and this makes it difficult to test the theoretical 
calculations. On the other hand, the theoretical plane wave 
intensity spectra with various corrections are readily avail­
able in Ref. 1. Among those calculations, the formulations 
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after Schiff and Bethe-Heitler are commonly used, but there 
are considerable discrepancies between those spectra, par­
ticularly in the end point region of the photon energy. We 
also note here a remark made by Stoler et al. 19 that the end 
point region of the Bremsstrahlung spectrum is not experi­
mentally well verified. Notably, Matthews and Owens20 

have stated that the spectrum obtained by using the Schiff 
formula was about 10% too high over most of the photon 
energy region than that from the Bethe-Heitler formula and 
also that it had incorrect shape in the end point photon ener­
gy region. 

Since the shape of the spectrum obtained from our 
method was expected to be in gross agreement with those of 
Ref. 1, we started with the calculation for the incident elec­
tron energy of 90 MeV and the atomic number Z of the 
radiator nucleus being 7S. This provided a first check of our 
computer program, and served as an indication as to 
whether our method would provide a means for detailed 
comparison between the theoretical calculations, particular­
ly in the end point region of the photon energy. 

Because of the computational complexity, we first cal­
culated, in our initial phase of the computation, the cross 
section without including any of the corrections described in 
the preceding sections, Although the result was far from rea­
lity, we could have allowed the electron angular momentum 
variable in Eq. (36) to go up as high as to 20, When those 
corrections were introduced, the calculated intensity spec­
trum approached much closer to the ones found in Ref. 1. It 
became, however, inevitable to reduce the upper limits of the 
multiple summation variables in Eq. (47). Since we had ob­
served during the trial runs that the calculated values had 
been practically the same when the electron angular momen­
tum summation variables had gone beyond S and up to 20, 
we set, most of the time, the upper limit of the variable at 
around S, whereas the range of the photon angular momen­
tum was solely determined by Eq, (43) and the I summation 
was always extended within the full range of all possible val­
ues. 

Ahrens et al. 21 measured the intensity spectrum with an 
end point energy of 140 MeV. To compare their result with 
our calculation, we expect, however, much higher partial 
waves are yet to be taken into account than those discussed 
above. It turned out, according to our realistic estimate, that 
the CPU time for the summation was proportional to the 
fourth power of the maximum value of the electron angular 
momentum variable and that a single run for the maximum 
value of 10 would require a continuous run of a whole day. 
Taking into account a further delay of the actual tum around 
time, we had to conclude that any further attempt to find a 
real criterion for the convergence of the series could be far 
beyond what one could afford. For such huge calculations, a 
direct integration of the integrals of Eqs. (44) and (45) is 
much more recommended. We are now in the process of 
converting the analytic calculation into the numerical inte­
gration. A practical limit for the summation associated with 
the recoil momentum correction is observed to be not more 
than a few couples of terms. 

It should be pointed out here that the accuracy of the 
computed values is solely dependent on the software of the 
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available computer. In other words, the accuracy is limited 
by that of the library subprograms of the individual comput­
er, and, in particular, for this type of calculation a substantial 
inaccuracy22 associated with the gamma function subpro­
gram and its logarithm subprogram limits the meaningful 
summation of the terms in the series expansion formalism, 
even though we have overwritten some of these commercial­
ly available subprograms with our own more accurate algo­
rithm. 

In our current version of algorithm, most of the series 
are terminated when the magnitude of the last added term 
becomes less than a preset limit which is controlled by an 
input data set and the value ofthe limit is usually comparable 
to that of the truncation error due to a chosen length specifi­
cation. 

The nuclear radius parameter was tested for 
p = 1.2A 1/3 and for p = 1.4A 1/3 (in Fermi units), where A is 
the mass number of the radiator nucleus. Once a reasonable 
agreement was reached, the parameter was varied within a 
range around these values. It turned out that if the value of 
the parameter was away from these values by about several 
percent, the calculated intensity spectrum deviated from the 
experimental spectrum significantly. This indicates that the 
calculation is really sensitive to the choice of the radius pa­
rameter, but that the best choice of the parameter is consis­
tent with the value determined from other experiments such 
as the electron scattering, ,u-mesic atom, etc. 

It is important to point out that the condition Re (a) > ° 
appears to fail in a few cases. This happens when / = II + /; 
or /; + /2 and the summation variable in Eq. (48) takes its 
highest value. This prohibits one from calculating the differ­
ence ofthe two improper integrals of the type ofEq. (1). One 
would have to overcome this difficulty by calculating direct-

f'xa - I(t _ xf- I pFq [al,:::,aP:zXk(t - X)s] dx 
)0 bl' ,bq , 

ly the difference between the incomplete gamma functions 
appearing in Eq. (16) or Eq. (20) by setting the value of the 
argument of the function equal to the nuclear radius and the 
cutoff radius, say, in order to estimate the contribution aris­
ing from these cases. 

One of the most interesting facts is that if one replaces 
the outgoing photon spherical wave in Eq. (38) with the pho­
ton standing wave, the extra ingoing component introduces 
an infrared divergent type spectrum, which destroys the 
whole calculation. 
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APPENDIX 

We give here all relevant formulae used in the main text. 
The confluent hypergeometric function, called Kummer's 
function, is defined as 23 

00 (a)n zn 
IFI(a;c;z) = I ---. c';fO, - 1, - 2,···, 

n =0 (c)n n! 

Flc) f rIa + n) zn (AI) 
= rIa) n=O rIc + n) n( 

This function satisfies the Kummer's first theorem 

(A2) 

More generalized hypergeometric functions may be given in 
terms of integral representation24: 

[

a ... a .!!... _a _+_1 ... a + k - 1 !! . ..!_J+_l ... (J + s - 1 . ] 
l' 'P' k' k " k " " , k k 

= B(a,(J)ta+f3-1 F S S s k s'zt +s 
p + k + s q + k + s .a + (J a + (J + 1 a + (J + k + s - 1. (k + S)k + s ' 

b··· b -- .... _c.....:.....--'---'--__ 
I' 'q' k + s' k + s ' , k + s ' 

(A3) 

where pFq are generalized hypergeometric functions and 
B(a,(J) are Beta functions 

B(a,(J) = r(a)rifJ) _r[ a,(J ]. (A4) 
r (a + (J ) a + (J 

Equation (A3) is valid if Re (a) > 0, ReifJ) > 0, k and s are 
nonnegative integers, but not both zero, and no bj is to be 
zero or a negative integer. In particular, if k = 1, s = 0, and 
t = 1, 

[ 
al,···,ap;a; ] 

P + I Fq + lb ... b 'a + (J. z 

[ I>+i/]i' I ' [al ... a' ] 
=r a xa-I(I-xf-lpFq b' .. .'bP:Zx dx, 

a,{3 0 P 'q' 
(AS) 
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from which we have the following relations for Re(a I) > 0, 
Re(bd > 0, and Izl < 1 for the last equation: 
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3F2(aJ,a2,a3;aJ + bJ,b2;Z) 

=r[a J +b J ] tt a'-)(l_t)b,-J 
a),b) Jo 

x 2FJ(a2,a3;b2;zt) dt. 

A linear transformation formula for 2F) is23 

(A8) 

2FJ(a,b;c;z) = r [c,c -b
a 

- b] 2FJ(a,b;a + b - c + 1;1 - z) 
c - ,c-a 

+ (1 _zj<-a-br [c,a + b - c] 
a,b 

X 2F)(c-a,c-b;c-a-b+ l;l-z), 

larg(l - z)1 < 1T, c - a - b =1= ± m, m = 0,1,2,3,.··. (A9) 

A combination of (A8) and (A9) gives for Izl = 1, provided 
that the series converge: 

3F2(a),a2,a3;b),b2; 1) 

= r [a2 - b2 + 1,a3 - b2 + 1] 
a2 + a3 - b2 + 1,1 - b2 

X3F2(b) - a),a2,a3;b),a2 + a3 - b2 + 1;1) 

_ r [b),a) - b2 + 1,a2 - b2 + 1,a3 - b2 + 1,b2 - 1] 
a),b J - b2 + 1,a2,a3 

3F2(aJ - b2 + 1,a2 - b2 + 1,a3 - b2 + 1; 

b) - b2 + 1,2 - b2;1). (AlO) 

Another linear transformation formula is useful for the ana­
lytic continuation of the function whose argument lies out­
side of the circle of convergence: 

2FJ(a,b;c;z) 

= r [~',~ = :]( - z)-a 2F)(a,a - c + l;a - b + l;lIz) 

[
c a - b] + r a',c _ b (- z) - b 2FJ(b,b - c + l;b - a + 1; liz), 

larg(-z)I<1T, a-b=l=±m, m=0,1,2,3,.··. (All) 

When the argument has a linear coefficient, the following 
multiplication theorem is most helpful: 

00 (c - a) 
JFJ(a;c;zz') = ~'(z - 1)~ - C I n 

n=O n! 

X (1 - ~ r )FJ(a - n;c;z') (Al2) 

00 (a)n zln 
= I -(-)-, (z - l)n JFJ(a + n;c + n;z'). (A13) 

n =0 C nn. 

Next we will show that the analytic continuation formula 
(A 11) may be used even if the parameter a is a negative in­
teger. Consider a function 2FJ( - m,b;c;z), where m is a posi­
tive integer. Formal application of (All) yields 

2FJ( - m,b;c;z) 

[
C,b + m] 

=r b,c+m (-z)m
2FJ(-m,1-c-m;1-b-m;lIz) 

+r[C' -m -b]( _Z)-b 
-m,c-b 
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(A14) 

T~is fun~tio?, however, is nothing but the Jacobi polyno­
mIal, WhICh IS defined in terms of the hypergeometric func­
tion 2F)( - n,n + a + /3 + 1;1 + a;z) as23 

Pn (a.f3I (1 - 2z) 

(1 +a)n 
--,- 2FJ( - n,n + a + /3 + 1; 1 + a;z). 

n. 

Therefore, 23 

Pn (a.f3I(X) = (n : a) 

(A1S) 

X 2FJ( - n,a + /3 + n + l;a + 1; 1; x) 

X2FJ( -n,-a-n;-2n-a-/3; 

Settinga=c-1, /3=b-c-n, 2/(1-x)=z-J, 

(n +: -1) 2FJ( _ n,b;c;z) 

(A16) 

=(b+:-1)(_z)n 2F{ -n,l-c-n;l-b-n;+} 

therefore, 

2F)( - n,b;c;z) = r [c,b + n] 
b,c+n 

(A17) 

This shows that the second term of the formal equation 
(A14) should vanish for the Jacobi polynomial. 

Finally we give a brief description of the addition and 
the multiplication theorems of Kummer's function. These 
are based on Taylor's theorem applied to Kummer's func­
tion, which is analytic in the whole domain of its complex 
variable. 25 If an analytic function is convergent for Ix I <p,26 

fIx + y) = iJ(nl(x( for Iyl <po (A18) 
n=O n! 

Here p is the radius of the circle of convergence which is 
infinity for Kummer's function. A few examples of the addi­
tion theorem are25 

JF)(a;c;z + z') 

(AI9) 

_( Z )C-) 00 (-tn1-c)m (z,)m 
- Z + Z' m~o m! -; )F)(a;c - m;z) 

(A20) 
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( 
z )0 ~ (a)m 

=- L-
z+z' m=O m! 

X -- .F.(a + m;c;z). ( 
z' )m 

z+z' 

By replacingy with (y - 1)x, one gets from (AI8)25 

~ (y l)nxn • F,(xy) = L ~-----!.-
n=O n! 

X(!Y,F,(x) for l(y-l)xl < 00. 

(A21) 

(A22) 

A few applications of this formula have been shown as (A 12) 
and (A13). 
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On the uniqueness of the energy-momentum tensor for electromagnetism 
D. B. Kerrighan 
Department of Mathematics, Royal Roads Military College, Victoria, British Columbia, VOS lBO, Canada 

(Received 2 March 1982; accepted for publication 10 May 1982) 

For the case of a space-time manifold we show that the metric tensor and the well-known energy­
momentum tensor for electromagnetism are the only symmetric, rank 2 tensor concomitants of an 
arbitrary bivector, and the metric whose divergences vanish whenever the bivector satisfies the 
source-free Maxwell equations. 

PACS numbers: 41.10. - j, 04.20. - q 

1. INTRODUCTION 

In the general theory of relativity the energy-momen­
tum tensor for electromagnetism is taken to be I 

(Ll) 
where Fab is a bivector which represents the electromagnetic 
field andg ij is the inverse of the metric tensor gij' The ques­
tion of the uniqueness of (1.1) naturally arises. On the one 
hand, Huggins2 has proposed a possible modification to Tij 
for the case of a Minkowski space-time. (A suitable general­
ization for curved space-times does not exist. 3) On the other 
hand, the uniqueness of T ij among various classes of tensors 
has been proved.4 In particular, Lovelock5 has shown the 
following: 

Theorem: The only tensors, C ij, which are symmetric, 
i.e., 

Cij=Cji, 

and are tensor concomitants of gab and Fab , i.e., 

Cij = Cij(gab,Fab ), 

and which satisfy the divergence condition6 

C ij - a i Fhj + {3i 'YIhjabF 
[j - h [j h '{ ab [j' 

(1.2) 

(1.3) 

(1.4) 

where aih and {3 ih are tensor concomitants of gab and Fab , 
and TJ hjab is the Levi-Civita tensor, are of the form 

(1.5) 

where a and (3 are constants. 
The purpose of(1.4) is to give Cij zero divergence when­

ever Fij satisfies the source-free Maxwell equations. These 
equations may be written in the form 

(1.6a) 

TJijabFab[j = Fab[j + Fjalb + Fbj1a = O. (1.6b) 

However, assumption (1.4) leaves open the possibility 
that a Cij exists which does not satisfy (1.4) or (1.5) and yet 
does satisfy (1.2) and (1.3) identically, and also 

C\ = 0 (1.7) 

whenever Eqs. (1.6a) and (1.6b) hold. We shall show that this 
is not the case. Specifically, we shall prove the following 
theorem. 

Theorem: Let Cij satisfy (1.2) and (1.3). If, on a space­
time manifold, Cij satisfies (1.7) whenever (1.6a) and (1.6b) 
hold, then Cijis given by (1.5). The proof relies on the explicit 

construction of all C ij which satisfy (1.2). This has only re­
cently been accomplished.7 

2. PROOF OF THE THEOREM 

For a space-time manifold any tensor which satisfies 
Eqs. (1.2) and (1.3) must be of the form7 

Cij = Ag ij + BFiaFja' 

where 

and 

B = B(gab;Fab ). 

The divergence of C ij is 

C\ =A[jgij+B[jFiaFja 

+ BF,\ Fja + BFiaFja[j' 

We also haveS 

A[j = J~ Fab[j 
ab 

and 

(2.1) 

(2.2a) 

(2.2b) 

(2.3) 

(2.4a) 

JB 
B[j = -Fab[j' (2.4b) 

JFab 

Furthermore,s JA IJFab and JB IJFab are bivector con­
comitants of gab and Fab . But all bivectors of this form are 
known7

: 

JA = A F ab + A 'YIabcdF 
JFab I 2'{ cd (2.5a) 

and 

JB = B F ab + B 'YIabcdF 
JF I 2'{ cd' 

ab 
(2.5b) 

where A I' A2, B I' B2 are scalar concomitants of gab and Fab , 
and TJabcd is the Levi-Civita tensor. By using Eqs. (2.4) and 
(2.5) and the Maxwell equations [(1.6a) and (1.6b)] Eq. (2.3) 
can be written as 

C ij -A ijabF 
[j - ab[j' 

where 

A ijab = I (AI +!B lF ab + A2TJabcdFcd I gij 

+ IBIFab + B2TJabcdFcd )FieFje' 

Note that 

A ijab = A ijab( gcd;Fcd )' 

(2.6) 

(2.7) 

(2.8) 
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The divergence requirement [i.e., (1. 7) with (1.6a) and (1.6b)] 
can now be written as 

A ijabF 0 abli = , 

whenever 
'k glFijlk = 0 

and 

(2.9a) 

(2.9b) 

Fijik + Fkili + Fjk Ii = O. (2.9c) 

For an arbitrary bivector Fab , there are 24 independent com­
ponents of Fab Ii' A bivector which satisfies Eqs. (2.9b) and 
(2.9c) has only 16 independent components of Fab Ii but these 
are more than sufficient to guarantee that 

A ijab = O. (2.10) 

(This assertion is verified in the Appendix.) Now, even if Fab 
satisfied Eqs. (2.9b) and (2.9c), it still has the maximum num­
ber of independent components, namely, six. Therefore 
(2.10) holds for a bivector Fab which is essentially arbitrary in 
the sense that F 12, F 13, F 14, F23, F240 and F34 may vary inde­
pendently. One can easily establish that this situation ob­
tains only if 

AI +!B=O (2.11a) 

and 

(2.11b) 

[By contracting with quantities of the form Fab gij one ob­
tains a system of four equations in the unknowns (A I + ~ B), 
A 2, B I , and B2 • This system has a nonzero determinant in 
general.] 

Equations (2.5b) and (2.11b) imply 

B = B (gab)' (2.12) 

but the only scalar satisfying (2.12) is a constant,9 i.e., 

B = const p. (2.13) 

Now Eq. (2.5a) becomes 

JA = _~Fab. 
JFab 2 

One easily sees that 

J(FcdFcd) = 2Fab. 
JFab • 

therefore, 

A = - !PFcdFcd + a, (2.14) 

where a is a constant. 9 

Now Eqs. (2.1) and (2.14) together imply 
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APPENDIX 

We wish to establish that Eqs. (2.9) imply Eq. (2.10). 
First we choose any point p in our space-time manifold. 
Then we transform coordinates 10 so that at p, 
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gij = 1]u==diag[ 1,1,1, - 1]. 

Hence, 

Fijlk = Fij,k 

and 

riij=o. 

Then, from Eq. (2.9b) we have (atp), 

F I4,4 = F12 ,2 + F13 ,3 , 

F24,4 = F23,3 - F12•1 , 

F34.4 = - F 13.1 - F23,2 , 

F34.3 = - F I4,I - F24,2 . 

From Eq. (2.9c) we obtain 

F 12,3 = F 13•2 - F23,1' 

F 12,4 = F 14.2 - F24, I , 

F13 ,4 = F 14,3 - F34,1' 

F23 ,4 = F24,3 - F34.2 . 

(AI) 

(A2) 

Thus, eight of the 24 quantities Fab.c are dependent on the 
other 16. We can differentiate Eq. (2.9a) with respect to any 
one of these 16 independent quantities provided we use Eqs. 
(AI) and (A2). Among the 12 sets of equations we have (after 
suitable simplifications) the following eight: 

A i213 = -A i312 = -A i123, 

A i212 = _ A i414 = A i313, 

A i314 = _ A i413 = _ A i134, 

A i334 = A i224 = A i224, 

(A3) 

where i can take on anyone of the values 1,2,3, or 4 in each 
of the equations. 

By using Eqs. (A3) and (2.7) and the fact that 

gij = TJij 

atp, we easily find that Eq. (2.10) holds atp. Butp is arbitrary 
so (2.10) holds everywhere. This concludes the proof. 

I Latin indices run from I to 4. The summation convention is used through­
out. Indices are lowered and raised using the metric and its inverse. 
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Quantum tachyon in a Friedmann universe 
s. K. Srivastava 
Government College, Port Blair 744104, India 

(Received 31 December 1980; accepted for publication 30 July 1981) 

The scalar wave equation of a primordial tachyon is investigated in a Friedmann universe of 
positive curvature containing different perfect fluids. Also the energy of a tachyon as well as the 
rate of emission of energy from a primordial tachyon in different models has been discussed. 

PACS numbers: 98.80. - k 

1. INTRODUCTION 

It is now generally accepted that the existence of ta­
chyons does not violate the theory of relativity, though so far 
experiments to detect them have yielded null results. Re­
cently Narlikar and Sudarshan 1 have published a paper in 
which they have assumed that tachyons were produced at or 
just after the event of the big bang along with other particles 
of ordinary matter or bradyons. This gives rise to a question 
whether primordial tachyons survive up to the present epoch 
and if they survive, why experiments fail to detect them. 
Narlikar and Sudarshan have tackled this problem to some 
extent in the context of a flat Friedmann universe. 

In the present paper, we have tackled this problem in 
Friedmann models of positive curvature containing different 
perfect fluids such as dust, radiation, and superdense matter. 
We have considered the Robertson-Walker line element 

ds2 = dt 2 - S 2(t)[ ~ + r(dO 2 + sin20 dqi)]. l-r 
(Ll) 

Under coordinate transformations 

l' = f S~~) and u = f (1 _d~)1/2 = sin-1r, (1.2) 

this line element is rewritten as 

ds2 = fl2(1')[d1'2 - d~ - sin2u(dO 2 + sin20 dqJ 2)], 
(1.3) 

where 

fl(1') =S(t). (1.4) 

Here, for simplicity, we shall discuss the case of spinless ta­
chyons with the help of relativistic quantum mechanics. The 
tachyon scalar wavefunction satisfies the Klein-Gordon 
equation 

(1.5) 

where we have chosen c = 1 ,Ii = 1 (Ii is Planck's constant 
divided by 217'), t/!(r,O,,p,t ) is the scalar wavefunction of a ta­
chyon, and M is the metamass2 of a tachyon which is given 
by 

mo=iM, (1.6) 

(ma is the rest mass of a tachyon). The operator 0 2 is given by 

0 2 = 1 ~ ( (_ ) 1/2 if ~ ) (1. 7) 
( _ g)I/2 ax2 g It axi . 

The plane wave solutions of(1.5) are of the form 
exp(ik.;: - ivt ), with P - v = m2 where M = 21Tm and k 

and v are wavenumber and frequency, respectively. There­
fore the group velocity dvldk = k Iv is greater than unity. 
The curvature of space-time is incorporated in the 0 2 

operator. 

2. SOLUTION OF THE KLEIN-GORDON EQUATION 

Under coordinate transformations (1.2) the Klein-Gor­
don equation can be written as 

(02 - M2flf = 0, 

where 

If = fl (1')t/!. 

On substituting g ij's from (1.4) in (2.1) we have 

a 21f + .3.. afl alf _ a 21f _ 2 cotu alf 
a1'2 fl ar ar a~ au 

__ 1_ [_1 ~ (SinO alf ) + _1_ a 21f ] 
sin2u sinO ao ao sin20 aqJ2 

(2.1) 

(2.2) 

- M 2fl2(r)1f = O. (2.3) 

If can be expanded in terms of a complete set of eigenfunc­
tions of the angular momentum operator. Hence, setting 

If = f IfIPI(cosO) 
I~O 

we have a partial differential equation of Ifl (u,r) 

a2fft 2 afl alft a21f1 alfl -- + --- --- -2cotu-
a? fl ar ar a~ au 

+ [ I (~+ I) _ M 2fl 2(r)]1ft = O. 
sm2u 

Also we have 

(llfl Hafl lar) = Hfl = HS, 

(2.4) 

(2.5) 

(2.6) 

where H is Hubble's constant. After the epoch of the big 
bang, we assume that at time t = tq (say) the entire energy of 
the universe comes into thermal equilibrium. Nowapproxi­
mating HS near t = tq we have 

HS=HqSq + (t-tq)[Hq( as) +(aH) Sq]. 
at '. at '. 

But Sq may be approximated by zero, because up to the 
event t = tq expansion would have been very small; hence 

HS-::::;O. (2.7) 

Moreover, the velocity of a tachyon is 

V= (2.8) 
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hence 

f dt 
a> SIt)' (2.9) 

This shows that a will increase rapidly. Hence there is 
no harm is taking 

cota = 0 and sina = 1. (2.10) 

Substituting (2.7) and (2.10) in (2.5) we get 

a2lfi a2lfi a; - a;' + [I (I + 1) - M 2n 2(T)]i1t = O. (2.11) 

The plane wave solution of this equation can be written 
as 

i1t = cP (a) exp( - iVT), (2.12) 

where v is a constant. 
On substituting (2.12) in (2.11) we get 

~~ + [v2+M2n 2(T)_/(/+ 1)]cP=O. (2.13) 

This equation yields the solution 

cP=Aexp[±ia(v+M2n2(T)-/(/+ 1))1/2]. (2.14) 

Hence 

i1t = A exp[ - iVT ± ia(v2 + M 2n 2(T) -I (I + 1))1/2]. 

(2.15) 

This gives the solution of the Klein-Gordon equation (2.1) 
corresponding to the orbital angular momentum I. 

3. SOLUTIONS OF THE KLEIN-GORDON EQUATION IN 
WORLD MODELS CONTAINING DIFFERENT PERFECT 
FLUIDS 
A. Dust model of the Friedmann universe 

If we consider the dust model of the universe we find 
that the Einstein field equations yield3 

n (T) = S (t )zt 2/3. (3.1) 

Connecting Eq. (3.1) with Eqs. (1.2) and (2.8) we have 

f dt 3 1/3 
T= t 2/3 = t . (3.2) 

Weare considering free tachyons. Hence their velocity v will 
be constant. This yields 

a = 3vt 1/3. (3.3) 

Substitutingn,T, and a from Eqs. (3.1), (3.2), and (3.3) in Eq. 
(2.15) we have 

lfil =A exp[ - 3ivt 1/3 

± 3ivt 1/3(V + M 2n 2(T) -I (I + lW/2]. (3.4) 

Hence on substituting n (T) from Eq. (3.1) in (2.2) we have 

"'I = At -2/3 exp[ - 3ivt 1/3 

± 3ivt 1/3(V + M 2n 2(T) -I (I + rW/2]. (3.5) 

This shows damping of the scalar tachyon wave with time. 
The magnitude of energy associated with this wave is given 
by 

1982 J. Math. Phys., Vol. 23, No. 10, October 1982 

E= l:r [3vtI/3±3vtI/3(V+M2t4/3_/(/+ 1))1/2]1 

= t -2/3[ v + v(v + M 2t 4/3 -/(1 + 1))112 

2vM
2
t

4/3 
] (3.6) 

where v and I are constants. Hence there is no harm in taking 

v 2 = I (I + 1). (3.7) 

Now 

E = t -2/3[1(1 + 1)112 + 3Mvt 2/3]. (3.8) 

This expression of energy shows that the energy of the 
tachyon is decreasing with time. This means that the ta­
chyon is emitting energy and the emitted energy is being 
absorbed in the surroundings. We have the rate of emission 
of energy as 

dE 2 (/(/ + 1))1/2 
- dt = 3" t5/3 (3.9) 

B. Radiation model of the Friedmann universe 

From the Einstein field equations,3 we find that 

n(T)=S(t)ztI/2. (3.10) 

Equations (3.10) and (1.2) yield 

T=f~=2tIl2. (3.11) 
t 1/2 

Also we have 

a = 2vt 112. (3.12) 

Substituting T and a from Eqs. (3.11) and (3.12) in Eq. (2.15) 
we have 

lfil = A exp[ - 2ivt 1/2 

± 2ivt 1/2(V + M 2t -/(1 + 1))1/2]. (3.13) 

Hence substituting n (T) from Eq. (3.10) in (2.2) we have 

"'I = At -1/2 exp[ - 2ivt 1/2 

± 2ivt 1/2(V2 + M 2t -I (I + 1))1/2]. (3.14) 

This equation again shows damping of scalar tachyon waves 
with time. The magnitude of energy associated with this 
wave is given by 

E = 1 :t [2vt 1/2 ± 2vt 1/2(V + M 2t -I (I + 1))1/2]1 

= t -112[ v + v(v + M 2t -/(1 + 1))112 

2M
2
vt ] + . 

(V+M 2t-I{l+ 1))1/2 

Connecting Eqs. (3.7) and (3.15) we have 

E = t -1/2(V + 3vMt 1/2). 

(3.15) 

(3.16) 

This equation also shows that energy of the tachyon is de­
creasing with time. The rate of emission of energy in this case 
is given by 

dE 

dt 

..!.. (/(1 + 1))1/2 
2 t 3/2 

(3.17) 
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C. Superdense model of the Friedmann universe 

When the Friedmann model is in a superdense state, 
from the Einstein field equation3 we have 

n(r)=S(t)=t I/3 . (3.18) 

Connecting Eqs. (3.18) and (1.2) we have 

(3.19) 

Also 

(3.20) 

Substituting rand u from Eqs. (3.19) and (3.20) we have 

Ifl = A exp[ - ~ivt 2/3 

± !ivt 2/3(V + M 2t 2/3 -I (I + lW /2\. (3.21) 

Now substituting n (r) from Eq. (3.18) in Eq. (2.2) we have 

tPl = At -1/3 exp[ - ~ivt 2/3 

± ~ivt2/3(V + M 2t 2/3 -/(1 + 1))1/2
\. (3.22) 

This equation also shows damping of scalar tachyon waves 
with time. The magnitude of energy associated with this 
wave is given by 

E= I :t [~ vt 2/3 ± ~vt2/3(V+M2t2/3_/(/+ l W/2 ]1 

=t-1/3[V+V{V+M2t2/3_/(/+ 1))1/2 

1 M 2vt 2/3 ] 
+ 2" {V+M2t2/3_/(/+IW/2 . 

Connecting Eqs. (3.7) and (3.23) we have 

E = t -1/3[ V + !vMt 1/3\. 

(3.23) 

(3.24) 

This equation also shows that the energy of the tachyon is 
decreasing with time. The rate of emission of energy in this 
case is given by 

dE 
dt 

4. DISCUSSION 

~ (/(1 + 1))1/2 
2 t 4/3 

(3.25) 

From Eqs. (3.5), (3.14), and (3.22) we note that the scalar 
wave ofa tachyon is damped with time. But in the case of the 
dust model damping is fastest, and in the case of the super­
dense model damping is slowest. We have the order of damp­
ing as 

Dd >Dr >Ds, 

where D stands for damping and the subscripts d, r, and s 
denote dust, radiation, and superdense models, respectively. 

Also, the graph sketched in Fig. 1 for rate of emission of 
energy against time shows that, at a particular time, the rate 
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FIG. 1. Rate of emission of energy from a tachyon against time. 

of emission of energy is fastest in the superdense model and 
slowest in the radiation model. But as time increases the 
graphical curves in the cases of the radiation and dust mod­
els come closer and closer faster than in the case of the super­
dense model. 

However, in all cases, we find that the primordial 
tachyon loses its energy with time. Hence from the above 
investigations we are in a position to say that there would be 
a very narrow possibility of survival of a primordial tachyon 
up to the present epoch. Even if they survive, owing to very 
low energy, their experimental detection seems difficult. 
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We <:<>nsider the initial value problem and the short-time evolution of a system consisting of two 
Euchdean-homogeneous (Bianchi type I) cosmologies, each containing a homogeneous scalar 
field tp or a homogeneous electric field, abutted at the plane z = 0, We show that a matching is 
possible, and discuss the evolution for a vacuum (tp = 0) cosmology abutted to one with nonzero 
scalar field tp. 

PACS numbers: 98.80. - k, 04.20. - q 

I. INTRODUCTION 

Centrella 1.2 has developed a technique for explicitly 
solving the initial data problem of one-dimensionally inho­
mogeneous cosmologies. Her technique consisted of abut­
ting three-dimensional slices of two different anisotropic 
type I cosmologies: 

d$2 = - dt 2 + ( ~yP' dx2 

+ - dy2+ - dz2, ( 
t )2P2 

( t )2P' 
to to 

(1.1) 

at a 2-plane (taken to be z = 0). We label the constants to and 
Pi in the two different regions by A and B, i.e., tOA ' PIB' etc. 
The Hamiltonian constraine contains no derivatives for 
vacuum or for perfect fluid sources ~ince ( 1.1) can be made 
explicitly flat at any particular time t ], hence the abutted 
half-slices automatically satisfy the Hamiltonian constraint. 
The momentum constraine, "f~j = 0, reduces in the vacuum 
or fluid case to 

(1.2) 

Centrella's matching procedure is carried out by fixing tOA , 

P3A' and tOB (say) at the initial time and then using the con­
straint (1.2) to determine P3B' In vacuum we need not specify 
PI andp2 because thepi obey 

PI+P2+P3=1 (1.3) 

and 

pi +p~ +p~ = 1, (1.4) 

but these equations are modified if matter is present. Thus 
for a vacuum, the matching as described completely deter­
mines the models on the two sides of the 2-surface z = O. 
When matter is present, there are still other parameters 
needed to describe the solution on each side: schematically, 
the deviation ofthe sum ofthepi and/or ofthe sum of the 
squares ofthe Pi from unity. 

alSUpported in part by NSF grants PHY 77-07619, PHY 81-07381, and 
INT 78-22583 and by Grant No. 955 from CONACyT de Mexico, one 
from the SERC, and one from the National Geographic Society. 

blPermanent address: Center for Relativity, University of Texas, Austin, 
Texas 78712. 

Once initial data have been set, the Einstein equations 
can be solved either by numerical computation, or in the 
vacuum case-and the scalar field case-by analytic techni­
ques. The models that result are examples (perhaps non va­
cuum) of Gowdy4 inhomogeneous cosmologies. The discon­
tinuous data just described are of substantial interest from 
the viewpoint of the evolution of shocks in the early universe. 
For short times away from the "initial" data slice an ap­
proach based on a Green's function is the most reasonable, 
because the short-time Green function is especially simple. 
For longer-time evolution Fourier-Bessel decomposition~ 
ofthe dynamical variable [cf. Eq. (6.2) below], although 
complicated, does allow analytical evolution ofthis data for 
large times. Of course the numerical approach allows solu­
tion of a wider class of problems than can be treated analyti­
cally. 

In this paper we consider an extension of the Centrella 
initial-value technique to the case of inhomogeneous plane­
symmetric cosmologies whose only matter content is a mass­
less scalar field or an electromagnetic field sharing the plane 
symmetry, and we use the analytical techniques just outlined 
to describe the evolution of data corresponding to an instan­
taneously homogeneous universe containing an inhomogen­
eous (discontinuous) plane-symmetric scalar field. 

II. SCALAR-FIELD INITIAL DATA 

The massless scalar field obeys 

¢l:Il-;1l- =0. 

The stress tensor associated with this field is 

(2.1) 

(2.2) 

Spatially homogeneous solutions of the scalar-field Ein­
stein equations 

Gil-V = Til-V (2.3) 

may be written in the metric form (1.1), with a scalar field7 

tp = r In(t Ito) + tpo(r, tpo const) (2.4) 

and with constant exponents Pi satisfying (1.3) but with (1.4) 
replaced by 

pi + p~ + p~ = 1 - r. (2.5) 
In carrying out the Centrella procedure, one first uses 
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coordinate freedom to adjust 10 on the two sides of the join so 
that I A = lOA' t B = lOB' and the 3-metric on each side of the 
join is thus explicitly Dij' One might anticipate difficulty be­
cause the stress tensor involves gradients of qJ. A priori this 
contradicts the assumption we want to make in solving the 
Hamiltonian constraint, that no spatial gradients enter. 
However, Eq. (2.4) shows that if qJo = 0 then qJ vanishes on 
the slice I = to and we henceforth make that choice. Then the 
argument, that the Hamiltonian constraint is a pointwise 
algebraic identity, holds on the initial slice, and by picking 
half slices that are scalar wave cosmologies with qJo = 0 on 
the 10 slice, the Hamiltonian constraint is identically satisfied 
everywhere. 

Additionally, the initial data require the satisfaction of 
the momentum constraint 

T iO = _(Kim
lm 

_Kmmli) 

_g-I/2~m 
- '/I 1m ' 

(2.6) 

where Kim is the extrinsic curvature of the surfaces being 
matched, g is the 3-space metric determinant, and 1fj is the 
ADM (Arnowitt-Deser-Misner) momentum. The symbol 
1m denotes the spatial covariant derivative, in the m direc­
tion, which is here equal to the ordinary derivative since the 
3-surfaces are explicitly flat. Further, from the form of the 
stress tensor (2.2), the energy current vanishes in each half­
slice. We thus suppose Tiol z ~ 0 = 0, and the match condi­
tion becomes 

1 - P3(Z) = const, (2.7) 
to(z) 

as in the vacuum case. 
Valid inhomogeneous data on a 3-slice then consist of 

the choices (which may be made smoothly, i.e., not necessar­
ily discontinuously) 

10(z), 

P3(Z), 

r(z) , 

(2.8a) 

(2.8b) 

(2.8c) 

with Eqs. (2.5) and (2.7). Because of the presence of the scalar 
field, there is greater freedom to choose the variables than in 
the vacuum case. The number of variables is increased by 
one with the presence of qJ, but the number of constraints 
remains unity, cf. Eq. (2.7). 

III. ELECTROMAGNETIC INITIAL DATA 

The scalar-field initial data set is a very simple general­
ization of the vacuum one, in part because there is no con­
straint (i.e., no initial-value) problem for the scalar field. 
However, for the electromagnetic situation there is a con­
straint equation, namely3 

'6'i,i = 0, 

where 

'6'i = Hijk ] [jk,uv]( - g)I!2g"ag v/3Fa /3 

(3.1) 

(3.2) 

with [ijk] and [a Pyo] the alternating symbols defined by 

[123] = [0123] = 1. 

Jacobs8 has given some electric field-containing homo­
geneous cosmologies of Bianchi type I. These models have 
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the electric field along one of the principal axes of the metric. 
His solution for a field along the I-direction is 

ds2 = _ dt 2 + e2ae2 /3 ijdxidxj
, (3.3) 

with a, P functions of time [ P ij (t ) is a diagonal traceless 
matrix] satisfying 

(3.4) 

(3.5) 

(3.6) 

/322 + 3il /322 = ! pe - 2ae - 2 /322e - 2 {J33' (3.7) 

The parametrization in terms of the Pi' i = 1,2,3, is not espe­
cially useful now because they are not time independent. The 
metric can, however, be made explicitly flat at any particular 
time. 

Matching conditions for abutted homogeneous cosmo­
logies, so far as the electromagnetic field is concerned, re­
quire from (3.1) only that 

'6'3 = const (3.8) 

or, since as before, the metric may be set instantaneously 
equal to Dij: 

FOJ = const. (3.9) 

Bianchi type I cosmologies demand TOi = O. This 
means that the gravitational matching conditions also are 
easily carried out; since T Oi = 0 in each homogeneous cos­
mology, we have 1,3 only 

~3,3 = 0; (3.10) 

i.e., again, ~3 = const. 
In the metric form ofEq. (3.3) this is 

(M - /3zz ),z = o. (3.11) 

Furthermore, since the electromagnetic stress tensor 
contains no derivatives of the field, the Hamiltonian con­
straint is, as before, pointwise satisfied. 

Hence, consistent data may be set by abutting slices 
from solutions of the Jacobs class that 

(a) have a nonvanishing 3-component of the electric 
field [in which case the electric field is in fact homo­
geneous via (3.8) and the homogeneity is contained 
entirely in the geometrical variables]-or 

(b) have a nonvanishing, and z-variable, electric field 
always lying along the x axis (or always lying along 
the y axis), truly inhomogeneous data-or 

(c) have abutted half a 3-slice with a nonzero x-direct­
ed electric field against half a 3-slice with a nonzero 
y-directed electric field-step discontinuous data 
which cannot be continuously connected to homo­
geneous solutions within the class of Jacobs solu­
tions. 

Subsequent evolution of the electrovac field equations 
in general must be done numerically, since the electromag­
netic field equations do not decouple in the simple way that 
the scalar ones do (see Sec. IV). 

Work in progress by Waller9 concerns homogeneous 
type I cosmologies in which the electric field is not con­
strained to lie along a principal-axis direction. In that case, 
data which combine features of (a) and (b) with a constant z 
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field but variable x or y field, will be feasible. Also, data in 
which a field rotates from the x to the y direction over a finite 
range in z will be possible, smoothing out the jump in case (c) 
above. 

IV. CANONICAL COORDINATE SYSTEMS 

The "canonical" Gowdy representation of a plane-sym­
metric cosmology is a modification of the Rosen 10 form 

ds2 = er - IV( _ dT 2 + dZ 2) + (e"'dX 2 + T 2e - IVdy2), 
(4.1) 

where yand ifJ are functions of Tand Z. For the remainder of 
this paper we will concentrate on the scalar-field case. We do 
point out, however, that the form (4.1) which has gxxgyy 
= T2 can hold only if II Tg - T~ = 0, which means Ez 
= Bz = O. Hence data of type (a) in the preceding section 

are excluded by this form of the metric; said otherwise, Sec. 
III describes the statement of data that lead to more general 
plane-symmetric cosmologies than the usually considered 
canonical ones. 

Given (4.1), ¢ "";" = 0 reduces to 

rp + iplT - rp" = 0 (4.2) 

(here. alaTand' alaZ),whiletheEinsteinequation 

G"v = T"v becomes 

tp + iplT - ifJ" = 0, 

r = T[¢? + rp,2 + !(ip2 + ifJ'2)], 

y' = T [2iprp' + ipifJ']. 

(4.3) 

(4.4) 

(4.5) 

If we rewrite the homogeneous solutions of Sec. II we have7 

ifJ = (1 + ao)ln(T ITo), 

rp = /30 In(T ITo), 

(4.6) 

(4.7) 

(4.8) 

For the homogeneous cosmologies, the relation 
between the coordinates of Eq. (1.1) and the canonical co­
ordinates of (4.1) is fixed by 

eY - IV = (t Ito)2P,; 

hence 

and 

_ t (to)P' T--- -
1 - P3 t 

To=llto(z)) = ~- = const, 
I-P3 

(4.9) 

(4.10) 

(4.11) 

where the constancy holds by the matching conditions of 
Sec. II. 

The complete correspondence with the Pi form of Eq. 
( 1.1) becomes 

PI= /32 2 
2 + ( 0 + ! a o - !) 

(4.12) 

1-ao (4.13) 

P3 = (/3 2 2 ' 2 + 0 + ~ a o -!) 
(4.14) 
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and 

2/30 r = ----'-"----
2 + ( /3 6 + ! a6 - !) 

(4.15) 

The entire content of the matching procedure of Sec. II 
is contained in the relationship between Eqs. (2.7) and (4.11). 
The "constants" ao and/3o may be varied arbitrarily as func­
tions of Z so long as they are set on a 3-surface T = To 
= const. Notice that the correspondence between the two 

formulations requires 
y(T= To) = ifJ(T= To) = rp(T= To) = O. 
In order to see why in general the electromagnetic evo­

lution equations must be integrated numerically, we will give 
them in a form due to Charach. For the metric (4.1), and the 
condition E z = B z = 0, the only two nonvanishing com­
ponen ts of the electromagnetic potential are A x X, A y =w, 
and the field equations are 

ciJX = w'X " (4.16) 

tp + (lIT)ip - ifJ" = (e2IVIT2)(X2 - X'2) 

- e - 2IV(ciJ2 - W'2), (4.17) 

OJ + (lIT)ciJ - w" = 2(wip - w'ifJ'), (4.18) 

X - (lIT)X - X" = - 2(Xip - x'ifJ'), (4.19) 

r = T(ip2 + ifJ'2) + Te - 2IV(ciJ2 + W,2) 

+ (lIT}e2IV( X2 + X,2), (4.20) 

y' = 2TipifJ' + 2Te - 2IVciJw' + (2/T)e2IVXx'. (4.21) 

As before, Eqs. (4.16)-(4.19) determine the solution, and 
(4.20) and (4.21) can be solved by quadratures. It is easy to see 
that only in special cases will the equations decouple suffi­
ciently to yield easy analytical solutions. 

V. THE GREEN-FUNCTION FORMULATION 

The dynamical equations (4.2) and (4.3) admit a Green 
function. For instance, if a general field point is labeled (Z, T) 
then, since ifJ = 0 at To, we have 

l
D4 

ifJ(Z, 1') = !RipdZ, 
D, 

where R is the Green function 12 

R = (T 0/1') 1/2F(!, !; 1; - q), 

where F is a hypergeometric function, 

__ (Z -D4)(Z -D3) >0 
q- 4 ToT ' 

(5.1) 

(5.2) 

(5.3) 

and the integration is over the portion of the T = To surface 
within the intersection of the planes T ± Z = l' ± Z with 
the T= To surface (see Fig. 1). From Eq. (4.6) 

ipl T" = (1 + ao)ITo (5.4) 

and from Eq. (4.7) 

ipl To = /3o/To· (5.5) 

The free variables rp, ifJ determine the longitudinal part 
y of the metric, but otherwise do not interact. 

The situation with rp=O (i.e., ip = 0 everywhere on the 
initial slice) corresponds to the vacuum Gowdy4 model, and 
has been extensively studied by Centrella and Matzner. 13 We 
will first consider the complementary case in which the data 
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FIG. 1. The field at the point (Z, T) is evaluated by the Green-function 
integral (5.1) over the region of the initial data surface T= To between the 
intersections D3 and D4 with the null planes passing through (Z, T). 

for i{J is homogeneous, but that for ip has a step at Z = 0 being 
denoted f{J A for Z < 0, and f{J B fore Z> O. [Note that ",=0 
corresponds to a particular axisymmetric model, and there is 
a slight generalization by taking a homogeneous i{J1 To 

= (1 + ao)ITo, corresponding via (4.6) to a general anisotro­
pic cosmology. The behavior of", then persists as 
(1 + ao)ln(T ITo).] 

The behavior of the Green function has been elaborated 
by Centrella and Matzner. 14 For small time Ll T = T - To, 
R - 1. For larger ratios ILl T ITo I the contribution to the inte­
gral involves the more complicated behavior of the Green 
function. Let us first concentrate on a small interval centered 
on To, i.e., ILl T ITol -< 1. We assume To> 0 always. We take 
the appropriate expansion from Ref. 14 and find R = 1 in the 
integration interval. Then 

+ POA (1 _ Z) + POB (1 + Z) 
2To LlT 2To LlT 

XO(Z + LlT)O(LlT - Z)} (I>LlT ITo>O) (5.6) 

and 

f{J = Ll T {POB (Z + Ll T) + POA (Ll T - Z) 
To To 

+ POA (1 + Z) + POB (1 _ Z) 
2To LlT 2To LlT 

XO(Z - LlT)O( - (Z + LlT))} (- l-<LlT ITo <0). 

(5.7) 

The stress tensor associated with the f{J field is probably the 
most physically appropriate object to consider. From Eq. 
(2.2) we have 

T TT = Tzz = !(ip + rp '2) 

= ~ [(13;: YO(Z _ LiT) + (13;: yO( - (Z + LiT)) 

+ {(~~y + (~~oy}O(Z +LlT)O(LlT-Z)], 

(5.8) 
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T TZ = ipf{J' 

= [(~~r - (~~J2]O(Z +LlT)O{LlT-Z), (5.9) 

Ti = T ~ = - ~ gOO(ip 2 - f{J '2) 

= ~ [f;:YO(Z-LlT)+f;:YO(-(Z+LlT)) 

(5.10) 

These expressions are written for To>Ll T> 0; similar equa­
tions hold for negative Ll T. Outside the causal past and fu­
ture of the T = To discontinuity, the expressions for the sca­
lar field and for the stress energy take on their 
homogeneous-cosmology form. 

As a specific example, suppose we take POB = O. Then 
the solution represents at the "initial" time To a region con­
taining the homogeneous scalar fieldPoA up to the boundary, 
with its subsequent "expansion" into the vacuum region. 

It is interesting to note that the value of T TZ is homo­
geneous in the "interaction" region (with the signature used 
here, our T TZ indicates that the flux is directed toward the 
vacuum region B). In fact all the orthonormal frame com­
ponents of the stress tensor are also homogeneous, to the 
order we are considering, in this interaction region, suffering 
jumps at the null surfaces Ll T ± Z = 0 to their homogen­
eous-cosmology values. It may be verified that for Ll T < 0, 
T TZ has a similar form but the flux is in the opposite direc­
tion. The particular initial data set at T = To is thus achieved 
by the expected process of having a flux toward region A, up 
to the initial instant To whereupon the flux reverses and the 
scalar field re-expands into the vacuum region. 

VI. SEPARABLE SOLUTIONS 

As was pointed out in Ref. 13, Eqs. (4.2) and (4.3) are 
easily soluble by separation of variables. For example, (4.2) 
has solutions of the form 

(6.1) 

where go is a zero-order Bessel function. The major prob­
lem with this approach is that our data set demands 
f{J(T = To) = O. This implies that f{J must have the form 

f{J = LX> dk [A (k )sin kZ + B (k )cos kZ ] 

X [Jo(kToJNo(kT) - No(kTo)Jo(kT)] 

+ C In (T ITo). (6.2) 

An integral such as this, a product of three Bessel functions 
[since sin(x)-JI/2(x)] times a weighting function such as 
A (k ), is at the very limit of known analytic integrals for all but 
the simplest A (k ). There are, however, a number of devices 
for reducing expressions such as (6.2) to a more tractable 
form. As an example we will consider the initial conditions 
of Sec. V with f{J( To) = 0, ip 17;, = Po/To with a step at Z = O. 
The exact solution becomes 13 
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~ = UJo In( T ITO! + ~(.BOA - f30B) --- '\ 1"" sin kZ 
o k 

X [No(kTo)Jo(kT) - Jo(kTo)No(kT)] dk, (6.3) 

where Po= f30A + f3oB. First note that we need only consider 
Z> 0, since the solution for Z < 0 can be obtained by symme­
try. For simplicity we will take T> To. The opposite case 
follows analogously. 

In the particular case of (6.3) we can use the identity 
No(x) = (2hr)lim.<--o JJ.< (x)/JA., the fact that 
sin kZ = (1TkZ 12) I 12J1/2(kZ ), and the integral (Gradshteyn 
and Rhyzik 15) 

So'" x p -IJl'(ax)Jl'(bx)Jv(cx) dx 

= 2 p- lal'bl'c-1'-1' - prWr + Jl + v + pI) 

F(r + 1)F( Jl + l)lll - ~(r + Jl - v + pI) 

XF(r+Jl-v+p r+Jl+V+p. 
4 2 ' 2 ' 

a
2 b 2) 

r+ I ,Jl+l;2"'-2 ' 
c c 

(6.4) 

where F4 is one of Appell's hypergeometric functions of two 
variables, 15.16 to find 

- Z 2 
~(Z < T) = ~ f30 In(T ITo) + !( f30A - f30B ) -­

T1T 

X [In(T 14 TO)F4( ~, ~; ~, 1; ~: ' ~~) 
- 1 1 3 0 

( 
Z 2 T2)] + F4 2' 2; 2' 1; --:pi , --:pi , 

~(Z> T) = ~poln (T ITo) + ~(f30A -f30B)[ -In(T ITo) 

(6.5) 

. J (A. 1+A. T2 T~) +hm-F4 -,--; 1, 1 +A.;-2 '-2 
.<--0 JA. 2 2 Z Z 

. J (A. I +A. T2 T~)] -hm-F4 -,--; 1 + A., 1;-2 '-2 ' 
.<--0 JA. 2 2 Z Z 

(6.6) 

where 

_ ( Z2 T~) 
F4 !d;~, 1;--:pi'--:pi 

_. J [ (1+A. 1+A.,J .Z2 n) 
=hm- F4 --'--'2,1 +A.'-2 '-2 

'<--0 JA. 2 2 T T 

(
I-A. 1+A. Z2 T~)] 

-F4 -2-'-2-;~' 1;--:pi'--:pi . 

The difficulties with this solution lie in the definition of F4 • 

This function is defined as a convergent series, 

F4(a,f3,; r, r'; x,y) 

= I I (~)i+t~~)~+,n xmyn, (6.7) 
m=O n=O r m r nm.n. 

only for ivxi + ivyi < 1, that is, for Z < T - To. Note, 
however, that for Z> T - To the Green function discussion 
of Sec. V means that for Z> T - To, (6.6) reduces to 
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~(Z > T - To) = f30B In(T ITo), 

because in that case the point Z, Tis causally connected only 
to the B-homogeneous region of the solution. Hence (6.7) 
provides the complete solution of the problem. [In Eq. (6.7), 
the notation (r)m is Pochhammer's symbol 15 

(r)m = F(a + m)/r(a), 

where 

r(n) = (n - I)!]. 

Because explicit behavior of (6.7) is difficult to extract 
from the power series, we now discuss another method that 
can be used for handling integrals of the type of(6.3): the 
method of convolutions. This method may be more fruitful 
in cases that are less simple than (6.3), as it involves integrat­
ing a weighting function against trigonometric functions and 
one Bessel function, and there is ample literature on this type 
of integral. In our case we make use of17 

Y s- I(F(k)G (k)) 

= (2:)1/2 L" g(s)[I(Z - s) - I(Z + s)] ds, (6.8) 

where 

and 

V2 i'" gIS, a)= - G (k, a)sin kS dk, 
1T 0 

- v2 i"" I(s, a)= - F(k, a)cos ks dk. 
1T 0 

For (6.3) we have 

F(k, a) = No(ka), G (k, a) = J'f)(ka)/k, 

so (6.3) becomes 

~ = ! Po In( T ITo) + !( f30A - f30B) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

X 1'" !g(s, T)[ I(Z - S, To) - I(Z + S, To)] 

- gIS, To)[I(Z - S, T) - I(Z + S, T)] l ds. 
(6.13) 

Since 

~{ 
0, 

- 2 
I(s,a)= - 1 

1T (S 2 _ a2) I /2 ' 

(6.14) 

( f:' ) _~ { 1T/2, g~,a -
1T arcsin(s la), 

(6.15) 

we find that there are six regions of Z (we again have T> To, 
and again we take Z> 0 and can find Z < 0 by symmetry), 
each with a different form of~. They are Rl; 0 < Z < To, 
Z < T - To; R2: Z < To < T, Z> T - To; R3: To < Z < T, 
Z < T - To; R4: To <Z < T, Z> T - To; R5: To < T <Z, 
Z < T + To; R6: To < T < Z, Z> T + To. The functions in­
volved in the integral (6. i 3) turn out to be relatively simple in 
each of these regions, and are explicitly written out for all six 
regions in the Appendix. However, it is easy to verify that 
only regions Rl and R3 lie within the region causally con-
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FIG. 2. The solid line is arcsin(x), while the dashed line is (17" - 2)x. 

nected to the inhomogeneous data. Hence they are the only 
ones we need to consider. As a paradigm we will take region 
RI, and we find 

fPR I =! Po In( T ITo) + !( /30A - /3oB ) 

X -In ~----------~~------[ ( 
[(Z + T)2 - T~] 1/2 + T + Z) 
[(T- Zf - T~] 1/2 + T- Z 

21T (l") dl" + -- arcsin ...2.... ~ 
1T To-Z T [(Z+s)2-T~]1/2 

2 

1T 

X (arcsin(i.) ds ] . Jz + To T [(Z - S)2 - T~] 1/2 
(6.16) 

Unfortunately, the last two integrals above do not seem to 
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10 12 14 16 

FIG. 3. The graph of the function I]'(Z, T) via Eq. (6.17), which uses the 
linear approximation to arcsin(x). Here we have taken To = I, T = 10, POB 
= 0, and POA arbitrary. 

have a representation in terms of known functions. How­
ever, since they are over a finite range, they could be done 
numerically or approximated by some analytic scheme. For 
example, there is a polynomial approximation to arcsin(x) 
given in Ref. 18 which might be useful. For the purposes of 
this paper we will present only the crudest possible approxi­
mation, arcsin(x);::::(1T - 2)x (see Fig. 2), where the constant 
has been chosen to give the same area under the two curves 
between zero and one. We calculate fPR I ; to this order of 
approximation (at least) the only other relevant form of fP, 
fPR3' has exactly the same form. Hence, for the region T> To, 
Z> 0, of the spacetime causally connected to the inhomo­
geneous data, 

- {(21T - 4) Z fPRI ;:::: ! /30 In(T ITo) + ~(/30A - /30B) X -1T- T [In(T 0I2T) 1 

- pn([ H(I - Z IT)2 - T~/T2r/2 + + -:r] X [H(l + Z IT)2 - TUT2 r /2 + ~ + :r]) 
- lIn -!:..:.-----...:..---=-~-----[

[(1 + Z IT)2 - T~/T2r/2 + 1 + ZIT] 

2 [(I-ZIT)2- T~/T2]1/2 + I-ZIT 

+ + C1T; 4) ([(1 + Z IT)2 - T~/T2r/2[(1- Z IT)2 _ TUT2] 1/2)} 

(T> To; O<Z < T- To). (6.17) 

The leading linear term here is (Z IT)(21T - 4/1T)[ln(T 01 
T) - In(2) + 1] - 1, while the most obvious leading term in 
(6.5) is (Z IT)(2/1T)[ln(T oIT) - In(4)], which differ by about 
20%, but there are other terms in (6.5) proportional to sum 
of (T oIT )2n that would have to be evaluated before the two 
leading terms could be directly compared. 

In Fig. 3 we present a graph of fP for T = 10, To = 1, 
and/3oB = 0, where we have included the approximation for 
the acausal region. Note that even in our crude approxima­
tion the curve reflects the features of the numerical integra­
tion reported in Fig. 3 of Ref. 13. 

The main deviation from accuracy occurs at and be­
yond the causal boundary, where rp-+O. While the scale of 
the graph is too small to show it there is, for example, infinite 
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slope at Z = 9, presumably due to our approximation of arc­
sin(x). The numerical results of Ref. 13 do not show this 
effect, and the Green-function analysis of Ref. 13 shows that 
fP should be linear as it approaches zero. Although this error 
is small in the potential fP, it leads to substantial errors in the 
stress tensor [based on derivatives of fP; cf. Eqs. (5.8)-(5.10)] 
and more accurate approximations are being sought. 

VIII. ON THE RELATION TO GOWDY MODELS 

If fP = 0, these models correspond to the Gowdy4 mod­
el, except that we have not imposed any closure on the mod­
el. Had we done so, the usual restriction would arise: Only 
certain periodic functions of Z are permitted, and the net Z 
momentum due to gravitational waves (and other waves, if 
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the model is in fact nonvacuum) must vanish, in order for the 
nonlinear Eqs. (4.4) and (4.5) defining r to admit a periodic 
solution. 7 Our models require no such restriction so, for in­
stance, there is a net momentum flux in the example of Sec. 
IV. This poses absolutely no problem since, as we now show, 
our initial data are easily fitted into a periodic-in-Z data set. 

Consider any data which for Z <ZA are homogeneous­
cosmological data (cosmology A ), for some interval 
Z A < Z < Z B is inhomogeneous, and become homogeneous 
again (a new cosmology, B) for Z>ZB. Our example of Sec. 
IV is a special case of such data. Now suppose ZC>ZB. We 
can begin another inhomogeneous region, in the interval Z D 

>Z>Zc such that for Z>ZD the data are again those for 
the homogeneous cosmology A. Then any plane Z < Z A can 
be chosen to be identified with a plane Z > Z D' and the result 
is periodic data, which a priori will yie!d periodic solutions 
for all the metric variables. 

The periodicity can be chosen so that each homogen­
eous region extends over much more than a horizon size at 
the time To. Hence the different regions, with their apparent 

APPENDIX 

net momentum, can evolve freely (as our Sec. IV model does) 
for a long time until eventually the horizons overlap and it 
becomes locally more apparent that the total momentum of 
the solution vanishes. This also shows that it is dangerous to 
apply arguments based on linearization stability (the de­
mand for periodicity of r is the full-field version of a lineari­
zation stability argument) to categorize models for the real 
universe. Such arguments are global, but there is hopefully 
most of the universe we have not yet seen, and it is thus 
invalid to invoke global arguments to restrict our local ge­
ometry. Linearization stability does not, for instance, pre­
vent a local flux of gravitational radiation in a closed uni­
verse; it only demands that the net momentum be somehow 
balanced elsewhere. 
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In this Appendix we present the convolution solution to (6.3) in the regions of Z mentioned in the text. In the approxima­
tion arcsin(x) ~ (1T - 2)x the expressions reduce to ones similar to that given for lPR I in Sec. VI. The expression for lPR I is given 
in Sec. VI. The others are 

_ [ ([(Z+T)2_T~]1/2+T+Z) 
lPR2 =!.Boln(TITo)+~(.BOA -.BOB) -In 2 21/2 -In(TITo) 

[(Z + To) - T] + To + Z 

2 iT . (5) d5 • 2 iTo . ( 5 ) d5 ] + - arCSIn - - - arCSIn - ------:'~____:--:-~ 
1T T,,-Z T [(Z+5)2-T~r/2 1T T-Z To [(Z+5)2_T2]1/2' 

_ [ ([(Z+T)2_T~]1/2+T+Z) 
lPR3 =!.Boln(TITo)+~(.BOA -.BOB) -In [(T-Zf-T~]1/2+T-Z 

_ .3.. rZ - To arcsin(i.) d5 _ .3.. iT arcsin(i.) d5 
1TJo T [(Z-5f-n]1/2 1T Z+To T [(Z-5)2-T~r/2 

2 iT . (5) d5 2iz 
- To . ( 5 ) d5 - arCSIn - - - arCSIn -

+ 1T 0 T [(Z+5)2_T~]1/2 1T 0 T [(Z-5)2_T~]1/2 

2 iTo . (5) d5 ] -- arCSIn - , 
1T T-Z To [(Z + 5)2 - T2f/2 

_ [( [(Z + T)2 - T~ r /2 + Z + T) 
lPR5 = !.Bo In( T ITo) + ~(.BOA - .BOB) - In( T ITo) - In [(Z + TO)2 _ T 2] 1/2 + Z + To 
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Erratum: Finite subgroups of SU(3) [J. Math. Phys. 22, 1543 (1981)] 
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PACS numbers: 02.20.Df, 02.20.Rt, 99.10. + g 

In the theorem on page 1544 we claimed that the groups 
G W PQ,3,a) are finite subgroups ofSU(3) for all positive inte­
gers i. As has been pointed out by W. M. Fairbairn and T. 
Fulton (University of Lancaster preprint, 1981), this state­
ment is in fact only true for i = 0 and i = 1. The reason why 
our proof is erroneous in the cases i > 1 is that the representa­
tion [O,a - 1], used in Lemma 3 of the appendix, is not faith­
ful. 

1992 J. Math. Phys., Vol. 23, No.1 0, October 1982 

While this reduces the number of new finite SU(3) sub­
groups, the main result of Sec. II of our paper, namely, the 
existence of a series of "trihedral" groups as subgroups of 
SU(3), analogous to the dihedral groups in SU(2), still re­
mains valid. 

Section III is unamicted by this error. 
We wish to thank Professor W. M. Fairbairn for com­

municating his results to us prior to publication. 
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